VOL, XIII(XXI)

ì

AMIROVA L.I., GUSEYNOV M.M.

ON SOME PROPERTIES OF HOLOMORPHIC SOLUTIONS OF THE CLASS OF SECOND ORDER OPERATOR-DIFFERENTIAL EQUATIONS

Abstract

The Fragmen-Lindilef type theorem is proved for holomorph solutions of the second order operator-differential equation with normal operator in the main part in some sectors.

Let's consider the operator bunch in a separable Hilbert space H

$$P(\lambda) = -\lambda^2 E + \lambda A_1 + A_2 + A^2 \tag{1}$$

and the connected operator-differential equation

$$P(d/dz)u(z) = -u''(z) + A_1u'(z) + A_2u(z) + A^2u(z), \quad z \in S_a$$
 (2)

where the derivatives are understood in the sense of complex analysis in the abstract Hilbert spaces:

$$S_{\alpha} = \{z : |\arg z| < \alpha\}, \ 0 < \alpha < \pi/2.$$

The operators A, A_1 and A_2 satisfy the following conditions:

 1° . A - is a normal operator, with quite continuous inverse A^{-1} , whose spectrum is contained on finite number of rays from the sector

$$S_{\varepsilon} = \{\lambda : |\arg \lambda| \le \varepsilon\}, \ 0 \le \varepsilon < \pi/2 - \alpha$$

 2^{0} . The operators $B_{1}=A_{1}A^{-1}$, $B_{2}=A_{2}A^{-2}$ are bounded in H, moreover the operator $E + B_2$ has a bounded inverse in H.

Let μ_n and e_n be the eigen-vectors and eigen-elements of the operator, i.e. $Ae_n = \mu_n e_n$, $\mu_n \in S_{\varepsilon}$. Let's denote by σ_p the sub-set of quite continuous operators B, for which

$$\sum_{n=1}^{\infty} \left(\mu_n \left(B^{\bullet} B \right)^{1/2} \right)^p < \infty ,$$

where μ_n is the *n*-th eigen-value of the operator B.

Let's define a class of functions $H_2(\alpha : H)$, consisting of functions f(z) which are holomorphic in sector S_{α} , satisfying the condition:

$$\sup_{|\phi|<\alpha} \left\| f\left(te^{i\phi}\right) \right\|_{L_2(R_+:H)}^2 = \sup_{|\phi|<\alpha} \int_0^\infty \left\| f\left(te^{i\phi}\right) \right\|^2 dt < \infty$$

As is known, the functions from the class $H_2(\alpha:H)$ have the boundary values

$$f(te^{\pm \alpha}) \in L_2(R_+:H) \text{ and integral of Cauchy type [1] holds:}$$

$$f(z) = \frac{1}{2\pi i} \int_0^\infty \frac{f(te^{-i\alpha})}{te^{-i\alpha} - z} e^{-i\alpha} dt - \frac{1}{2\pi i} \int_0^\infty \frac{f(te^{i\alpha})}{te^{i\alpha} - z} e^{-i\alpha} dt$$
(3)

Let's denote, that $H_2(\alpha : H)$ is a Hilbert space with respect to norm [1]

$$||f||_{2,\alpha} = \frac{1}{\sqrt{2}} \Big(||f(te^{i\alpha})||_{L_2(R_+:H)}^2 + ||f(te^{-i\alpha})||_{L_2(R_+:H)}^2 \Big)^{1/2}$$

Further, let's denote by

$$W_2^2(\alpha:H) = \{u(z): u''(z) \in H_2(\alpha:H), A^2u(z) \in H_2(\alpha:H)\}$$

the hilbert space with norm

$$\|u\|_{2,\alpha} = \left(\|u''\|_{2,\alpha}^2 + \|A^2u\|_{2,\alpha}^2\right)^{1/2}.$$

Let's denote, that for the vector-functions from $W_2^2(\alpha:H)$ holds the theorem on intermediate derivatives [2]:

$$\|A^{2-j}u^{(j)}\|_{2,\alpha} \le c \|u\|_{2,\alpha}, \ j=0,1,2$$
 (4)

Definition. Let's call the functions $u(z) \in W_2^2(\alpha : H)$ as holomorph regular solution of equation (2), if the vector-function u(z) satisfies equation (2) identically in S_{α} .

