VOL. XIII(XXI)

RAGIMOV F.G., ASADOV A.G.

ASYMPTOTIC EXPANSION FOR THE DISTRIBUTION OF THE BOUNDARY CROSSING TIMES

Abstract

The main result of this paper is three-term asymptotic expansion for distribution of boundary crossing times.

Introduction. Let $\xi_n, n \ge 1$ be independent identically distributed random variables (r.v.), determined on some probability space (Ω, F, P) .

Let

$$S_0 = 0, \ S_n = \sum_{k=1}^n \xi_k, \ n \ge 1.$$

and

$$\tau_a = \inf\{n \ge 1 : S_n \ge f_a(n)\}$$

denote the first time that a random walk S_n $n \ge 0$ crosses a nonlinear boundary $f_a(t)$, a > 0, t > 0.

In the theory of non-linear boundary problems for random walk more attention is given to studying of asymptotic expansion for probability $P(\tau_0 \le n)$ when $a \to \infty (n = n(a) \to \infty)$.

The similar problems are studied in works [1,2] under various suppositions on boundaries $f_a(t)$ and distribution of r.v. ξ_1 .

In work [1] for boundaries $f_a(t) = at^{\beta}$, $0 \le \beta \le 1$ first two-terms of asymptotic expansion for distribution τ_a are obtained.

The results of work [1] are generalized for sufficiently wide class of boundaries $f_{\sigma}(t)$ in work [2].

In this paper work the results of work [2] are precised and the third term of asymptotic expansion of probability $P(\tau_u \le n)$ is established.

2. Conditions and denotations.

We'll assume that $\rho_4 = E(\xi_1 - E\xi_1)^4 < \infty$, $\nu = E\xi_1 > 0$ and the boundary $f_a(t)$ satisfies the following conditions:

- I) For any a the function $f_a(t)$ is increasing and continuously differentiable at t > 0 and $f_a(1) \uparrow \infty$, $a \to \infty$.
- II) If $a \to \infty$ and $n = n(a) \to \infty$, so that

$$\frac{f_a(n)}{n} \to v$$
 and $f_a(n) \to \theta \in [0, v)$

III) For every $a = \frac{f_a'(n)}{f_a'(n)} \to 1$ is satisfied when $\frac{m}{n} \to 1$, $n \to \infty$.

Denote by H a set of boundaries $f_a(t)$ satisfying conditions I), II), and III). Give the following necessary denotations:

$$\chi_{n} = S_{n} - f_{a}(n), \quad c_{n} = \frac{f_{a}(n) - nv}{\sigma \sqrt{n}}, \quad \sigma^{2} = D\xi_{1},$$

$$R_{a}(n, x) = P(\tau_{a} \le n, \ \chi_{n} \le x),$$

$$T = \inf_{n \ge 1} (S - n\theta), \ I(x) = \int_{-\infty}^{x} P(T < y) dy,$$

$$S_{n}^{*} = \frac{S_{n} - nv}{\sigma \sqrt{n}}, \quad g(t) = Ee^{it\xi_{1}}, \ t \in R.$$

$$\Phi(x) = \frac{1}{\sqrt{2\pi}} \int_{-\infty}^{x} e^{-u^{2}/2} du, \quad \varphi(x) = \Phi'(x), \ x \in R.$$

The following polynomials connected with Ermit's polynomials [5] are used in further.

$$P_3(x) = \frac{\rho_3}{6\sigma^3} H_3(x), H_3(x) = x^3 - 3x, \ \rho_3 = E|\xi_1 - v|^3,$$

$$R_3(x) = -\frac{\rho_3}{6\sigma^3} H_2(x), H_2(x) = x^2 - 1,$$

$$R_4(x) = \frac{3\sigma^4 - \rho_4}{24\sigma^4} H_3(x) - \frac{\rho_3^3}{72\sigma^6} H_2(x),$$

here $H_2(x)$, $H_3(x)$ - Ermit polynomials.

Note that the general construction of polynomials $H_k(x)$, $P_k(x)$ and $R_k(x)$ explicitly is explained in [5 p. 506-607].

3. Main result.

Theorem. Let enumerated above conditions with respect to distributions of r.v ξ_1 and boundary $f_a(t)$ be satisfied. Moreover, suppose that for some $m \ge 1$ the function $|g|^m$ is integrable and $c_n = O(1)$ when $a \to \infty$ and $n = n(a) \to \infty$. Then at $a \to \infty$

$$P(\tau_a \le n) = \Phi(-c_n) + \varphi(c_n) \left[\frac{\lambda}{\sqrt{n}} - \frac{R_3(c_n)}{\sqrt{n}} + \frac{\lambda}{n} P_3(c_n) - \frac{R_4(c_n)}{n} \right] + o(1/n),$$

where $\lambda = \frac{l(0)}{\sigma}$.

