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STABILIZATION OF SOLUTIONS OF THE FIRST BOUNDARY VALUE
PROBLEM FOR THE HEAT EQUATION

Abstract

The paper deals with the problem on stabilization for t — « of solutions of the
first boundary value problem for the heat equation in unbounded domains, which
represent figures of rotation with respect to time axis.

Introduction.

Let R,., be (n+1)-dimensional Euclidean space of points (x,r)={x,-...x,.t).
Let’s consider in R,,, unbounded domain D = {(x,¢):|x" <re(t), 1<t <w} , where af(r)

is continuous non-decreasing on (1,00) function, moreover there exist the positive
constants K, and X, such that for sufficient large ¢

a’(r)s—"—(f ; M)
a(r)s K,Inlninz. (2}
Let further T, = {(x,t):]x]z < a(l), t= 1}, I, = {(:a:,t):\.:rcl2 =m:(t), 1<t < oo} .

Purpose of this paper is to prove the fact of stabilization for 1 5 <« of the solution of the
first boundary value problem

Au-u, =0,(xt)e D; ul, =px), o =0, 3)
" 2
where A:Zaax2 is Laplacian, o C(T} ).

i=1 :

Let’s note that the investigations of stabilization problems of solutions of the
Cauchy problem for the second order parabolic equations begin from A.N. Tikhonov’s
classic work [1]. With this connection we point also to works [2-3] and the monography
[4]. Concerning the study of behavior of solutions of parabolic equations in unbounded
domains, we mention the works [5-9].

1°. Denotations, definitions and auxiliary confirmations.
Let £ be B-setin R,,,. We will call the measure x admissible on E if

jG(x - ya—oiuly,r)<1 for (x.1)e £,
£

P L
t? ———|,if 1>0;
where G(x,7)= expl: a PP
0, if t<0.

Number p{E)=sup u(E), where the least upper bound is taken by all admissible
measures, is called heat capacity of set E.

Everywhere further if Q is a domain in R,,_|, then &Q means its boundary.

Let’s denote for natural m
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—(rm-ljg i

A, = {(x,t):e ' <Gxt)se 7} . H, =AN\D.
It is not difficult to see that set 4, is given by the inequalities

m+1

€

A, = {(x,r): 2nt In%—ﬂ \xl2 <2ntln ,0<r< e”’*'} i

Let further z, (m=1,2,...,) be time coordinate of points of intersection of the
mn

level surface G(x,t)= e 2 by I',. Thus, z,, is the root of the equation

a(zm)=2n1n£f. (4)

Now let us show that for sufficiently large m equation (4) really has the root on

m

interval [e_?_,e’”] . With this purpose let’s consider the function 7(z)=a{z)— ninS— for
z
zel‘eg,e”’}. We have f(e”')=a(e”’)>0. Further, taking in 1o account (2) we obtain

f{e?JS KyIn ln—;—? —nm <0, if only m is sufficiently large. Hence the existence of the

root of equation in the requested interval follows. If there exist more that one such root,
then we’ll denote their greatest lower bound by z,,.

Let’s prove that the sequences {zm} increases. Assume the contrary that for some

: " alz, . - ,
m z,, Sz, Since z, =e” -exp[— —~(£"—)} then by virtue of our assumption and non-
n .
decreasing of function a(z)

Z
12224 =g exp

Iy

that is impossible. Thus, for all natural m
Z, <z

[ lew)-ate),.,

in

] e zm * ";5)
Let’s consider the sequence v,, =¢ "z, . It’s not difficult to see that for all m
Ve SV, . Really

~

o —enp - L (@)oo )21

nr+l

Therefore, there exists limit v, = lim v,,. From condition (1) it follows that if 7, and 4,
T

are sufficiently large and ¢, >1,, then

aft,)-alt,)= ja'(2)z < K, 1n;—1.
ty 2

So for sufficiently large m
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ie.
2n

fzﬂ-t'-znﬂ, where g =2 i 1, (6)

Lemma 1. If with respect to function o:(t) the conditions (1)-(2) are fulfilled,
then for sufficiently large m

G, (n{zm In:l-}z Sp(Hm)gcz(n{zm ln;l—-]2 . (N

" "

Here and further the note C(---} means that the positive constant C depends only

on the contain of the brackets.
Proof. Consider the case v, =0. The case v, > is considered by analogy. First

m+l

let’s find the value of re(0.z,,) for which the function 2ntnS—reaches its

maximum. It is not difficult to see, that this value of ¢ is equal to €” . On the other hand,
since v, =0, then for sufficiently large m z,,, <e". So, if for R>0, ¢ <z, to denote

the cylinder {(x,?): <R, <1< t,} by Ci’*, then

=1

U,anmllnf——

H,cC%u . _cC I
em-ﬂ ew+]

PETIN | 2ng, ,In - -

el ‘J LY

for sufficiently large m . Thus, by [10]

4] "

& i
0.2nz,,., ln_—— enr+l 2
p(Hm)Sp Cr c::':zl :CS(n{znﬁl Inz .

