10 Proceedings of IMM of Azerbaijan AS

2000 VOL. XHI(XXI})
AMIROVA L.1., GUSEYNOV M.M.

ON SOME PROPERTIES OF HOLOMORPHIC SOLUTIONS OF THE CLASS
OF SECOND ORDER OPERATOR-DIFFERENTIAL EQUATIONS

Abstract
The Fragmen-Lindilef type theorem is proved for holomorph solutions of the
second order operator-differential equation with normal operator in the main part in

SOMe Seclors.

Let’s consider the operator bunch in a separable Hilbert space H

P(A)=~A2E + 24 + 4, + A? (1
and the connected operator-differential equation
Pld/dzyu(z) = —u"(z) + 4u'(2) + Ayulz)+ A7ulz), z€S, (2)

where the derivatives are understood in the sense of complex analysis in the abstract
Hilbert spaces:

Sy = {z:largz|<a}, O<a<m/2.
The operators 4, 4, and A, satisfy the following conditions:

1%, 4 - is a normal operator, with quite continuous inverse A", whose spectrum is
contained on finite number of rays from the sector

S, = A,:|argk|ss}, O<g<ni2~a
2°. The operators B, = 447", B, = 4,47 are bounded in H, moreover the operator
E + B, has a bounded inverse in # . '
Let u, and e, be the eigen-vectors and eigen-elements of the operator, i.c.
Ade, =pe,, p, €S, . Let’s denote by o, the sub-set of quite continuous operators B,

o0 . r
51, (58] ) <o,
n=l
where g, is the n-th eigen-value of the operator B,

Let’s define a class of functions H,(c: K}, consisting of functions f{z) which

are holomorphic in sector S, , satisfying the condition:
sup

sup f(te“"]fl(k "= sup _ﬂ‘f te'® ]|2dt<oo
As is known, the functions from the c]ass H, (@:H) have the boundary values
f(a!e:”= )e L,(R, : H) and integral of Cauchy type [1] holds:
l f !te ’

for which

i

e Sflte - it
f( 211‘1 A a - 2::1 e — a 3
Let’s denote, that H, (a :H) is a Hilbert space wnth respect to norm [ 1)
1/2
Ilf“2.zx O!f m);,‘,(;e ) +”f m] L. HJ

Further, let’s denote by
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Wila:H)= {u(z):u"(z)e H o H), A2ulz)e Hy{o: H)}
the hilbert space with norm
k., =1 o)

Let’s denote, that for the vector-functions from Wy (e : H) holds the theorem on
intermediate derivatives | 2]:
Ja* ), <, . s=012 (4)

2
+ ||A2u
2

Definition. Let’s call the functions ulz)eW)la:H) as holomorph regular
solution of equation (2}, if the vector-function u(z) satisfies equation (2) identically in
S, -

In the present work we’ll prove some confirmations on regular solutions of
equation (2), in particular as Fragmen-Lindilef type theorem.

The analogical conformations in different situations are obtained in works,
examptle [2,3,4].

11 has place

Theorem 1. The set L, of holomorph regular solutions is a close subset of the
space Hz(a :H).

Proof. The linearity of the set L, is evident. Let’s prove the closeness of the set
Ly. Let u,(z)eW o :H) and P (z)=0, when ze S, . Suppose that «,(z) > u(z) in
the space W, {a: H). Let’s show that u(z)e L,. As uf,-”(z)— u("](z)e wi(e: H), then on
theorem about intermediate derivatives (4) has place the inequality:

|42 ) - Az‘-fu(-”(z)"m <Clu, -, . =012

Consequently, Az"'uf,-’)(z)a Az'-"u(-")(z) when #n-o>w in  space
W {a:H), j=0,1,2. Let's show that this convergence is proportional in every compact
gCS,. \
As A7uN2)e Hya: H), 4774 z)e H,(a:H), then each of them has the

bound any value v, (te*’“) and v, (tei”’ and on formula (3) holds the inequality:

Ve (temm )” Vi (‘e_m }

s ) e s

e+

. Li’.v"’-’ (te‘“‘.)— v, (te""‘ ] e
2r g 1te’“ wz'

- 32
2d’;!} sup[ _[——~——~I-~—2dl} +
=g| g 'te""“ - z|
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= CORSt

A1 (z) - A""-fu(f’(z)lL . =012

In this way the sequence 4>/ u,[,'j )(z) convergences to Ayl }(z) proportionally,
in every compact £ S, .
Further, from theorem about intermediate derivatives follows, that

sgg“f’(d / a'z)u,i (z)-P(d/ dz}u(zll <

it

2
<consty, sup|
J=0 74

Taking into account that P{d/dz)u,(z)=0 in the last inequality and taking the

limit when »—» o0, we get:
Pla/dzu(z)=0, ie. u(z)e I,

Al—fugﬂ(z) _ AZL"IMU)(ZH .

