VOL. XII(XX)

MAMEDOV O.M.

TOLERANCE TOPOLOGIES AND COMMUTATORS ON LATTICES

Abstract

Our aim is to present a generalization of Schweigert's tolerances definable by commutators on lattices; we connect this with a tolerance topology on the considering lattice. Then a necessary condition is given for strengthening of our tolerance to a congruence.

Let L be a complete lattice with the least element 0 and the greatest element 1. A <u>tolerance</u> of L is a reflexive and symmetric sublattice of $L \times L$. General information on tolerance relations of algebras may be found in [4]. Of course every congruence is a transitive tolerance and vice versa.

Let T be a set of tolerances on L which is the base of some filter [2] on $L \times L$, i.e. for $\tau_1, \tau_2 \in T$ there exists some $\tau \in T$ such that $\tau \subseteq \tau_1$ and $\tau \subseteq \tau_2$ (and, of course, $\emptyset \notin T$; here this condition is satisfied automatically). The topology on L which T naturally gives rise to will be called a T -tolerance topology. It is a simple matter to see that under this topology the lattice operations \wedge and \vee are continuous and thus L is a T -tolerance topological lattice. Of course in case $\bigcap T = id_L$, the identity relation, we obtain a Hausdorff T -tolerance topological lattice. By the way, for congruences some properties of congruence topologies on general algebras were considered in [3].

A map [,]: $L \times L \to L$ is called a <u>commutator</u> of L (see [5]) if for all $a_i \in L(i \in I)$, $a, b \in L$ the following hold:

$$\begin{bmatrix} V & a_i, b \end{bmatrix} = V \begin{bmatrix} a_i, b \end{bmatrix};$$
$$[a, b] = [b, a];$$
$$[a, b] \le a \wedge b.$$

Our aim is to present a slight generalization of D.Schweigert's tolerances definable by commutators on lattices [5], then we connect this with tolerance topologies. Finally we give a necessary condition for strengthening of our tolerance to a congruence relation.

Definition. Let $[,]: L \times L \to L$ be a commutator of L. For $\overline{a} = (a_1, ..., a_n) \in L^n$ we define a binary relation $\tau_{\overline{a}} \subseteq L \times L$ by following way: $(x, y) \in \tau_{\overline{a}}$ if and only if $[...[x, a_1], a_2], ..., a_n \le y$ and $[...[y, a_1], a_2], ..., a_n \le x$.

This definition generalize Schweigert's tolerance d_{β} [5] and we show that some properties of d_{β} are preserved by our tolerance $\tau_{\overline{a}}$.

Proposition 1. $\tau_{\overline{a}}$ is a tolerance of L.

Proof. Reflexivity and symmetry of $\tau_{\overline{a}}$ is obvious. Let $(x_1, y_1) \in \tau_{\overline{a}}$ and $(x_2, y_2) \in \tau_{\overline{a}}$. Then

$$[...[x_1 \lor x_2, a_1], a_2],..., a_n] = [...[x_1, a_1] \lor [x_2, a_1], a_2],..., a_n] = ... = = [...[x_1, a_1], a_2],..., a_n] \lor [...[x_2, a_1], a_2],..., a_n] \le y_1 \lor y_2$$

and similarly $[...[y_1 \lor y_2, a_1], a_2],..., a_n] \le x_1 \lor x_2$. Hence $(x_1 \lor x_2, y_1 \lor y_2) \in \tau_{\bar{a}}$.

Obviously any commutator is monotone map. Consequently

$$[...[x_1 \land x_2, a_1] a_2]..., a_n] \le [...[x_1, a_1] a_2]..., a_n] \le y_1,$$

and similarly

$$[...[x_1 \land x_2, a_1], a_2],..., a_n] \le y_2.$$

Hence

$$[...[x_1 \wedge x_2, a_1], a_2],..., a_n] \le y_1 \wedge y_2.$$

By symmetry

$$[...[y_1 \wedge y_2, a_1], a_2],..., a_n] \leq x_1 \wedge x_2.$$

Hence $(x_1 \wedge x_2, y_1 \wedge y_2) \in \tau_{\overline{a}}$.

Thus the relation $\tau_{\overline{a}}$ is compatible with the lattice operations.