2n2y, . 1n- m+l
Tral

Using (5} we obtain

h g ] 3
p(Hm)iCsezltzm[ln—lw+ IH s(Ze)EC{zm lnml—}2 ,
v v

" Ll

if only m is sufficiently large. Thus, the upper estimation in (7) has been proved with

c, ={2e)2C,. Let’s estimate now p(H,} from below. Let for natural m

mh e
S, = {(x,t): Glx,f) = e 2 } n {(x,t): 1<t=<z, } Consider the integral

I= IG(X Y T)dS(y’r) s
N
where dS, .y is surface Lebesgue measure on §,,. Let’s go over from integration over

S,, to integration over the projection S, of surface S, on hyperplane t=1. Let (1)
and ()',7') be images of points (x,z) and (y,7) correspondingly for such projection. We
have

"
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ar Y (Y Y ar |
S =1+ 3| oo | =i+ S5 3 22 = _f_]d'_
tw.r) +§[6y‘) dy J +(d[}’d g(aﬂ) i’ ‘/ +[d|y‘ g

But on the other hand

e!ﬂ
dr _ Cdpy| Vam 1“"}_'"1 o V2n
djy| /‘/d_\g_l dr leem“‘4
rin—
dr r
if only m is sufficiently large.
Therefore, for sufficiently large m

so for +' > 7' we obtain

. ‘ . 1
Hence it follows that for sufficiently large m the measure o
5]

admissible. Then if S, is the cylindric surface {(x,t);]x}2 =2nz, ]n_l_, 1 SISZ,”} and
1%

m is sufficiently large, then

i, )=

1
C

where mes is n-dimensional Lebesgue surface measure. Thus, we have obtained the

U : C
lower estimation in (7) with C, = 77' The lemma has been proved.

Corollary. Let for natwral m H) ={(x.t):z_ <t<z, }NH, ... Then if the
conditions of the lemma are fulfilled, then for sufficiently large m '
i)z Coln K )plH,, ) - (8)
Really, being restricted by the case v, =0 and acting as in proof of the lemma,
we are persuaded that
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_[G(x A r)dS{y‘,] <Cyln)
rﬂ

m+3
if only m is sufficiently large. Here T, ={(x,a‘):G(x,t)=e t ,z,<1g z,,,+,} . So for

1
In—
v,

: 1
sufficiently large m the measure A
9

dS(, ;) is admissible. Hence we conclude

Zm

m+3

that if T, is the cylindric surface {(x,t):lxl2 =2nz,., tn s Zoy StSz,,m} and m is
z

m+l

sufficiently targe, then

a1

In— " = z
Um zm{zm[lnf— - IH > —(:ﬂ’ﬁ—[zm ]n—l—]z
z, z, 2 V,,
From the last inequality and (7) immediately the requested cstimation (8) follows with
¢, - Cub
2

. The corollary has been proved.

2’. Theorem on increasing of positive solutions.
Let for natural m > D, =DM {(x,0): 2, <t<Z, 50
D,,=DN {x,0): 2p0r <1 <Zpia}

Theorem 1. Let in D non-negative solution u{x,t} of the first boundary value
problem (3) be defined and with respect to function off) the conditions (I)-(2) are
Julfilled. Then there exist the positive constants 1= q(n,K ,) and by =by(n,K,,K,) such
that if m is sufficiently large, then

e

supu 2 {1 +7(lnm)™ e ? p(H ) |supu . )

Dm.l

.1

Proof. Let’s be restricted again by consideration of the case v, =0. Let H,
have the same sense that in the corollary to lemma 1, and the measure g, on H, issuch
that for m >1

Um(x,f)-—- J-G(x—y,!-—f)dﬂmb),?)'_(l ’ (x,I)EH;", (10)
M
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u, (1) >+ p( W) (11)
Let’s consider in D

.1 » the auxiliary funct;on

W, (x,1)=V, [l -~ U, (x.0)] - ulx,¢),

where ¥, =supu . According to (10) W, (x,t)=0 for (x,r)el“(Dm,,), where F(Dm‘lj is