Remark 1. By reason of constants we will note the following. Let's denote $T' = \max(0, -T)$ negative part of T. It is easy to see that

$$I(0) = \int_{-\infty}^{0} P(T < y) dy = E(T^{-}).$$

It is known that a characteristic function of r.v. T is given by the following formula [5]

$$\varphi(t) = Me^{nT} = \exp\left\{\sum_{n=1}^{\infty} \frac{1}{n} \int_{Z_n \leq 0} (e^{nZ_n^{-}} - 1) dP\right\},$$

where

$$Z_n = S_n - n\theta$$
, $n \ge 1$, $EZ_1 = v - \theta = \delta > 0$.

Then

$$E(T^{-}) = -i\psi(0) = \sum_{n=1}^{\infty} \frac{E(Z_{n}^{-})}{n}$$

Consequently, for calculation of the constant I(0) we get the formula

$$I(0) = \sum_{n=1}^{\infty} \frac{E(Z_n^-)}{n}.$$

Note that if ξ_1 has a normal distribution with mean v > 0 and variance $0 < \sigma^2 < \infty$, then $Z_n = S_n - n\theta$ also have normal distribution with mean $n\delta$ and variance $n\sigma^2$. In this case one finds that [4]

$$l(0) = \sigma \sum_{n=1}^{\infty} \frac{1}{\sqrt{n}} \left\{ \varphi \left(\frac{\delta \sqrt{n}}{\sigma} \right) - \frac{\delta \sqrt{n}}{\sigma} \Phi \left(-\frac{\delta \sqrt{n}}{\sigma} \right) \right\}.$$

4. Auxiliary facts.

The following lemmas are used in proof of Theorem.

Lemma 1. Let $f_a(t) \in H$ and $0 < E\xi_1 < \infty$. Then in sense of convergence w.p. I when $a \to \infty$:

1)
$$\tau_a \to \infty$$

2) $\frac{f_a(\tau_a)}{\tau_a} \to \nu = E\xi_1$

3)
$$\frac{r_a}{n_a} \to 1$$
,

where $n_a = n_a(v)$ is the solution of the equation $f_a(n) = nv$, which exists for sufficiently large a [2].

The lemma is proved in [2]/

Lemma 2. Suppose that the conditions of theorem 1 are satisfied. Then

$$R_{a}(n,x) = \sigma^{-1} \varphi(c_{n}) l(x) \left[\frac{1}{\sqrt{n}} + \frac{P_{3}(c_{n})}{n} \right] + o(\frac{1}{n}).$$
 (1)

Remark 2. Note that in work [2] for cases of nonlattice random variables first form of expansion (1) was obtained.

The proof of lemma 2. Define

$$R_a(n,x,y) = P(\tau_a \le n, \chi_n \in (y,x]).$$

Let's divide an interval (y,x] into equal parts and put

$$t_0 = y$$
, $t_k y + \frac{k}{m}(x - y)$, $t_k(t_{k-1}, t_k)$, $k = \overline{1, m}$ and $Q_a(n, k) = P(\tau_a \le n)_{a} \in I_k$.

By the total probability formula we have

$$R_a(n,x,y) = \sum_{k=1}^m Q_a(n,k) P(\chi_n \in l_k).$$
 (2)

By the definition of τ_a we have

$$Q_{a}(n,k) = P(S_{i} > f_{a}(i), \exists i \in [1,n) | \chi_{n} \in I_{k}) =$$

$$= P(S_{n} - S_{i} < S_{n} - f_{a}(i), \exists i \in [1,n) | \chi_{n} \in I_{k}) =$$

$$= P(S_{n} - S_{n-i} < S_{n} - f_{a}(n-i), \exists i \in [1,n) | \chi_{n} \in I_{k}),$$

where $\Delta_{i,n} = f_n(n) - f_n(n-i)$, $i = \overline{1,n}$.

It is easy to understand that

$$P(S_{i} < t_{k-1} + \Delta_{i,n}, \exists i \in [1, n) | \chi_{n} \in l_{k}) \le Q_{n}(n, k) \le P(S_{i} < t_{k} + \Delta_{i,n}, \exists \in [1, n) | \chi_{n} \in l_{k}) .$$
 (3)

Further we shall need the following lemma.