In the present work we'll prove some confirmations on regular solutions of equation (2), in particular as Fragmen-Lindilef type theorem.

The analogical conformations in different situations are obtained in works, example [2,3,4].

It has place

Theorem 1. The set L_0 of holomorph regular solutions is a close subset of the space $H_1(\alpha; H)$.

Proof. The linearity of the set L_0 is evident. Let's prove the closeness of the set L_0 . Let $u_n(z) \in W_2^2(\alpha : H)$ and $P_0 u_n(z) = 0$, when $z \in S_\alpha$. Suppose that $u_n(z) \to u(z)$ in the space $W_2^2(\alpha : H)$. Let's show that $u(z) \in L_0$. As $u_n^{(j)}(z) - u^{(j)}(z) \in W_2^2(\alpha : H)$, then on theorem about intermediate derivatives (4) has place the inequality:

$$||A^{2-j}u_n^{(j)}(z)-A^{2-j}u_n^{(j)}(z)||_{2,\alpha} \le C_j ||u_n-u||_{2,\alpha}, \quad j=0,1,2.$$

Consequently, $A^{2-j}u_n^{(j)}(z) \to A^{2-j}u^{(j)}(z)$ when $n \to \infty$ in space $W_2^2(\alpha:H)$, j=0,1,2. Let's show that this convergence is proportional in every compact $\mathcal{G} \subset S_\alpha$.

As $A^{2-j}u_n^{(j)}(z) \in H_2(\alpha:H)$, $A^{2-j}u_n^{(j)}(z) \in H_2(\alpha:H)$, then each of them has the bound any value $v_{n,j}(te^{\pm i\alpha})$ and $v_j(te^{\pm i\alpha})$ and on formula (3) holds the inequality:

$$\sup_{z \in \mathcal{G}} \left\| A^{2-j} u_{n}^{(j)}(z) - A^{2-j} u^{(j)}(z) \right\| \leq \frac{1}{2\pi} \int_{0}^{\infty} \frac{\left\| v_{n,j} \left(t e^{-i\alpha} \right) - v_{j} \left(t e^{-i\alpha} \right) \right\|}{\left\| t e^{-i\alpha} - z \right\|} dt + \frac{1}{2\pi} \int_{0}^{\infty} \frac{\left\| v_{n,j} \left(t e^{i\alpha} \right) - v_{j} \left(t e^{i\alpha} \right) \right\|}{\left\| t e^{i\alpha} - z \right\|} dt \leq$$

$$\leq \frac{1}{2\pi} \left(\int_{0}^{\infty} \left\| v_{n,j} \left(t e^{-i\alpha} \right) - v_{j} \left(t e^{-i\alpha} \right) \right\|^{2} dt \right)^{1/2} \sup_{z \in \mathcal{G}} \left(\int_{0}^{\infty} \frac{1}{\left\| t e^{-i\alpha} - z \right\|^{2}} dt \right)^{1/2} + \frac{1}{2\pi} \left(\int_{0}^{\infty} \left\| v_{n,j} \left(t e^{i\alpha} \right) - v_{j} \left(t e^{i\alpha} \right) \right\|^{2} dt \right)^{1/2} \sup_{z \in \mathcal{G}} \left(\int_{0}^{\infty} \frac{1}{\left\| t e^{i\alpha} - z \right\|^{2}} dt \right)^{1/2} \leq$$

$$\leq const \|A^{n-j}u_n^{(j)}(z)-A^{n-j}u^{(j)}(z)\|_{2\alpha}, \quad j=0,1,2.$$

In this way the sequence $A^{2-j}u_n^{(j)}(z)$ convergences to $A^{2-j}u^{(j)}(z)$ proportionally, in every compact $\mathcal{G}\subset S_\alpha$.

