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EFENDIEV RUF.

TO THE SPECTRAL ANALYSIS OF ORDINARY DIFFERENTIAL
OPERATORS POLYNOMIALLY DEPENDING ON A SPECTRAL
PARAMETER WITH PERIODIC MATRIX COEFFICIENTS

Abstract

In the paper the complete spectral analysis of the operators is carried out and
aiso with help of the generalized normalizing matrices the inverse problem is solved.

Some results of paper [3] obtained in the scalar differential bundle case are
generalized for a differential bundles system generated by differential expressions

Kr)y= (1) v (x)+ Zfzp}, (e, & )Y 7 (x) (1

y=0

where y{x)={p,{x)..., », (x)) are vector-functions from L7 (- ,) with m components
from L,(~0,%). We assume that matrix coefficients have the special form

2m—y-2

Bk)=" 3 K'Y {p,k" 2)

§=0 n=!}
where P, is a quadratic matrix of order m , whose elements belong to numerical set and

Im=22m—y-
Z i y+.'+1

¥=0 1= .\=1

the series

P, ”—- (3)

converges.
We sce from expression (2) that P, (x,k) is a 2z periodic mairix function and it
admits an analytic continuation to upper half-plane.

This case allows to conduct analysis of the operator L. It turns out to be that a
spectrum of the operator L is continuos and it fills the axis

{km_;'—w<k<w,j:0,2m«l, w_fzexp[ij%?)} ,

and there are spectral properties on the continuos spectrum in the sense of M.A. Naitnark

[1], that coincide with numbers of the form ne, /2, J=02m—1, n=%1+2,.... Later, the
inverse problem for reestablishment of coefticients of matrix functions P (x) is solved

on generalized normalizing matrices.

Note that second order periodic operator with potential p(x}=Yg,e™ , where

=l

¢, 1s the order quadratic matrix has been studied by M.G.Gasymov and others [2].

1. Special solutions of the equation /{¥)=4°"¥ . Intriduce some notations. Let

@, = exp(i%] 1j=02m-1

b, =—nwl-0,) : j=02m-1, r=12m-],
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Theorem 1. Let the conditions (2) and (3) be fulfilled. Then a differential
equation Y)=k*"Y has matrix solutions f, (x,k) representable as

w W [" r}
Yy — Una cxpiax:l ) (5)

1., k)= cxp(fkw,x{! +

T J
where {u[ }} are m order matrices., for y =0,2m -2, «¢=12,...and for r=0,2m —1 and
2m-1 =
SIS ama-n)ol); (6)
+=1 o=l 7 g=n+1
2m-1 =
Z anm—-l n” 1.') (?)

el o=l
converge.
The proof of the theorem is obtained from the assumption that the series (5)
admits term-by-term differentiation 2m times, and therefore we can directly substitute
this series into cquation, By equating the coefficients for explicx) we get identities with

n=12m-1, j=02m-1,

rational functions that have poles at the point %,
r=1,2m—1, and the sum of their reduses at these points must vanish. If we take into

consideration all these facts, we get a matrix equations system for the definition of { " T}

by !(p,m'n} .
2m 2m
_ n B A (i,r)
[a ]-—co_!} [I*G)J} {Um }+

) }_ ®)
Zm=22m-y-2 n
+ TA N Gt
28 nol- ety e
fora=23,.;y=L2m-L,reN,n<a
2m—y- 2m-1
nyPp-a}f”w: + 3 3, (ra)l)
i=0 4=l n=1
2!?! 12m=22m—v-2 ) (9)
1 33 ¥ L SHTERY S B
g=l v=y = Ffougy B

This system is solved recurrently: the matrix {v,(,-*’ "}} whose elements are

-4

expressed by the elements of the matrix {p . } is directly determined.
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Corollary 1. The matrix functions f.(x,k), s=02m—1 form a fundamental
system of solutions of the egquation l(Y): k7Y for k20, kzk

s=02m~1.
Divide the complex & -plane into 2m equal sectors S, determined by the

neNN, j=12m —_'i,

s ?