Lemma 3. Suppose that r.v. ξ_1 has nonlattice distribution with $E\xi_1 > 0$ and $D\xi_1 < \infty$ and $c_n = O(1)$ when $a \to \infty$, $n = n(a) \to \infty$.

Then for any $\varepsilon > 0$ there exists an integer number q_1 such that for sufficiently large a and for r,x and y from bounded set

$$\max_{k \le m} P(S_i \le r, \exists i \in [q_i, n) | \chi_n \in I_k) < \varepsilon.$$
 (4)

Analogous statements of type (4) is proved in works [3,4]. The estimation (4) may be deduced from lemma 7 in [3] ([4]).

We continue the proof of lemma 2.

By of (4), from (3) we have

$$P(S_{i} < t_{k-1} + \Delta_{i,n}, \exists i \in [1,n] | \chi_{n} \in l_{k}) \le Q(n,k) \le \le P(S_{i} < t_{k} + \Delta_{i,n}, \exists i \in [1,q_{1}] | \chi_{n} \in l_{k}) + P(S_{i} < t_{k} + \Delta_{i,n}, \exists i \in [q_{1},n] | \chi_{n} \in l_{k})$$
(5)

Under the made assumptions with respect to boundaries $f_a(t)$ one finds that for any fixed i

$$\Delta_{i,n} \to i\theta$$
 for $a \to \infty$.

Then by virtue of estimation (4) for any $\varepsilon > 0$ and sufficiently large a we have

$$\max_{k \le m} P(S_i < t_k + \Delta_{i,n}, \exists i \in [q_1, n) | \chi_n \in l_k) \le \max_{k \le m} (S_i < t_k + \varepsilon, \exists i \in [q_1, n) | \chi_n \in l_k) \le \varepsilon,$$
 (6)

where $S'_i = S_i - i\theta$, $ES'_1 = \mu - \theta > 0$.

Now from (5) and (6) follows that

$$P(S_{i} < t_{k-1} + \Delta_{i,n}, \exists i \in [1, q_{1}) | \chi_{n} \in l_{k}) \le Q_{a}(n, k) \le$$

$$\le P(S_{i} < t_{k} + \Delta_{i,n}, \exists i \in [1, q_{1}) | \chi_{n} \in l_{k}) + \varepsilon$$

$$(7)$$

Since $c_n = O(1)$ when $a \to \infty$, then from lemma 7 of work [3] follows that for any k

$$\lim_{q \to \infty} P(S_i < t_{k-1} + \Delta_{i,n}, \exists i \in [1, q_1) | \chi_n \in l_k) = P(S_i' < t_{k-1}, \exists i \in [1, q_1))$$
(8)

and

$$\lim_{n \to \infty} P(S_i < t_k + \Delta_{i,n}, \exists \in [1, q_1) | \chi_n \in I_k) = P(S_i' < t_k, \exists i \in [1, q_1)).$$
(9)

Now from (7), (8) and (9) we have

$$P(S_i' < t_{k-1}, \exists i \in [1, q_1]) - \varepsilon \le Q_a(n, k) \le P(S_i' < t_k, \exists i \in [1, q_1]) + 2\varepsilon. \tag{10}$$

Further from strong law of large numbers follows that for any $\varepsilon > 0$ there exists a number q_2 , such that $P(S_1' \le r, \exists i > q_2) < \varepsilon$ for all r from bounded set

$$P(S_i' \le r, \exists i \in [1, q_2]) < P(T \le r) \le P(S_i' \le r, \exists i \in [1, q_2]) < +\varepsilon.$$

$$\tag{11}$$

Instead of q_1 and q_2 , assuming $q = \max(q_1, q_2)$, from (10) and (11) we'll get that

$$P(T < t_{k-1}) - 2\varepsilon \le Q_a(n,k) \le P(T < t_k) + 2\varepsilon. \tag{12}$$

Substituting (12) in (2) we'll find that

$$\sum_{k=1}^{m} (P(T < t_{k-1}) - 2\varepsilon) P(\chi_n \in l_k) \le R_a(n, x, y) \le \sum_{k=1}^{m} (P(T < t_k) + 2\varepsilon) P(\chi_n \in l_k).$$
 (13)

At the made assumptions in the proved theorem there is Edgeworth expansion for density $f_n(x)$, $n \ge m$ of normalized sum S_n^* of the form ([5], p.602)

$$f_n(x) = \varphi(x) + \frac{1}{\sqrt{n}} P_3(x) \varphi(x) + o\left(\frac{1}{\sqrt{n}}\right), \tag{14}$$

when $n \to \infty$.

