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ASYMPTOTIC EXPANSION FOR THE DISTRIBUTION OF THE BOUNDARY
CROSSING TIMES

Abstract

The main result of this paper is three-term asymplotic expansion for distribution
of boundary crossing times.

Introduction. Let & ,n>1 be independent identically distributed random

Hn?

variables (r.v.), determined on some probability space (Q, F,P).
Let

Sy =0, S, =) &, nzl,
k=t

and

T, = inf{n >1:5, > £, ()}
denote the first time that a random walk S, n20 crosses a nonlinear boundary
fl),a>0,1>0.

In the theory of non-linear boundary problems for random walk more attention is
given to studying of asymptotic expansion for probability P(*::0 < n) when
a—>w(n=n(a)—>oo).

The similar problems are studied in works {1,2] under various suppositions on
boundaries £,{r} and distribution of r.v. &, .

In work [1] for boundaries f£,{f)=a?, 0< B <) first two-terms of asymptotic
expansion for distribution 7, are obtained.

The results of work [1] are generalized for sufficiently wide class of boundaries
£.(t) in work [2].

In this paper work the results of work [2] are precised and the third term of
asymplotic expansion of probability P(r, < ) is established.

2. Conditions and denotations.

We’ll assume that p, = E(&, — E&,) <o, v=E& >0 and the boundary £, ()
satisfies the following conditions:

I) Forany g the function £, (¢} is increasing and continuously differentiable at

t>0and f,(1)To,a> o,
Y If ¢ >0 and n=n(a)—>oo, so that

_J_%fl_) v and fﬂ(n)—)ﬂ € [O,v)

-fﬁj) —>1 issatisfied when =1, n—>o0.

£aln) n

Denote by H a set of boundaries £, () satisfying conditions 1), I}, and HT).
Give the following necessary denotations:

IiI} For every a
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oS- A ¢ 1—(}— o = DE,.

oVn
R, (n,x)= P(ra <n, y,<x),

T= ir;ll"(S - n8), I(x)= J]P(T < y)dy,
S, —nv

avn
_[e"””zdu , o(x)='{x), xeR.

|
Dix)=
® V2w _
The following polynomials connected with Ermit’s polynomials [S] are used in
further.

S = , gl)=Ee"™  teR.

g(x):ia.ﬁs(x), Hy(x)=x"-3x, py = E!§1 - v‘a,

Ry(x)=~ L2 1, (x) Hz(x)—x -1,

3
R()= 3L P b0 Py o),
here H,(x), H,(x) - Ermit polynomials.

Note that the general construction of polynomials #,{x), P,(x) and R,(x)
explicitly is explained in [5 p. 506-607].

3. Main result,
Theorem. Let enumerated above conditions with respect to distributions of r.v
&, and boundary 1,{t) be satisfied Moreaver, suppose that for some m21 the function

Jg’m is integrable and ¢, = O(1) when a-»o and n=n{a)—> . Thenat a -

Ple, <n)=®(=c,)+ o, {} Rif(i) At Rile, )]m(/n)
1)

&
Remark 1. By reason of constants we will note the following, Let's denotc
7" =max{(0,~T") negative part of T . It is easy to see that

70) = _{]P(T <y)dp=E(T").

It is known that a characteristic function of r.v. 7 is given by the following formula [5]

olr)= M = exm] S fle - 1)”’” }
= Mz, J

where A =

where
Z,=S,—nl, nz1, EZ,=v-0=§>0.

J( = —;w(ﬂ ZE(Z:—_-)

n=1

Then




Asympiotic expansion for the distributions 107

Consequently, for calculation of the constant /(0) we get the formula
w g7
nel B

Note that if & has a normal distribution with mean v >0 and variance 0<a?® <o ,then

Z,=8, -n@ also have normal distribution with mean »8 and variance no’. In this
case one finds that 4]

gl i)

4. Auxiliary facts.

The following lemmas are used in proof of Theorem.

Lemma 1. Let f,{t)e H and 0 < EE <co. Then in sense of convergence w.p. 1
when g —» 0!

lj 1, »x

y L) g
T{J’

3) fas,

e

where n, =n,{v) is the solution of the equation f,(n)=nv, which exists for sufficiently
large a [2].

The lemma is proved in [2]/

Lemma 2., Suppose that the conditions of theorem 1 are satisfied, Then

Ra(nax)zcr"tp(cn)l(X){*j: +f—fﬂ + 0(%)- (1)

Remark 2. Note that in work [2] for cases of nonlattice random variables first
form of expansion (1) was obtained.
The proof of lemma 2. Define

R, (n,x,y)z P(’ra Ln,x,€ (_‘y,xD.
Let’s divide an interval (y,x] into equal parts and put
=y, Ly +%(x —,V), 3 (f&-nf& ]e k= ]:_’" and O, (n,k): ‘P[Ta 5”}«‘5*&—)-

By the total probability formula we have

"