B
parabolic boundary of domain D, , (see {10]}). By the maximum principle ¥, (x,r)z(}
for (x,1)e D, |, and particularly
supu = supW,, <sup[V, (1 - m)]sz(I—g_nfUmJ, (12)
Dm H Jf"“ . ni+l mt
where for natural m T, = DN{{x,0):t=2,} -
Let (x,t)eT,.,. (y,7)e H.,. We have by virtue of (5)

n . 2 _E
>e 7 2 exp{— [x yl }=e_”r 2 . (13}

But on the other hand

et N
by g B v/ ot |
= - . 14
" [""p{ 7 1) TP | R QT A )
5 em+2 em-.—3 5 em+3
Since ‘x‘ <z, ,0(z,,,)=2nz,,,In <2nz,,,In——, and ‘y| 22nz, In . then
mr+2 L 2

according to (5)

o+ 2l 20, [
T Zmex g I <02 100 <16
!y’ Zim Zm

8o from (i4) we conclude that

I}JK}{ \lﬁ)} p{ aly L} {_4(\:"1:)}2_ (15)

Further taking into account (2), (4)-(6) for sufficiently large m we have

m+4

4’y‘2 8nz, ., In—

4
foa Bt S )y )0
mil _anI ﬂ Zya) Zina2 ﬁ

ln Inlnz,

t-17  z

. m . 8K .
Remembering that z,, <e” and denoting 2% by b, , we obtain

i = (Inm)™,
if only m is sufficiently large. Taking now into account the last estimation in (15), from
(13)-(14) we conclude that for sufficiently large m
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Glx -yt —t)ze(n m)"’ r_% exp[* 4(]:"_ f)} . (16) '

By analogy we deduce

exp{* 1(,:’_‘_2—?)} = ex;:{-w )—i‘—:} (exp‘:— %—‘;D_ = exp{ ‘ ! } iy a7

and further
T _I=2r*tE 2t < 22, SE‘
t—r1 t=T =T 2y —Zp, P
Therefore
2
. B
i, zexpl ——— 1. 18
3 P[ 2,81';' (18)

On the other hand for sufficiently large m

2 g ar m
|—y|~s—"—ln~e——si(l g +4]<—In——=-1—a(z,,,)_
20t B 2z, B oz, B

Sg—z—lnlnlnz <~1—<—-ln!nm

Therefore from (18} it follows that
-
iy = (lnm) ™,

if only m is sufficiently large, and 5, :%. The last inequality with (16)-(17) implies

for sufficiently large m the estimation .

Glx -yt —r)ze " (Inm)™ G(y,r), (19)
where b, =5, +b,. Since (y,7)e H,, then

Thus from (19) finally we obtain

Glx—pt~7)ze™nm)™e 7 | (20)
From (20), (11) and (8) it follows that for suﬁiciently large m
mn mn
yhe t play)z <2 (lnm) e 2 plt,).

n12

=3n

Let’s denote %

by #7. Then from (12) we conclude that for sufficiently

large m

supu < Vm[] -~ n{lnm)*e 2 p(H, )} ' l
Hence the requested inequality (9) follows. The theorem has been proved.

Let’s denote for natural m>1 supu by M, .
L
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Corollary. If the conditions of the theorem are fulfilled and m is sufficiently
large, then

M, = [1 +n{ln m)_f"’ e-Tp(Hm )]Mmz .

For proof it is sufficient to use the maximum principle in (9).

3%, Theorems on stabilization of solutions.
Let for R>1 M{R)= Sl(lp)‘ul , where D(R)= D {x,¢):r=R}.
DR

m

Denote for 7 >1 the set {(x,t): 4 fel)3 <Glx,0)< e 2 } \D by H(r).

Theorem 2. Let in D the solution u(x,r) of the first boundary-value problem (3)
and with respect to function alt) the conditions (1)-(2) be fulfilled. Then there exists the
positive constant 1y =1,{n,K,,K,) such that if R is sufficient great, then

@)zt . e Al | en

Proof. Let’s denote by i, the minimal natural number such that for m > 2i; the
confirmation of theorem | takes place and let j be such natural number, that
2y, SR<zy(). (22)
We consider R so large, that ;> i,. Let D" ={(x,7): u(x,f)> 0} . Without losing
of generality we may assume that D* #. In contrary, all below-reduced reasonings
should be applied to function — u{x,t). Using sequently the corollary to theorem 1, we
obtain

M;, 2 (L+ gy Qi WMoy 22 _1‘1(1 +ny2i)M;; (23)
=iy

where for natural i >1 y(i)=(ini) ™ emjap(H,-), M =supu, T =D* N{(x,0):t=z].
"