By the expansion (14) one finds that

$$P(\chi_n \in l_k) = P(S_n \in f_a(n) + l_k) = \frac{x - y}{m\sigma\sqrt{n}} \varphi(c_n) + \frac{x - y}{m\sigma n} P_3(c_n) \varphi(c_n) + o\left(\frac{1}{n}\right). \tag{15}$$

By virtue of that $c_n = O(1)$, from (13) and (15) we have

$$-2\varepsilon + \frac{\varphi(c_n)}{\sigma\sqrt{n}} \sum_{k=1}^{m} \frac{x-y}{m} P(T < t_{k-1}) + \frac{P_3(c_n)}{\sigma n} \sum_{k=1}^{m} \frac{x-y}{m} P(T < t_{k-1}) + o\left(\frac{1}{n}\right) \le R_a(n, x, y) \le$$

$$\le 2\varepsilon + \frac{\varphi(c_n)}{\sigma\sqrt{n}} \sum_{k=1}^{m} \frac{x-y}{m} P(T < t_k) + \frac{\varphi(c_n)P_3(c_n)}{\sigma\sqrt{n}} \sum_{k=1}^{m} \frac{x-y}{m} P(T < t_k) + o\left(\frac{1}{n}\right).$$
(16)

Choosing sufficiently large m and small ε , from (16) we have

$$R_a(n,x,y) = \frac{\varphi(c_n)}{\sigma\sqrt{n}} \int_{\mathcal{V}} P(T < z) dz + \frac{\varphi(c_n) P_3(c_n)}{\sigma\sqrt{n}} \sum_{k=1}^m \frac{x-y}{m} P(T < t_k) + o\left(\frac{1}{n}\right).$$

Tending $y \to -\infty$, from the last relation we find statement of lemma 2.

Proof of Theorem . We have

$$P(\tau_0 \le n) = P(S_n \le f_a(n)) + P(\tau_0 \le n, \ S_n \le f_a(n)),$$

$$P(S_n \le f_a(n)) = 1 - F_n(c_n)$$

and

$$R_a(n,0) = P(\tau_a \le n, \quad \chi_n \le 0) = P(\tau_a \le n, \quad S_n \le f_a(n)).$$

Consequently,

$$P(\tau_a \le n) = 1 - F_n(c_n) + R_a(n,0). \tag{17}$$

By assumptions with respect to distributions of random variable ξ_1 in the proved theorem there is a Edgeworth expansion for distribution $F_n(x)$ of normalized sum S_n^* of the form ([5], p.604)

$$F_n(x) = \Phi(x) + \varphi(x) \left[\frac{R_3(x)}{\sqrt{n}} + \frac{R_4(x)}{n} \right] + o\left(\frac{1}{n}\right)$$
 (18)

uniformly in $x \in R$.

From the lemma 2 when x = 0 follows that

$$R_{a}(n,0) = \frac{I(0)}{\sigma_{a}\sqrt{n}} \varphi(c_{n}) + \frac{I(0)}{\sigma_{n}} \varphi(c_{n}) P_{3}(c_{n}) + o(\frac{1}{n})$$
(19)

Substituting (18) and (19) in (17), we obtain the statement of Theorem.

Remark 3. Note that condition $c_n = O(1)$ when $n = n(a) \to \infty$, equivalent to that

$$\frac{f_a(n)}{n} - v = O\left(\sqrt[1]{\sqrt{n}}\right),$$

when $n(a) \rightarrow \infty$ (see condition II).

References

- [1]. Woodroof M., Keener R. Asymptotic expansions in boundary crossing problems. Ann. Probab., 1987, v.15, №1, p.102-114.
- [2]. Рагимов Ф.Г. Асимптотическое разложение распределения времени пересечения нелипейных границ. Теория вероятности и ее применения, 1992, т.37, с.580-583.
- [3]. Рагимов Ф.Г. Предельные теоремы для моментов первого выхода процессов с независимыми приращениями. Канд. Дис., Москва, 1985, 127 с.

- [4]. Woodroof M. Nonlinear renewal theory in sequential analysis. Philadelphia SIAM, 1982, 119 p.
- [5]. Феллер В. Введение в теорию вероятностей и ее приложения. М., Мир, 1984, т.2, 762 с.

Ragimov F.G., Asadov A.G.

Baku State University named after E.M. Rasulzadeh. 23, Z.I. Khalilov str., 370148, Baku, Azerbaijan.

Received September 14, 1999; Revised August 24, 2000. Translated by Mirzoyeva K.S.