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ON THE NONLINEAR WEIGHT ANALOGUE OF THE LANDIS-GERVER’S
TYPE MEAN VALUE THEOREM AND ITS APPLICATIONS TO QUASI-
LINEAR EQUATIONS

Abstract

The weight analogy of Lagrange’s mean value theorem is obtained. Removable
sets for the solutions of equation (1) in Hilderian class C” are studied.

In [ }] the authors have proved a generalization of Lagrange’s classic mean value
theorem for the multidimensional case. Later on, this theorem turned out to be fruitfuf for
its applicability to various problems of quality theory of elliptic and parabolic equations
([see 2,3,4,5,6]).

We prove the weight analogy of the mentioned theorem adapted to investigation
of quality properties of the degencrate quasi-linear equation

15, ‘ -2 Ou
a[w(x]Vu| aj =0. (1)
In the paper we also study removable sets for the solution of equation (1), in C%.

Let afx) be a positive measurable function satisfying the doubling condition: for
concentric balls B} and B3, of R and 2R radius, there exists such a constant ¥

w(B; )2 }fa)(B;‘, )
where for the measurable sets £ o(E) means ja)(y)dy .
3

The main result of the paper is the following theorem.

2
Let Vu= —%,...,—aﬁ- be a gradient of the function «, |Vui2 = ou ot
de, dx Ox,

A

b
[ 8u) .
+ , oscu =supu —infu,

x, D 5 1
Theorem 1. Let 2< p<w, D be a bounded domain in the spherical lnver

R\ <2R, u(x)e C* (D). Then there exists a piece-wise smooth surfuce £, dividing in
D the spheres }x' =R and |x|=2R, that

Bu (osc u}’“' m(i)_)

jw(x]Vu‘P_z -——‘dr <KL

z

on RT @

. . . . Su
where K > 0is some constant depending on the dimension of the space and on p, ™
n

means ¢ derivative in normal 10 %.
Prove the next Lemma, which we shall use in the proof of Theorem 1.

Denote by O, a set of singular points {x e D.Vf = 0} of the function £ in D.
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Lemma 1. Let 2< p<w, n22 DR be a bounded domain, f(x)e C*(D).
Then for any £ >0 there exists a finite number of balls {B"“ }, v=L12,., N which cover

I

O, and such that if we denote by S, the surface of v -th ball, then

3 Joole)vr|" " ds <& 3)

vely,
Proof. Decompose O, into two parts: O, =0} )0}, where O} is a set of
points O, for which Vif =20, O} is aset of points O, for which Vif=0.
The set O} has n-dimensional Lebesque measure equal to zero, as on the known

implicit function theorem, the O_} lies on a denumerable number of surfaces of

dimension n —1. 1f we use the absolute continuity of integral
olG) = [olx)dx
G

with respect to Lebesque measure G and above said we get that the set O may be
included into the set G for which o(G)<n, n>0 will be choose later. Let for each
point x € O} there exist such r, that B, and B¢, are contained in G< D. Then

br,

_[dr Iw(d' o< m(B;‘,x )

Sre 8

therefore there exists such 5r, <t <6r that

r, J'm(a)da < a)(B;‘,' )
8

-

Then
Iw(a]Vf 1 do <o _[a)(a)do' <(6Cy 'rr? { 7, Iw(a)da} <

<(6C)"! rf_za}(B;‘,_r )<(6c)"a ”‘2;"3@(35, J<C,0lBs), “4)
where C = sup‘szl, a=diamG, C, = (Gc)p_l a”y™.
1]

Now by a Babach process ([4], p.126), from the ball system iB:‘d} we choose

such a denumerable number of not-intersecting balls {BQ:‘}s}» v=12,..,N that the ball of

five times greater radius {Bf} cover the whole O set. We again denote these balls by

{B:"}, v=12,.., N and their surface by S . Then by virtue of (4)

i _[a)(a']Vf‘ﬂ'lda < Co{G)< Cyry. (5)

v=l g
Now let x e O_’} . Then

zr_fd 3 ja)(a)dc < w(B; N )

:
r 8

Therefore there exists such r, <t <2r, that
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r, ja}(cr)dcr < w(B;,x) .
53

Assign arbitrary 57> 0. By virtue of that \Vf L < n-t, for sufficiently small 7 we have

jw(cr]Vf'P Tdo<nf ! J'm(o')do <(@2ny s [rx _[m(a)do*} <
5 8F

87

<@ny're alBs, )< (6C) ™ <@ @n) Va8l )snc0lBl). @
Again by means of Banach process and by virtue of (6}, we get
> [olo}vf|" do <n-Cio(D). (7

[ | &
where S’ ts the surface of balls in the second covering.
Combining the spherical surfaces S, and S we get that the open balls system
cover the closed set O, . Then a finite subcovering may be choosing from it. Let they be

the balls B, B,,..., B, and their surfaces is §,.5,,..8y.
We get from inequalities (3) and (5)
N s
Y A" eledo <[ @B+ ¢, 0.
vl S,
Putnow ¢ = [Cla)(l_)]+ Cy ] 77, lemma 1 is proved.
Proof of Theorem 1. Following (2], assume
w(D oscu !