Further, from theorem about intermediate derivatives follows, that

$$\sup_{z\in\mathcal{G}} \|P(d/dz)u_n(z) - P(d/dz)u(z)\| \le$$

$$\leq const \sum_{j=0}^{2} \sup_{z \in \mathcal{G}} \left\| A^{2-j} u_n^{(j)}(z) - A^{2-j} u^{(j)}(z) \right\|.$$

Taking into account that $P(d/dz)u_n(z)=0$ in the last inequality and taking the limit when $n\to\infty$, we get:

$$P(d/dz)u(z)=0$$
, i.e. $u(z) \in L_0$

The theorem is proved.

Let's denote by $L_{\rm r}$ - the sub-set of holomorph regular solutions of equation (2), such that

$$L_{\tau} = \{ u : u(z) \in L_0, \ e^{\tau z} u(z) \in H_2(\alpha : H) \}, \ \tau \ge 0.$$

It holds the following

Theorem 2. Let the conditions 1°, 2° and one of the next conditions be fulfilled:

1)
$$A^{-1} \in \sigma_p$$
 when $0 and it holds the inequality$

$$K(\varepsilon) = c_1(\varepsilon, \alpha) \|B_1\| + c_2(\varepsilon, \alpha) \|B_2\| < 1$$
 (5)

ì

where

$$c_{1}(\varepsilon,\alpha) = (2\cos(\alpha + \varepsilon))^{-1}$$

$$c_{2}(\varepsilon,\alpha) = \begin{cases} 1, & npu & 0 < \alpha + \varepsilon \le \pi/4 \\ (\sqrt{2}\cos(\alpha + \varepsilon))^{-1}, & npu & \pi/4 \le \alpha + \varepsilon < \pi/2 \end{cases}$$
(6)

2) $A^{-1} \in \sigma_p$ $(0 , <math>B_1, B_2$ are continuous operators in H, $P^{-1}(\lambda)$ exists on rays

$$\Gamma_{\pm(\pi/2+\theta)} = \{z : \arg z = \pm (\pi/2 + \theta)\}$$

on these rays it holds the proportional estimation

$$||A^2P^{-1}(\lambda)|| + ||\lambda^2P^{-1}(\lambda)|| \le const.$$
 (7)

Then, if $u(z) \in L_{\tau}$ in all $\tau \ge 0$, then u(z) = 0.

Proof. If $u(z) \in L_0$, then its Laplace transformation $\hat{u}(\lambda)$ admit holomorph continuation in domain [7, p.221] $S_{\pi/2+\alpha} = \{\lambda : |\arg \lambda| < \pi/2 + \alpha\}$.

Let's show that by fulfilling the condition (5), on rays $\Gamma_{\pm(\pi/2+\alpha)}$ and $\Gamma_{\mp(\pi/2-\alpha)}$ it holds estimation (7).

Indeed, let $\lambda \in \Gamma_{\pm(\pi/2+\alpha)}$ or $\lambda \in \Gamma_{\mp(\pi/2-\alpha)}$. Then $P_0(\lambda) = r^2 e^{\pm 2i\alpha} + A^2$ are inversable and from equality

 $P(\lambda) = P_0(\lambda) + P_1(\lambda) = (E + P_1(\lambda)P_0^{-1}(\lambda))P_0(\lambda), \quad (P_1(\lambda) = \lambda A_1 + A_2)$ (8) invertibility of follows, that for $P(\lambda)$ on rays $\Gamma_{\pm(\pi/2+\alpha)}$ and $\Gamma_{\mp(\pi/2-\alpha)}$ it is enough to prove, that on these rays $||P_1(\lambda)P_0^{-1}(\lambda)|| < 1$. Since on these rays

$$||P_1(\lambda)P_0^{-1}(\lambda)|| \le ||B_1|| ||\lambda A P_0^{-1}(\lambda)|| + ||B_2|| ||A^2 P_0^{-1}(\lambda)||, \tag{9}$$

then let's estimate the norms $\|\lambda A P_0^{-1}(\lambda)\|$ and $\|A^2 P_0^{-1}(\lambda)\|$. From spectral decomposition of operator A we find, that

$$\left\| \lambda A P_0^{-1}(\lambda) \right\| = \sup_n \left| r \mu_n \left(r^2 e^{\pm 2i\alpha} + \mu_n^2 \right)^{-1} \right| =$$

