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MULTIPLE COMPLETENESS OF EIGEN AND ADJOINT VECTORS SYSTEM
OF SOME CLASSES OF POLYNOMIAL PENCILS

Abstract

In the Hilbert space the polynomial pencil is considered. This pencil is a
derivative of the Keldysh's polynomial pencil. Under the definite conditions on the
operators we prove the n-fold completeness of eigen and associated elements of this
pencil.

This result is applied to the differential equations.

The completeness of eigen and adjoint (e.a.) vectors of a linear operator acting on
"a Ililbert space H is one of important directions of the spectral theory of linear
operators,

And the muitiple completeness of a system of e.a, vectors of polynomial pencils
has a direct relation with solution of Cauchy’s problem for operator-differential
equations,

M.V. Keldysh [1] had a great contribution in this direction. He considered a
pelynomial pencil being the perturbation of a self-adjoint operator A"B" with a
polynomial pencil of less order in spectral parameter 1.

Later, M.V. Keldysh’s result was generalized in different directions.

More general result jn a Hilbert space # is considered in this paper
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where A4,, B, K are linear operators in H .

Let {xk};:l be a system of c.a. vectors of the pencil (2.7). Starting with this,

construct n—1 derivatives of the system {x},’,, },,g

., by the following way: it x, is an

eigen-vector, then
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if x, is the k -th adjoint o the eigen vector x,, of the pencil (2.7), then the vectors
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correspond to the adjoint vector x, in the r -th derivative of the system.
Thus, by system {x,}, n—1 derivatives of the system {x,‘k }:1, r=12,..n-1

arc deiermined. k -Told completeness of the system of ¢.a. vectors of (he pencil (1) means

there the completeness of the system {(,\c,(,:rcrUf IO )}: in a direct sum of #-copies of

=1
the space if .
Theorem 1. Let be fulfilled the following conditions:
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@) the operators A; are completely continuous, the operators K and B are completely
self-adjoint, having finite orders p, and p, respectively;
b} choose .
,letpl-)
r+l P17
Then a system of e.a. vectors of the pencil {2.7) is n-fold complete in the space

r l<sing, where

r=0|&%
H.

Proof of Theorem 1. Denotc by o,,m,,...@, , the roots of {n—1}-th degree

from the unit and by D, denote the operators: '
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¥ n=13
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Later in the expression &’ J from (4) and in similar expressions we shall assume

all w, to be different.

Consequently, we can construct the operators D,_,.....D, using before obtained
operators D, ,,D, ,,...,D,_,, and ets. Note that the operators are chosen so that they are
the solutions of the system '
' Dy+Dy+D_ =4
De"™ + D, (e“’" +e'™ )+ D, (e“”‘ +e% 4 )+

H o
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in e the degree exponent is the sum of different @, multiplied by 7. YThe
_; arc completely continuous, since they are linear combinations of
completely continuous operators.
In the space H being a direct sum of tlilbert spaces H consider the equation
(DB =%, (6)

;) and the operators D and B are given by means of operator

operators Dy,.... D,

H

where ¥ = (x;, X, x

H-

matrices
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In the expression (7) ¢, = &, i=12,...n-1

o .
¢“B 0 .. 0 0
0 e“B .. 0 0
B~| .. (8)
0 0 .. &%B 0
o 0 . 0 K

By virtue of self-adjointness of operators B and K the operator B is normal
and its eigen-values Lie on the rays coming out from the origin of coordinates and
passing through the roots of the (n - 1)-th degree from (1).

Thus, we have D,,D,,...,D,_, that are completely continuous operators, c¢; may

. a, .
be chosen sufficiently small, and ¢, =—=L 20, {i = 1,2,...,n).
i
In the case when ¢, are sufficiently small in modules, D is a completely
continugus operator whose bounded part may be arbitrary small in the norm at the
expense of the choice of numbers ¢, .

Consequently the completencss of e.a. vectors of the equation (6) in the space 7
follows from [2].

Let (x,,...,x,_; } be an eigen-element (6), then

X =;}]-(E + ieiw'B)xo ;

%y =——(E + 2e™ B)E + 2¢™ B,

665 )
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Then
D D D
0 xg + L x + L x, v+ D, x, =(E+AKx, . (10)
€12y C2C3Cpy €3C4 Ly

Substituting the values x,,x,,....x, ; we have from (9) in (10)
oy hay fen
Dy, D/(E + se ﬁ]xﬁ D,(E + Ae'® BYE + e g)xo s

€y €.y Ty
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. DE+2emB)(E+ae™ QIG vy DB+ 2 B} (E+ 26 B)
L, €l
_(E+AKYE+Ae™ B} (B + A B)
- i
..,

Opening the brackets and summing the coefficients at the same degrees 4, and
taking into account the equality system (5), we get:

(dy + AAB+ PAB? 4ot 724 B+ 27 (4, — E)B™ — AK B Jry =x, .

In an analogous way, we can say that all adjoined elements of (6) to the eigen-
element X are such that their first coordinates are the corresponding adjoined elements to
the eigen element x, of the equation (11). '

We have
=Dy -ABy-B%,
o=y ~Ae'” By, _emleo >
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I d ion ) L]
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Thus

n-l ) el .
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We can do the same with regard to derivatives of all other orders.

So, we obtained the multiple completeness of a system of a polynomial pencil
(1).

The proof of theorem | is compieted.

Now consider the differential expression:

ity + (A ek p (AN + [pm(x,/?,)— A”K}u + 7w, (D)

where P (x,ﬂ.)= Sr:,l-’q,g. (x) (k = 1,2,...,m] R qy (x) (j =05 rs k= 1,...,m) are

g0
measurable essentially bounded complex functions determined on [O,I], K is a self

adjoin completely continuous finite order operator.
Sign the boundary linearly independent conditions:

i_a}ku(k']](ﬂ)+ y B W)=0 (j=12,..m), (12)
k=1 k=l
whose coefficients satisfy the relations:
kZ(_ ly((a,;kaf,m»-hl - ﬂ;‘kﬂ,m—hu):o (fsf = 1,2,...,!?1'). (13)
=]

Denote by G a self-adjoined operator;
G= imu("'l
in the space L, (O,I) with boundary conditions (12)-(13).
By D, (k=1,2,...,m) we denote the k£ -fold differentiation operator acting in
L,{0,t), determined on the set D, of all the functions u(x)e L,{0.1} such that «")(x)

(j =0,1,....k — 1) are absolutely continuons, and #“Mx}e L, {0,1).
Let

G= Z;/I.f (G)(-,(p_; }p.f
=
be a spectral expansion of the operator & , then

G =G+P, G =2J'1_;(GM"Q’.!)‘DJ +P,
J=

where P is an orthogonal projector in L, (0,1) on the subspace P(G).
By By, denote multiplying operator by the function ~ g, (x). Obviously

M(1)=G, -5 p(AD, , ~ K1+ A,
k=1
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where D, =1, p,(1)= izfﬂk, (k=12,..m=1), p, (1}= il-"Bw + P (k=12,.,m—1},
= -0
The operator G (u) being the inverse to the operator & represented by means

.m_ (m)

of a differential expression i"u with boundary initial conditions (12)-13) is
consequently, completely continuous self-adjoint finite order operator.

Using the arguments from [3] one can convince one-self that the above-
mentioned conditions of theorem 1 are fulfilled. Thus, the completeness of the system of
_ e.a. elements of the differential expression (11} holds.
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