Proposition 2. For every $\overline{a} \in L^n[...[[x,a_1],a_2],...,a_n] = \Lambda\{y \in L|(x,y) \in \tau_{\overline{a}}\}$.

Proof. If $(x, y) \in \tau_{\overline{a}}$ then by definition of $\tau_{\overline{a}}$ we have $[...[[x, a_1], a_2], ..., a_n] \le y$, hence $[...[[x, a_1], a_2], ..., a_n] \le \Lambda\{y \in L | (x, y) \in \tau_{\overline{a}}\}$. On the other hand $[...[[y, a_1], a_2], ..., a_n] \le x$ and so, by the monotony of a commutator,

$$[...[[...[[x,a_1],a_2],...,a_n]a_1],...,a_n] \leq [...[[y,a_1],a_2],...,a_n] \leq x.$$

Thus $(x, [...[x, a_1], a_2], ..., a_n]) \in \tau_{\bar{a}}$ and hence

$$[...[[x,a_1],a_2],...,a_n] \ge \Lambda\{y \in L|(x,y) \in \tau_{\bar{a}}\}.$$

Let $\overline{0}$ (respectively, $\overline{1}$) be the element (0,...,0) (respectively, (1,...,1)) of L^n .

Proposition 3. If $\overline{b} \leq \overline{c}$ in L^n then $\tau_{\overline{b}} \geq \tau_{\overline{c}}$; in particular, $\tau_{\overline{0}} = L \times L$ is the largest element and $\tau_{\overline{1}}$ is the least element in the poset of all tolerances $(\tau_{\overline{a}} | \overline{a} \in L)$.

Proof. If $(x, y) \in \tau_{\overline{c}}$ then $[...[x, c_1], ..., c_n] \le y$ and $[...[y, c_1], ..., c_n] \le x$. Hence $[...[x, b_1], ..., b_n] \le [...[x, c_1], ..., c_n] \le y$ and $[...[y, b_1], ..., b_n] \le [...[y, c_1], ..., c_n] \le x$, since the commutator $[\cdot, \cdot]$ is a monotone map. Thus, $(x, y) \in \tau_{\overline{b}}$.

Proposition 4. For every $b,c \in L$ $\tau_{\overline{b}} \cap \tau_{\overline{c}} = \tau_{\overline{b} \vee \overline{c}}$, where $\overline{b} = (b,1,...,1)$, $\overline{c} = (c,1,...,1)$ and $\overline{b} \vee \overline{c}$ the join in the lattice L^n .

Proof. Obviously $\overline{b} \leq \overline{b} \vee \overline{c}$ and $\overline{c} \leq \overline{b} \vee \overline{c}$. So by Proposition 3 $\tau_{\overline{b}} \geq \tau_{\overline{b} \vee \overline{c}}$ and $\tau_{\overline{c}} \geq \tau_{\overline{b} \vee \overline{c}}$. Therefore $\tau_{\overline{b}} \cap \tau_{\overline{c}} \geq \tau_{\overline{b} \vee \overline{c}}$.

For the converse inclusion, if $(x, y) \in \tau_{\overline{b}}$ and $(x, y) \in \tau_{\overline{c}}$ then in particular

$$[...[x,b]1]...,1] \le y$$
 and $[...[x,c]1]...,1] \le y$.

Hence $[...[[x,b\lor c],1],...]=[...[[x,b],1],...,1]\lor [...[[x,c],1],...,1]\le y$. By symmetry $[...[[y,b\lor c],1],...,1]\le x$. The last two inclusions imply that $(x,y)\in \tau_{\overline{b}\lor \overline{c}}$.

Thus Propositions 1-3 and abovementioned notes imply the following

Theorem 1. For any $n \ge 1$ the set $T = \{\tau_{\overline{a}} | \overline{a} = (a,1,...,1) \in L^n \}$ is a meet-subsemilattice of Tol(L), the lattice of all tolerances of L, with the least element $\tau_{\overline{\chi}}$ and the largest element $\tau_{(0,1,1,...,1)}$ which is equal to $\tau_{\overline{0}} = L^2$. Moreover, Tol(L) is a T-tolerance topological lattice and if the commutator [,] has the property [x,1] = x for every $x \in L$ then Tol(L) is Hausdorff.