Ra(n,x,y)=§Qa (nk)P(x, €1,). (2)
By the definition of 7, we have )
0,(nk)=P(s, > 1,60 Fic L), <1,)=
=PS, -8, <8, - £,0), JelLn)y, el )=
=P(S,, ~-S,., <8, —f;,(n—i), ?]fe[l,n)ix” el )

where A | = fﬂ(n) - f;‘.(n —f), i=ln.
It is easy to understand that

P(S, <t +A,,3ie[Ln)y, €l,)<Q, (k)< P(S, <t, + A, 3clnlly, €) . (3
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Further we shall need the following lemma.
Lemma 3. Suppose that r.v. & has nonlaitice distribution with EE >0 and

DE <o and ¢, = O(1) when a >, n=n{a)—> o,

Then for any & >0 there exists an integer number q, such that for sufficiently
large a and for r,x and y from bounded set

T;.xP(S,. <r,3ielg.mlx, €l )<e. )
M

Analogous statements of type (4) is proved in works {3.4]. The estimation (4)
may be deduced from lemma 7 in [3] ([4]).

We continue the proof of lemma 2.

By of (4), from (3) we have

PIS, <t + ;A,-_,,,Eie[l,n)bgn el,,)s Qln, k)<

< P(S, <t + A, Elie[l,ql)|;{n elk)+ P(S,- <l +A, Jie [q,,n)];gn EI,‘)
Under the made assumptions with respect to boundaries f, (¢} one finds that for any
fixed i

(5)

A —i8 for ga-»>c,

Then by virtue of estimation (4) for any & >0 and sufficiently large a we have
maxP(Si <t +A,,,die [q,,n)l;(n € Ik)g Tgax(S,- <t, +eg,dic [q,,n) |x,, € Ik)SE , (6)

ksm
where 5/ =S, -8, ES|=pu—-0>0.
Now from (5) and (6) follows that
P(S: < rk—i + Ai,nvai € [1!' ql )Ixn € JL' )g Qa (?‘!,k) =

EP(S,-Q,( +A,,H,Elie[l,q])]xnefk)+s o
Since ¢, = O{1) when a — » , then from lemma 7 of work [3] foliows that for any
lim P(S, <t + A, die[lg Ny, €4 )=P(S! <1, i c]l.g,) (8)
and
lim P(S, <t, +A,,, 3e[La)lx, €)= £(S <t.3ie[iq)). 9)
Now from {7), (8) and (9} we have
P(S <t dieflgl))-e <@ (mi)< P(S <1, Bietq )+ 2¢ . (10)

Further from strong taw of large numbers follows that for any &3>0 there exists a
number g,, such that P(S' <r, 3i>¢,)<e forall r from bounded set
P(S <r, Jiefl,g, )< P(T <r)sP(S/<r, 3ic(lLq,))<+e. (11)
[nstead of g, and g¢,, assuming g = max{q,,q,), from (10) and (11) we’ll get
that
PT <t )-2e<Q,(n k)< P(T <1,)+ 2¢. (12)
Substituting (12) in (2) we’ll find that

Ht

é(P(T<‘&-1)*25)P(Zn €L )< R (nxy)s Z(P(T<t,()+ 2e)P(x,€l,). (13)

k=I
At the made assumptions in the proved theorem there is Edgeworth expansion for

density f,(x), n2m of normalized sum S of the form ([5], p.602)

£,9=0(s)+ - R+ of /-], a9
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when 7n— o0,
By the expansion (14} one finds that
P L )=PS n)+1, )= c, +2=2p ¢, Jole, Jelc, +o(y. (15
(<)~ (6, € 1,0+ 1) =2l )+ Z2 e, e Jole )+ o) 19)
By virtue of that ¢, = O(]), from (13) and (15) we have

I

ole,) & x~y Ple,)&x—y
_2£+;‘“\/§*£TP(T (fk_1)+"—g“c;;;—§TP(T<fk_l)+ O%)g Ra(n9xsy)£

(16)

<2s +MEMP(T<I,‘)+ cp(c,,)fg(c,,)ix;yp(r<tk)+ o%).

O‘J?; k=l M O"J;

Choosing sufficiently large m and small £, from (16) we have
ole,) ol )Ale, )& x -y (y
R inx,v)= Le T P{T < + PiT <t )+o .
xy) ovn ’g 7 <2kt on E n <) ”)

Tending y — —w, from the last relation we find statement of lemma 2.

Proof of Theorem . We have
Plry<n)=P(S, < f,(n)+ Pz, <n, S, < £, (n) ,
P(S, < fuln))=1-F,c,)
and
R,(n0)=Plr, <n, x,<0)=Plr,sn, S,<f(n).
Consequently,
Plr, <n)=1-F,(c,)+ R, (n0). (17)

By assumptions with respect to distributions of random variable &, in the proved
theorem there is a Edgeworth expansion for distribution F,(x} of normalized sum S, of
the form ([ 51, p.604)

F (x)=@(x)+ cp(x{ Rj/%") + Rf‘)} + o%) (18)

uniformly in xe R .
From the lemma 2 when x =0 follows that
R,0:0) - o, )+ 10 Jp1(c,)+ o/ ) (19)
on on "
Substituting (18) and (19) in {17), we obtain the statement of Theorem.
Remark 3. Note that condition ¢, =0{1) when n=nla)>w, a—>w,

equivalent to that
. (") [ 1 ]
PUANL NNy ;
n /\/;

when n(a) - o (sce condition [1).
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