$$= \sup_n \left| r \mu_n \left[r^4 + \left| \mu_n \right|^4 + 2r^2 \left| \mu_n \right|^2 \cos 2(\alpha \mp \arg \mu_n) \right]^{-1/2} \right| \le$$

$$\le \sup_n \left| r \left| \mu_n \right| \left[r^4 + \left| \mu_n \right|^4 + 2r^2 \left| \mu_n \right|^2 \cos 2(\alpha + \varepsilon) \right]^{-1/2} \right| \le$$

$$\le \sup_n r \left| \mu_n \right| \left[2r^2 \left| \mu_n \right|^2 (1 + \cos 2(\alpha + \varepsilon)) \right]^{-1/2} =$$

$$= (2\cos(\alpha + \varepsilon))^{-1} = c_1(\varepsilon).$$

By the same way

$$||A^2 P_0^{-1}(\lambda)|| \le \sup_n |\mu_n^2 [r^4 + |\mu_n|^4 + 2r^2 |\mu_n|^2 \cos 2(\alpha + \varepsilon)]^{-1/2}|.$$

When $0 < \alpha + \varepsilon \le \pi/4$, $\cos 2(\alpha + \varepsilon) \ge 0$, therefore

$$||A^2 P_0^{-1}(\lambda)|| \le \sup_{n} |\mu_n|^2 (r^4 + |\mu_n|^4)^{-1/2} \le 1$$
,

but when $\pi/4 \le \alpha + \varepsilon < \pi/2$, $\cos 2(\alpha + \varepsilon) \le 0$, therefore

$$\left\|A^{2}P_{0}^{-1}(\lambda)\right\| \leq \sup_{n}\left|\mu_{n}\right|^{2}\left[\left(r^{4}+\left|\mu_{n}\right|^{4}\right)\left(1+\cos 2\left(\alpha+\varepsilon\right)\right)\right]^{-1/2}=$$

$$=\left(\sqrt{2}\cos(\alpha+\varepsilon)\right)^{-1}=c_{2}(\varepsilon).$$

From obtained estimations and from equality (8) follows that on rays $\Gamma_{\pm(\pi/2+\alpha)}$ and $\Gamma_{\mp(\pi/2-\alpha)}$ estimation (7) holds.

Since $P^{-1}(\lambda)$ exists on rays $\Gamma_{\pm(\pi/2+\alpha)}$ and the inequality (7), holds then $u(z) \in L_0$ we can represent in the form

$$u(z) = \frac{1}{2\pi i} \int_{\Gamma_{\left(\frac{\pi}{2}, u\right)}} \hat{u}(\lambda) e^{\lambda z} d\lambda - \frac{1}{2\pi i} \int_{\Gamma_{\left(\frac{\pi}{2}, u\right)}} \hat{u}(\lambda) e^{\lambda z} d\lambda,$$

where

$$\hat{u}(\lambda) = P^{-1}(\lambda)[(\lambda E - A_1)u(0) - u'(0)]$$
(10)

From condition $u(z) \in L_{\tau}$ for any $\tau \ge 0$ follows, that $\hat{u}(\lambda)$ holomorphically continues to domain

$$S_{\tau,\alpha} = \{\lambda : |\arg \lambda + \tau| < \pi/2 + \alpha\} \text{ for } \tau \ge 0$$

i.e. $\hat{u}(\lambda)$ eigen vector-function.

Since $P(\lambda) = (E + M(\lambda))(E + B_2)A^2$, where $M(\lambda) = \lambda T_1 + \lambda^2 T_2$, but $T_1 = B_1 A^{-1}(E + B_2)^{-1} \in \sigma_p$, $T_2 = B_2 A^{-2}(E + B_2)^{-1} \in \sigma_{p/2}$ then from lemma by Keldysh [5] it follows that $(E + M(\lambda))^{-1}$, consequently and $P^{-1}(\lambda)$ is represented in the form of relation of two eigen functions of order not higher than p and minimal type with order p. From the equality (10) follows, that $\hat{u}(\lambda)$ also has the order not higher than p and minimal type by order p.