For $\overline{a} = (a_1, ..., a_n) \in L^n$ we say that $\overline{a} = (a_1, ..., a_n, a'_1, ..., a'_n)$ is a continuation of \overline{a} if $a_1 \le a'_1, ..., a_n \le a'_n$ in L.

Theorem 2. For any congruence $\tau_{\overline{a}}$ and any continuation \overline{a} of \overline{a}

$$\tau_{\overline{a}} = \tau_{\overline{a}}$$
.

Proof. Obviously that $[...[[x,a_1],a_2],...,a_n]$, $a'_1]$, $a'_2]$,..., $a'_n] \leq [...[x,a_1],...,a_n]$. Let $(x,y) \in \tau_{\overline{a}}$. Then $[...[x,a_1],...,a_n] \leq y$ and hence $[...[[...[[x,a_1],a_2],...,a_n],a'_1],...,a'_n] \leq y$. Similarly $[...[[y,a_1],a_2],...,a_n]$, $a'_1]$,..., $a'_n] \leq x$. Hence $(x,y) \in \tau_{\overline{a}}$ and thus $\tau_{\overline{a}} \subseteq \tau_{\overline{a}}^{x}$.

For the converse inclusion, let $(x,y) \in \tau_{\frac{n}{a}}$. H.-J.Bandelt [1] proved that in any lattice L a pair (x,y) belongs to tolerance ξ if and only if $(x \wedge y, x \vee y)$ belongs to ξ . So, without loss of generality we may assume that $x \leq y$. Then $[...[...[x,a_1]...,a_n]a'_1]...,a'_n] \leq y$ and $[...[...[y,a_1]...,a_n]a'_1]...,a'_n] \leq x$. Obviously $[...[y,a_1]...,a_n] \leq [...[y,a_1]...,a_n]$ and as the commutator $[...[...[y,a_1]...,a'_n] \leq x \leq y$.

Hence $(y, [...[y, a_1], ..., a_n]) \in \tau_a$. This implies that

$$(y \lor x, [...[y, a_1], ..., a_n] \lor x) = (y, [...[y, a_1], ..., a_n] \lor x) \in \tau_{\overline{a}}.$$

On the other hand it is easy to see that

$$([...[y,a_1]...,a_n][...[[..[y,a_1]...,a_n]a'_1]...,a'_n]) \in \tau_{(a'_1,...,a'_n)}$$

Consequently, as $(x, y) \in \tau_{-}$,

$$([...[y,a_1]...,a_n] \lor x, [...[...[y,a_1]...,a_n],a'_1]...,a'_n] \lor x) =$$

$$= ([...[y,a_1]...,a_n] \lor x, x) \in \tau_{(a'_1,...,a'_n)}.$$

This and the predecessor paragraph imply that $(x, y) \in \tau_{\overline{a}} \circ \tau_{(a'_1, \dots, a'_n)}$.

By Proposition 3 $\tau_{(a'_1,\dots,a'_n)} \le \tau_{\overline{a}}$. Hence $(x,y) \in \tau_{\overline{a}} \circ \tau_{\overline{a}} = \tau_{\overline{a}}$; the last equality is true by the transitivity of the tolerance $\tau_{\overline{a}}$. Thus $(x,y) \in \tau_{\overline{a}}$ and therefore the inclusion $\tau_{\overline{a}} \supseteq \tau_{\overline{a}}$ is proved.

In the forthcoming paper we shall deal with a generalization of Theorem 2 and with applications to solvability and like properties of commutators of algebras.

References

- Bandelt H.-J. Tolerance relations on lattices. Bull. Austral. Math. Soc., v.23, №3, 1981, 367-381.
- [2]. Bourbaki N. Elements of Mathematics. General Topology. Part 1, Addison-Wesley, 1966.
- [3]. Bulman-Fleming S. Congruence topologies on universal algebras. Math. Z., v.119, №4, 1971, pp.287-289.
- [4]. Chajda I. Algebraic Theory of Tolerance Relations. Olomouc, 1991.
- [5]. Schweigert D. Tolerances and commutators on lattices. Bull. Austral. Math. Soc., v.37, No.2, 1988, 213-219.

Mamedov O.M.

Institute of Mathematics and Mechanics of AS Azerbaijan.

9, F.Agayev str., 370141, Baku, Azerbaijan.

Tel.: 39-47-20 (off.).

Received October 6, 1999; Revised April 19, 2000. Translated by author.