By the principle of maximum and (22) we conclude, that
M 2% (R)“ sup u, M, <A4= sup’(ql

MRND
Therefore, from (23) it follows that

whuw;f(z:»u (®),

and
il
#w*(R)< ﬂexp]:— > (1 + ny(Zi)):l . (24)
It is not difficult to see that (see the proof of lemma 1) for all natural i
H, CCO‘M

¢

So, according to [10]

p(H,)<Cy(n)e?
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and therefore for all natural 7 > 1

)< Cpalnby).
Let’s consider now for re(0,C,,] the function wir)=In{l+m)/c. Since

r11;%1 w(t)=7, then there exists & € (0,C,,) such that W(t)z-;i for 1 €(0,8). On the other

hand ;{/(t)zl—n(lg—n—a—) for t&[5,C),].
12

Thus

W(I) = ‘?! (nsKl ,bu)': min{—’l’l_r.l_(l_i-lé‘_)} .
2 C]Z

Taking into account (24) we obtain

7' (R)< A’exp{— 7 f y(2i)} : (25)

=iy
Now let’s make one remark. The confirmation of the theorem has a contain sense
only in the case when

w ™

finey™e" 2 pl(e e = o
2
or in the equivalent form
()=
i=?

(without losing of generality we consider that the sequence y(;’) doesn’t increase for
i =2,..., ). Therefore we can suppose that at least one of the following series diverges

i}’(ﬁ) or i;v(Zi + 1).
=1 i=]
Suppose for definiteness, that
Y 2=, (26)
=1

Further we have

Er(zfﬁ g:v(b‘) - 2?(2:‘% %i: y{2i)+ %{ﬁ H2i)- 22‘ ,V(_2j)> |

By virtue of (26) for sufficiently large j (i.e. for sufficiently large R)
4=t iyt
S i)z 25 7).
=l =1
Taking into account the last inequality in {25) we obtain
il
%%R)g;-i'exp{-%‘-z;f(%)]. 27)
P
Then if for 7>1 7(r)={lnz)™e 2 p(H(r)), then from (27} it follows

*(R)< 4 cxp‘:— % 'j;?(zf)dr:l . 28)

On the other hand according to (22)
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l 1 1 1

fy(Zr}dr > ’ jy(Zr}dr _: _[y(zr)dr - }y(2r}dr > —_ J‘y(%)dr = %lnf?(f)dr .

if only R is sufficiently large. Therefore from (28) we conclude
inR
w(R)< ;-i'exp[ ’;‘ J';F(r)dr} : (29)
2

By quite analogy we can show, that if D“:{(x,r):u(x,!)<0} ,
D™ #@ and 7 (R)=

, then for sufficiently large R
RN

%"(R)S;{exp[ mfy(r)dr} : (30)

Now from (29)-(30) the requested estimation (21) with 7, =~?;—' follows. The

theorem has been proved.
Let’s consider now the case when the function aft) in the definition of domain
D for sufficiently large ¢ is represented in the form aff)= K, Inlnlnz .

Theorem 3. Let in abovepointed domain D the solution ulx,t) of the first
boundary value problem (3) be defined Then there exist the positive constants
E=&mK,) and d =d{n,K,) such that if R is sufficiently large, then

#(R) < Sﬁp[tpl exp[ (l lln };) - ] (31)

Proof. Let’s denote for sufficiently large r by z(r) the greatest lower bound of
roots of the equaiion

a(z(r))= 2nIn-"—~ () (32)

which are arranged on interval [ei,er} and v(r):e_rz(r). Acting as in the proof of

lemma 1, we obtain that for sufficient large r

p(H(z))> c{z(r)an—T : (33)
v{r)
From (32) we have

z(r):erexp[ alz(z »} exp[ 2; Inin In z(r):|>e (Inr) e

Moreover, for our domain D limv{z)=0,s0 In e )21, if only 7 is sufficiently
vir

T—eoo

large. Therefore from (33) we conclude that

i Ky :
p(H(r))2 Cpe? (Il'rr)_T~ , T2T, (n,Kz). (34)
Using (34) in (21) and denoting b, + %- by d we obtain
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Inik
#(R)< Aexp‘:—— mCi [(n r)"ddr:l : (35)

Ta

Now it is sufficient to consider that for sufficiently large R InR~17, > 211 2 and
n

7€)

from (35) the requested estimation (31) with &= follows. The theorem has been

proved. _
Therefore, in the case of the considered domain D the solution u(x,t) decreases

at infinity with “almost” degree velocity.
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