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LOCALIZED APPROXIMATION OF FUNCTIONS WITH THE ANALYTICAL
COMPLEX SPLINES IN DOMAINS WITH QUASI-CONFORM BOUNDARY

Abstract

In present paper the problem of localized approximation on the sets of the
complex plain is considered. The localized problem of approximation of functions with
the analytical complex splines in the domains with the quasi-conform boundary is
investigated,

1. The main definitions, notations and auxiliary results.

Let G be a finite domain with the quasi-conform boundary I =08G,0eG .

A((_x') a class of functions analytical in ¢ and continuous on closure G .

Definition 1 [1]. The image of circle on some quasi-conform mapping K of
plain to itself is called guasi-conform curve or quasi-circle.

Let Gc @, where Q=[a,,a1+H]><'[bi,b,+H] is the square with sides
H>0; hy=HIN, where N is natural number, x,=a +kh;; v, =b+ jh,.k,

N1
Jj=01..N _itis obvious, that O = UQM , where
k.

O = {z=x+f'y:xe [xk'!xh!]s yEL"pJ’_;HJ}
square cells of division O with step &, = H/N .
Such division we’ll denote by A, moreover we will omit index N in 2, and
A, , if the fixed division is considered and also we assume G, = UQL_;- for all %, for
which ©, |, NG=9.
Under the relation 4= B (A >0, B>0) we’ll under stand inequality 4<CB.
where the constant C >0 doesn’t depend on A and B.and 4= B, if A<B and B<4,

simultaneously,
Let y(z) be a quasi-conform mapping of the complex plane € with respect 1o I’

{1}; for mapping y(z) following properties are fulfilled (see [2], [3]):

I. y(z) is an anti-quasi-conform mapping y(I‘): U, p(0) = oo, y[y(z)] =z;

2. for sufficient small fixed §>0 in domain C; =C/{0, U 05}, where O, =
= {z : ]z[ < é‘}, 05 = y(0;), mapping y = y{z) changes Euclidean lengths in the finite

number time, moreover |y |< 1, ly;|x1 almost for all zeC,ly.

_z;yl.-‘jfz‘"z on ze€ 0.

v Hy(zfon zeOy;
One can continuously extend every function feA(('_}) on €, assuming

:f[y(z)] on zeCC. It is known, that |5] for f(z)eA(g) the following integrali
representation is valid

“‘fb/(é') )
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where zeG,{=x+1iy, do, =dxdy, CG =

In accordance with [6] let’s construct on nct domain G, plane complex spline

S, (z), interpolated function £ (z) (or its extension) on the tops of square (), ;, from Gy,
assuming
S\2)=a+hz+eE+dl-5)  for zeQ, (G, @)
where coefficients a,,b,,¢,,d, are determined from the interpolation condition of f(z) at
points z, , =x, +iy,. Note that, function S.{(z) continuous in G, [6].
Defimition 2 [4]. We i call tize {imction
_ Ss[y¢)]
5= ([ et - L S
where S,(z) is a plane complex spline, analytical plane spline in domain G with the
quusi-conform boundary.
If S,(z) interpolates function f{z) at nodes 2, ;> then we’ll use notations
S,(f;z) for analytical spline (3).
In work [8] localized module of continuity was considered in the form

w?(8.n)= S bup l7(z)- 1t} 4)

"-‘er( N .
<l

Definition 3. Let’s denote by D the class of positive functions (p(c‘}',ry),
determined on O <& <2n<+w and such that

(3)

where z, is a fixed point, 6,7>0 and I, (z,)= {

aj cp(& ,r;) doesn 't decrease on every argument;
b) q)(é' ,17)- 57! doesn’t increase on 8 ;
¢ 3neR, :lime(s.7)=0,

) (p(5,27})j (p(é', ;?)_. where in "<" constant independenton 6 and 1.
We’ll denote by C(I') the class of the functions are continuous on T
Definition 4 [10]. Let @< D, Assiume

HZ: ={feC(I“ :wf-(zo.ﬁ,n)scm(é‘,n),v&q;ﬂ<%3n%,
where @ {z,:8,7)=8supé w7 (£,77).
’ 2]