. . v v+
inequality S, = {—— <argk < L—)ﬁ, v=0.2m- 1}, at each scctor S, we can choose
m m

such arrangement of numbers @, that for k € S, it is fulfilled the inequality
Re(kw, )<... s Relkew )< 0 <Relkw, )<...< Relkm,,, ).

ol

If k#k,, ke$, then Hf_s_(x,k]je L,(0,00), s=0,m~1, and ﬂf‘.(x,kX‘e L, (- «.,0),

s=m2m—1.
It is obvious that f,(x,k) may have the poles of the first order at the point

=N i
Ky, = A) ) (l 3 w}_). lntroduce the notation

)=, lim [n vko (1-o f, (k) (10)

Corollavry 2. For any values af nand j,s=02m—1, it holds the equality

Lo n (x) = ,(,:7 ) }fﬂ . (x, k ms)
f2m+,\- (x)E f.'. (JC, k), §= az-;;i—[

2. Spectral solutions of a transposed equation. A. system of equations

(11}

1)z 2’"‘(x)+ e ) = 2l (12)

is obtained by {ransposing the system of equations :’(Y)z Ky,

We can easily check that in these equations the coefficients at the derivative also
satisfy the conditions (2), (3). Therefore the equation (12) also has a matrix solution
¢, (x, k) representable in the view

2m-| =

@, (x.k)=exp(- ik, xif + 3y s ‘}exp:ax (13)
mmn —kw(]— ;i

and the series of (6) and (7) type by the change of f;{;“]} to {R,E-’;’"]} converge.
3. On the vesolvent of the operator L.

Theorem 2. At any value of k from the sector S,, k+k,, the resolvent

s

R, :(L—kz”’E)_] exists, it is a bounded integral operator in L1 (~w,) and it is
generated by the kernel

m=i
’Za}»‘ff(x’kyp.k (ka)’ t<x
R(x:t'!k) _E;nklim — 1";{‘—1 (14)

stfy(x,k)(p.\.(x,k), t>x

N

This representation admits to study a spectrum of the operator L.
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Theorem 3. The operator bunch L, has a pure continuous specirum that fills the

axis {kw_; ,~ w<k<wj=02m-], @, = exp(i% )} and on the continuous spectrum may

be spectral properties that coincide with the numbers of the form nw% ,n=+142_

Theorem 4. For any ke §,, it is valid the representation for the kernel of the
matrix

e zZ[ e )

] & wfwhn vfzm v(x,k}plm-v tnk)"wnr—vfm—-v (x&k):pm ¢ (t’k)
Z dk

v—Dr k—z

(13)

I, is obtained from T, (the contour formed by  subsegments

IO,% - 5], [% + 8, (n + ])/2 - 5} . r=12,... and semicicles of radius & with centers at

points y, n=12,... arranged at the low half-plane).
In the formula (15) the numbers {u(’"“’)}z {Sm,w} play the role of normalizing

nn
matrix functions responding to spectral properties.
The inverse problem: First we get evideni relations between the matrices

{S, vt and {m. ‘)} . For this we use the identity (11); we find that
(.Lv}}z {Sruv} (16)

i{,(s-ﬁv)

{J v 1 2m—| a v } 17
na+ﬂ} {Sn;v}( (1}})‘ ~ & ( —(0 ) n&).;(l—ﬂ')s) ( )
for j=12,..2m-1, a,n=12.... These relations are basic equations to determine

{P ,m'n} on {Sﬂj\'} :

In fact, if the normalizing matrices {S,_,;.‘,} are known, then (16) and (17) give

recurrent formulas to define the matrices (’”’"}}. Then from (9) the numbers {Pm} are

defined uniquely.
The proof of theorem 2 is similar to the proof carried out in paper {3},

Thus, the inverse problem has a unique solution, and the numbers {PN,} are

effectively determined by normalizing matrices.

There arises a question: when does the given totality of normalizing matrices
Spp- =12, j=12,..2m -1, v=0,.,2m—1 coincide with totality of normalizing
matrices of L type operator?

To formulate the answer we introduce the following denotations:

10—, X +2)

a, = max (18)
gt -, )-n(l - oo, |
2m-l Zm-1 2m=2
5,1= Zl" 28, (19)
e=0 =

Theovem 5. Let for the given matrices




34 Efendiev R.F.

the following conditions be fulfilled
LY s, <eo (20)
n=j

InL4ma,y lliq — p<l 1)
n=|

Then there exists the functions P,(x,k) y=0,2m—2 of the form (2), for which the
condition (3) is fulfilled, and the matrices {S m-,,} are “generalized normalizing matrices”
of the operator with reestablished coefficients.
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