By fulfilling condition 1) of the theorem on rays $\Gamma_{\pm(\pi/2+\alpha)}$ and $\Gamma_{\mp(\pi/2-\alpha)}$ it holds estimation (7) and the angle between neighbor rays equals to $\pi-2\alpha$ and 2α . Therefore when $0 to vector-function <math>\hat{u}(\lambda)$ we can apply the Fragmen-Lindilef theorem ([8], p.211) and from estimation (7), and also from equality (10), we get that $\|u(\lambda)\| \le c(|\lambda|+1)^{-1}$, when $\lambda \in \mathbb{C}$.

So it is identically equal to zero, consequently u(z) = 0. Let's prove the theorem by fulfilling condition (2).

ì

Denote

$$S_{\delta} = \mathbb{C} \setminus \left(\bigcup_{i=1}^{S} \left\{ \lambda : \left| \arg \lambda - \omega_{i} \right| < \delta \right\} \bigcup_{i=1}^{S} \left\{ \lambda : \left| \arg \lambda - (\pi + \omega_{i}) \right| < \delta \right\} \right),$$

where a spectrum of the operator bunch $P_0(\lambda) = -\lambda^2 E + A^2$ is contained on rays $\Gamma_{\omega_i} = \{\lambda : \arg \lambda = \omega_i\}$ and $\Gamma_{\pi + \omega_i} = \{\lambda : \arg \lambda = (\pi + \omega_i)\}$, and

$$0 < \delta < \min \left(\pi / 2p, \min_{i \neq j} \left| \omega_i - \omega_j \right| \right), \ i, j = 1, ..., m.$$

Then by Keldish's lemma [5,6], when $\lambda \overline{\in} S_{\delta}$

$$\lim_{|\lambda|\to\infty} \left\| P_1(\lambda) P_0^{-1}(\lambda) \right\| = 0$$

therefore from equality (10) we have

$$\|\hat{u}(\lambda)\| \le c_1 \|P^{-1}(\lambda)\| (|\lambda|+1) \le c_1 \|P_0^{-1}(\lambda)\| (\|E+P_1(\lambda)P_0^{-1}(\lambda)\|^{-1}) (|\lambda|+1) \le c_2 (|\lambda|+1)^{-2} (|\lambda|+1) = c_2 (|\lambda|+1)^{-1}.$$

Since the angle between the rays is less than π/p applying the theorem Fragmen-Lindilef again, we get, that $\hat{u}(\lambda) \equiv 0$, i.e. $u(z) \equiv 0$.

Theorem is proved.

References

- [1]. Гасымов М.Г. О разрешимости краевых задач для одного класса операторнодифференциальных уравнений. ДАН СССР, 1977, т.235, №3, с.505-508.
- [2]. Власов В.В. Эволюционные уравнения и их приложения к спектральной теории операторных пучков. Автореферат канд. диссертации, 1982, М. 32.
- [3]. Ланс П.Д. Теорема Фрагмена-Линделефа в гармоническом анализе и ее применение к некоторым вопросам теории эллиптических уравнений. Сборник переводов «Математика», 1959, т.3, №4, с.107-132.
- [4]. Agmon S., Nirenberg L. Properties of Solutions of Ordinary Differential Equations in Banach Space. Comm. on pure and applied Math., 1963, v.XVI, pp.121-239.
- [5]. Келдыш М.В. О полноте собственных функций некоторых классов несамосопряженных уравнений, УМН, 1971, т.27, №4, с.15-41.
- [6]. Радзиевский Г.В. Задача о полноте корневых векторов в спектральной теории оператор-функций. УМН, 1982, т.37, вып.2, с.81-145.
- [7]. Евграфов М.А. Аналитические функции. М., Наука, 1991, 447 с.
- [8]. Маркушевич А.И. Теория аналитических функций. т.2, М., Наука, 1968.

Amirova L.I., Guseynov M.M.

Baku State University named after E.M. Rasulzadeh. 23, Z.I. Khalilov str., 370148, Baku, Azerbaijan.

Received June 19, 2000; Revised September 28, 2000. Translated by Mamedova V.A.