Definition S. Rectifiuble Jordan curve U is called quasi-smooth, if for any pair
of points z; and z, €T the length of its smaller part T(z,,z,) T, lving between this
points satisfies the following condition

mesT (2,2, )|z, ~ z,). (5)
Lemma 1 [5]. Let B he u bounded domain with quasi-conform bound T,

2.z, € U. There exists rectifiable arc z,z, < B, whose length S(z]zz} satisfies the
inequality
S[zjzz]SMlzzi -], _ (6)

moreover, constant M, >1 independent on B.
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Lemma 2. Let f;(z) be continuous in latticed domain G, and S, (z) be a plane
complex spline of form (3), interpolating £,{z) at nodes {zk‘ J-} . 2, € Gy is a fixed poini,
fHieH}. Then

|f1(z)- S, (Z]i(p(h,h +|z - zOD ) where h=h,. N

Lemma 3. Let plane complex spline S, (z) interpolates continuous function
£,(z) at the nodes of domain Gy. z,€ G, is afixed point and f, (z)e H o+ Then for any
points z€ Gy, and { €G,, the estimation is valid:

1S,(z)- S, (ol 1 + 12 - 2}z - £]. (8)
it should use for proving lemmas 2 and 3 the scheme of proving of the
estirnation, which is in {4].
By virtue of the integral representation the following lemma is proved.
Lemma 4. Let G be a finite domain with guasi-conform boundary T, z, T,

oeD and fe H) (N A((?)'. Then on p(2,T)= r;upiz ~¢|

q;[p(z,l“), oz, 1)+ ‘z - zu|]

[plz.T)f
Main results.
Theorem 1. Let G be a finite domain with quasi-conform bound ¥, 0eG,

z,el, oeD and f(z)e H N A(G_) Ther in any point zel =0G for analytical
spline S,,,(f:z) the estimation is valid
1
In . 10
y{hN (10)

, ze(. M

fz)=

’f(z)— Sy (f;z]ﬁ(p(h,h + ’z - zol)

If T is a quasi-smooth curve, then the following relation has place:
@)= S (Fr2)=z0lb b+ |z - 2,)). (11

Proof of theorem 1. Let z; be fixed and z; be an arbitrary point of quasi-
conform bound I'=0G . ze G such point, that p(z,I') < y, |z -z} = p{z,T). One can

account, that h=h,, <1. Let’s denote G, :{g’:;’e(}‘(—?,

{—z]iSmh}, where

m>0 is a constant independent on z, and h, d = diamG . Let’s consider circumference
C,,:{{:[g'mzlfzmh}. Let us fix m such, that for {eC, NCG the condition is
fulfilled: |y(¢)~ z,|>3h. For mapping y(z) condition |y}~ z|~[¢ - z)| is fuifilled. So
such m exists,

Now we fix sufficient small & -neighbourhood Oy of point z =0. On mapping
y(z) its image will be some domain O = W05). Let for O properties 1 and 2 of
mapping y{z) be fulfilled and

pl0.05)= ]igf;%‘z ~¢]>3d . (12)
Itis clear that €G = [€G)N0,G)U|EE)0, ) -

Assume

o, =GN (0, ()G, )nleG)o, (z)).
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o, =fe@)n(o, Yo, U)o, )]
By virtue of (1) and (3) we get f[y( )] < [y(g)]
f(z)&SA(f;z) c'|[(r (";‘ )2 yzdo, =

=‘;ff“;ff—;ff-J +dy v g -
Let’s estimate integral J, c'We h:;e ’
! yfb»(al )f(zf) ﬂS alz)- S)!y(;')] sdoy +
| = ”[f(~a) S (Zu)] dach Ny TCny i o

We’ll estimate each 1ntegra[ J,[ J, i= ],2,3 )
Let’s consider for all ¥ € G the function

E@)= Ir6)- 70 e, (15)

20

where integral is taken on any rectifiable arc OU G . It is clear that F,{u)e A(g).