£ = ———}e‘?——ﬂ (8)

and according to Lemma | we’ll find the balls B,,B,,....B, for given ¢ and exclude

A
them from the domain D. Put D*=D\| B, . Intersect D * with a closed spherical layer

vl
1Y 5
’id ﬁlx\gR(H—J.
.y 4
We denote the intersection by D'. We can assume thai the function u(x) is
defined in some & -vicinity D of the sct D', Take & < % so that
oscuL2oscu. (9)
1y )
On a closed set D" we have Vf = 0. Consider on /) the equation system
dx

— =y
dt
Let S a such form surface that it touches to field direction at any his point, then

(10)

Su

jw(x]Vu['"_z p do=0,
. ou . . . .
since — 1is identically equal to zero at §.
on

We shall use it in constructing the needed surface of ¥ . Tubular surfaces whose
generators will be the trajectories of the system (10) constitute the basis of Z.
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They will add nothing to the integral we are interested in. These surfaces will
have the form of thin tubes that cover D', Then we shall put partitions to some of these
tubes.

Let’s construct tubes. Denote by E the intersection of D' with sphere

=1+ ).

Let N be a set of points £, where field direction of system (10) touches the

sphere ‘x| =R I+E . Cover N with such an open on the sphere \x‘ =Rl1+ 3 set F
4 4

that )
‘wo{Dloscul™
feolx}vu ™ %Edo < —E%——— . (11
¥ ‘
. o Ju
It will be possible if on & 3R =0,

Put E'=E\F.Cover E' on the sphere by a finite number of open domains with
piece-wise smooth boundaries. We shall call them cells, We shall control their diameters
in estimation of integrals that we need. The surface remarked by the trajectories lying in

the ball ‘x‘ < % R and passing through the bounds of celis we shall call tube.

So, we obtained a finite number of tubes. The tube is called open if not
intersecting this tube one can join by a broken line the point of its corresponding cell with

a spherical layer- %R~§<]x’<%R. Choose the diameters of cells so small that the

trajectory beams passing through each cell, could differ no more than S .

H
By choose of cells diameters the tubes will be contained in
ER—é<\x1«c~5—R.
4 2 4

Let also the cell diameter be chosen so small that the surface that is orthogonal to
one trajectory of the tube intersect the other trajectories of the tube at an angle more than

T

E .
Cut off the open tube by the hypersurface in the place where it has been
imbedded into the layer
2R—£<M<£R
4 2 4
at first time so that the edges of this tube be embedded into this layer,

Denote these cut off tubes by 7,,7,...,T. If each open lube is divided with a

partition, then a set-theoretical sum of closed tubes, tubes 7,.7),..., T, their partitions,
spheres S5,,5,.....5, and the set F on the sphere Mz%R divides the spheres M:R
and |x}=2R.
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Note that jw}Vu,p -
S

%u—tdo‘ along the surface of each tube equals to zero, since
n

Ou o .
™ identically equals to zero.

Now we have to choose partitions so that the integral jw]Vu} -
)

?—“—|da was of
on

the desired value. Denote by U, the domain bounded by 7, with corresponding cell and
hypersurface cutting off this tube. We have U, U, =7 and therefore

5]

3 w{U, )< 20(D). (12)

p=I
Consider a tube 7, and corresponding domain U, . Choose any trajectory on this
tube. Denote it by L, . The length 4, L, of the curve L, satisfies the inequality

L Zi:i. (13)

On L, introduce a parameter in /-length of the arc counted from cell. By o, ()
denote the cross-section by U, hypersurface passing through the point, corresponding to
{, and orthogonal to the trajectory L, at this point. Let the diameter of cells be so small
that

[at _(fa;u(x}::’o' <20l ). (14)

i

Then by Chebyshev inequality a set H of points / € L, where

8
a’_{[r;)(x)dcr > 2 m(U B

satisfies the inequality 4, H < -ii and hence by virtue of (13} for E=L, \ H itis valid

R
E>—, 15
A 3 (15}
and

_[ alx o <78?w(U,] for icE. {16y
a,{t)