The theorem is proved.
Let’s denote by L, - the sub-set of holomorph regular solutions of equation (2),
such that
L = {u culz)e Ly, e ulz)e H, (o :H)}, 720,
It holds the following
Theorem 2. Let the conditions 1°, 2° and one of the next conditions be fulfilled:

) 4'€ o, when Q< ps min[ %) and it holds the inequality

-2

K(e)=c/le.a)|B |+ ey (s,a) By <1 | ()
where
cle.a)=(2cos(a + &)

«
1, npu O<a+e<m/4
€ (g’a)= -1 6)
(ﬁcos(a: +e:)) , npu wldsa+ve<n/2
2) 4leo o (0< p <), B, B, are continuous operators in H, P’ (A) exists on rays
Uiizizig) = {z:argz =+(1/2+ 9)}
on these vays it holds the proportional estimation
”AzP"I O'Xl + “/lzP'! (lj' Seonst . )]
Then, if u(z)e L, inall 120, then u(z)=0.
Proof. If u(z)eL,, then its Laplace transformation (1) admit holomorph
continuation in domain [7, p.221] S, ,,., = {/’L:]argl{ <m/2+ a}.
Let’s show that by fulfilling the condition (5), on rays Uifriava) 8 T s oy it
holds estimation (7).
Indeed, let Aely, ;.. o A€l ,,). Then A(A)=r2e™™ + 4 are
inversable and from equality
PO)=P@)+AQ)=(E+ ROR' WG, (BA)=1u+4)  ®
invertibility of follows, that for P(1} on rays Vilrr2eay a0d Ty 5 o) 1t is enough o »

prove, that on these rays “Pl (AR (lj. <1. Since on these rays
[RGIE ) <l faar (] « |8 ||l 57 (Y ©)
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then let’s estimate the norms }[/"IAPG'"(ZXI and "AE.PO" (11! From spectral decomposition
of operator 4 we find, that
[pars ()] =su

; 1
ru e + p2Y |= |

=

H, \2 cos2{a Fargy, )]‘”2

i+l 207

= sup
L]

,u,,,z cosZ(a + E)Tm <

il + ]| + 277

< sup
!

< supriy, l[2r2|p,,|2 (1 + cos2(x + z—;))]-m =

={2cosla + &)’ =¢, (.C:)
By the same way

|]A2P0_‘ (Am < sup

,uf[r"‘ +],u,,|4 + 2r2},u,,‘2 cos2a + 8)]4;2' :
When O<a +&<7/4, cos2{a + )20, therefore
“AEPO" (A]fssup ,u,,]z(r“ + |,uz,,|4}”2 <1,

but when 7/4<a+¢e<n/2, cos2{a +£)<0, therefore

1/2

ﬂAzP{{' (11‘ < st:p[p,,r {(r“ + |, I kl +cos2a + s))r =

-1
= (Jf cos(a + 3)) =¢,(¢).
From obtained estimations and from equality (8) follows that on rays I'y; 5.,

and Ty, » ) estimation (7) holds.

Since P™'(A) exists on rays Ty, y,,) and the inequality (7), holds then u(z)e L,
we can represent in the form

u(z):—l—_ [#(a)e* da ——1—, fa{a)e™dn,
2mi - 2n7i
78 Ao
where
()= P~ ANAE ~ A )uf0) - ' (0)] (10)
From condition u(z}e L, for any r>0 follows, that #(i) holomorphically
continues to domain
S,q ={A:Jargd +7l< /24 a} for 120
i.e. #(A) eigen vector-function,
Since  P(1)={E+MQANE + B,)4?, where M(A)=AT, +A°T,, but
T=BA"'(E+B,)" ec,, I,=B,4*(E+B,)" eo,, then from lemma by Keldysh

(5] it follows that (£ + M(A))", consequently and P7'(1) is represented in the form of
relation of two eigen functions of order not higher than p and minimal type with order
p . From the equality (10) follows, that (1) also has the order not higher than p and
minimal type by order p.
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By fulfilling condition 1) of the theorem on rays I'(,,;,,) @nd Iz, ) it holds
estimation (7) and the angle between neighbor rays equals to 7 — 2a and 2a . Therefore
when 0< p<min{%/2a,7/% —2a) to vector-function #(A) we can apply the Fragmen-
Lindilef theorem ([8], p.211) and from estimation (7), and also from equality (10), we get
that Ju(1)} < COZ.] +1)", when 4 €&C.

So it is identically equal to zero, consequently u{z)=0. Let’s prove the theorem
by fulfilling condition (2).

Denote

8 &
S, :C\[U{i:|argl —m,|<5} U{,l:|argﬂ. U +mf-)]<5}J,
i=l =1 .
where a spectrum of the operator bunch P(A)=-A’E+ 4’ is contained on rays
I, ={i:argi=w,jand I, ={1:argl={z + @)}, and

D<d < min[fr&p,rfii}]]w,. -mII.D, Lj=l..,m.
Then by Keldish’s lemma {5,6], when 1€ S;
im @) @)=
therefore from equality (10) we have
ey BN 1 O [ FIPRVERN Iy (;L)|]U|E + (AP (/q["‘ ]0,11 +1)<

<c, ﬂ1| + l)'z(]/l| + l)z s ﬂ/'t,| + 1)"".
Since the angle between the rays is less than #/p applying the theorem
Fragmen-Lindilef again, we get, that #(1)=0, i.e. u(z)=0,
Theorem is proved.
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