we’ll catry out its OC extension F,(x) in expensed plane.
Assume

(f J’X‘:) f(zl) N(g) (16)
(4 ) )2
Using lemma 1, the property of module continuity @} (6,7) and taking into
account, that (p(5, c‘»)/ &% almost decreases, we have
ol 7+ |2, 24} (17)
Now, let’s estimate integral JI(Z} . By virtue of lemma 3 we have
72 ol |z, - z,)). (18)
Let’s estimate integral J; ) For that we consider the function
z,, for zeG ;
£e)= {y(z)l z,, for zeCG . :
One can apply the Borel-Pompey formula to the function £ (z) The following is true

, 1 £E)
L L= =1 19
From (19) and using, that ‘y({) z)|= [c_, - z,} we have
\— L o<1 - (20)

Using (20) and lemma 2, we get
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[J13}|'<1f zl) SA(zll_U do';'

By virtue of (14), (17), (18), (21) we are

< o7+ |z, - z,)). 1)

Wil ke + |2, z|). (22)
Let’s estimate integrals .J, and J;. Denote L= r;n?x |z ; ) By
virtue of lemma 2 we have:
]J2|-<<p(h h+le, ~zo) H 7 |1_(P(k sh+|z —zg)fdax
o4 N 2L i @3
] (1
x —=< ol h+|z, —2,]) In =< ok +|z, — z5|) In—
(m—f;[2}h d_<P( 2 ol) m CP( |2 oD %
Using lemma 2 we have also:
sl oltsh +z, — 2 )J‘j ‘ £ ‘2_ <ol +]z, - z,)). (24)
Taking into account (13), (22), (23), (24) we will get for all , |Z2— 17 | < %
1
If(z)—SA(f;zlj (p(h;h+|z1 -zol)-ln;, (25)

where the constant in relation "<" independent on z,,z and 2. Hence estimation
follows.

Now we will show, that when I' is a quasi-conform curve, then estimation (11) is
valid. Proving estimation (10) note that only estimation (23) is unique, which contains

ln—:;. Let’s include following notations {4]. Let @, = {C:CEG[Q’S; ¢ -~ z1‘23h},
m >0 we can choose such that »(Q,)< Q, . And also we denote

0=k 01 ple.1)2 Bk - <)}, 0i=0l0,,

O = €03 2hs|0 -5 [€3- 2R, j=01..K,
where ng} #{J,and forall j>XK, Q3"} =

It is obvious, that on ¢ € @, relation \y(g‘ ] - z\ A \g - zl\ is valid. It is proved that,
g, ; =Gy such square that ,o(QLJ-,I“)Zh, then for any point ze (), ;, the following
estimation is valid:
—Z ‘ + h)

6)-S,(eks ’“"(”;’(z,r) . 2

Using (26) of lemma 4 and relation 'y(g - z‘ = \g - z,! we obtain

|- [ HO8), <L (L

¥(¢)-2

(27)
f(é’) 5,
i ‘\ o =1+,
J0< nPelh, h+[§ z]‘+‘zl—‘00” (28)

o l¢ - ;]5/1 ‘
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Let’s consider the two possible cases:
D g -zf<lz -z
2) ‘z] —z(,‘£|;'—z,|.

Let case 1) has place. Then we have‘

J2«< BV (h hlz, - z0|)jj <ol h+|z, — 2,]).

]‘Sﬂ

Now let case 2) has place. Then taking into account, that (p(5,5)- & * almost decreases,
we obtain

. do
J-{l)j hl,fz < JRE: (p(h,h) i g — <
ol - @ Jm &M—d”” 29)
< olhh+lz - z,}).
Thus
JO<olh,h+ |z, - 2]} (30)

Now let’s estimate integral ng). Using lemma 2 and reasoning by analogy to the
foregoing one we obtain

do, esOb)
JP=<olh, h+jzl-za)z J’j’ < ol h+]z, - z,)- Z%. (31)
i= DQ }‘ ]‘ =0 2°h
The following estimation is valid (see [4])
K mes ;_;) 4532"-”3 62)
I=d 22}'h2 _;.=0 )

Putting estimation (32) into (31), finally we obtain
T <ol b+ 2, - z,]) . (33)
From (27), (30), (33) it follows, that
BAS ‘P(hrh"‘ e za')-
So theorem | has been proved. In this theorem, particularly, the V.I. Belov’s and L.V,
Stretkovsky’s [4] result is contained.
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