At the points of the curve L, the derivative % preserves its sign, and therefore

JJt—a—‘idls jt—a—u
ol i ol

Hence, by using {15) and a mean value theorem for one variable function we find that
there exists {, € £

dl < oscu .
A

o 4

— £-—oscu

ol = R b
But on the other hand

Su

— = ’Vu"hf .

o, " o
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4 o
< (~ osc u) .
IEA R b
I~ 5 1)

; -(osc u}""'
Il
Now, let the diameter of cells be still so small that

gm(x]VuFl 16R4 w(U,)- (oscu)”

)

So

i

Together with (16) it gives

jw(x)do <

Ve

- oo Ou . : .
(we can do it, since the derivatives F are uniformly continuous). Therefore, according
.

i

to (12)
J-w(x]Vu‘pl %%-—Q(D) (oscu)” (a7

= l o, (IU}

Now by I we denote a sei-theoretic sum of all open tubes, all through tubes 7, all

o,(l, ), all spheres S, and sets F on the sphere [ :%R .
Then, we get by (3),(9), (11), (17)

x w{D)- (0;‘);6’ u}"_

R?

p-2 _‘_33{
é[w(x]Vu[ o d

The theorem 1 is proved.
2, Now apply the mean value theorem to the study of removable sets of solutions
of equation (1). Following [7,4] a removable set is understood as follows.

Let in a bounded domain D — R” be given a function u(x) from some class £ .
Assume that u(x) is the solution of equation (1) outside of some compactum Ec D . If
for any function u € F from condition u(xlm =0 follows u(x)=0 in D, then we say
that the set E is removable for the class F (see [7]). We study the removable sets for
class the solutions of equation (1) in D‘E , with Holder continuity order « (0 <ig S\).
Following [7] we get the definition of Karatheodory measure of the set.

Let £ be a compact subset from R”, &(r) be such a continuous increasing
function #{0)=0 and u(G) be positive denumerable-additive measure, determined on all
Borell subsets of the compact E . Cover the set £ by denumerable set of balls B,, of
radius 7, £ p, 0< p <o with a center at the point x,. Put

A, (p)=inf 3 hlr, Ju(8, ),
where the infimum is taken in all coverings.
Limit
A (E)= Fim A" (p)

obviously exists. In the case when d,u =dx. Mr)=r"",0<s<w, A"(E) gives a
Hausdorfian measure - mes {£) (see [7]).
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Let @ be a function described at the beginning of the paper, 0 <a <1, C* (D) be
a class of functions « : D — (- o0,+) for which

fu(x)— u(x']

sup——————— < 0.
X=X, ‘x - x"
xel),
x'el¥
The function ue C'(D ) we shall call a solution of the equation
7 .
8 w|Vu}” ™ L¥l.p in D,
ox, o

i

if for any function @& C' (D) it holds the identity
L] p-2 Op B p-2 ou
> Im{Vu[ Ez—ax—dx = J'a)‘Vu{ (p(x)a da,

=1 p i an

a L
where -a-— denotes a derivative in external normal to 8D,
n

Theorem 2. Let 0<a <], u{x)e C*{D)NC’ (D]E) be the solution of equation
(1) outside of the compactum E C D . For the set E to be removable, it is sufficient that
Ay
A (E)=0,
where h(r)z prip-ia , dit = adx.
Proof. Cover the set £ by a denumerable system of balls {B,},_,, . so that

> rv‘“(’"‘)“a)(B, }<e,

£>10 is any number.
Along with the balls consider the covering B,, with concentric B, balls of radius

2r,. For each v by theorem | there exists soch a piece-wise smooth surface y, dividing
the spheres 6B8,, and 0B, that

0)(32, B, fosc u}”’l
felve”? M5 <C D <er; 7B, ). (18)
Py dn rf
The interior of the surface y, denote by I',. Then "=\, 5B, o E.Put ¢, =T{y,.
It follows from (18)
_[c:.‘!|Var|p-2 gEdS <er; "N y(B, ).
o, n

Then from equation (1) we get

DT[FaJ‘Vul‘” dx = a!m(x]Vu[ - |t

M; Iw(x}Vu'p'z %

<sM, M =supl.
9]

—a—u~ds <
on

ds <MY cr, ™ (p")“m(Bz‘, )<

As g is arbitrary we get that
ja)(x}Vu‘p dx=10,

nlg
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hence x=0in D.
Corollary. Let ul(x)e C“(D)ﬂ CI(D|E), (0<afsl) be the solution of the

equation :
a%[wwu}” %:0], 2sp<w
in D|E . Then for removability of the set E in C% it is sufficient
mes, pipgE=0.
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