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OPTIMAL DESIGN OF PLASTIC DISKS
IN THE PLANE STRESS CONDITION

Abstract

In the paper there is a solution of the problem on optimal from the point of view
of weight, the law of distribution of thickness in the uniform rotating circle disk, when
the disk is in the plastic stress condition. The necessary conditions of optimality are used
in the form of the maximum principle. The initial variation problem is reduced to the
non-linear boundary-value problems of the special form. In the case of piece-wise linear
surfuce of the different regimes of yield and possible optimal conditions are discussed.

1. The uniform rotating circle ring disk of variable thickness is considered. It is
supposed that the stress state of the disk has the radial symmetry and corresponds to the
plane stress.

Then behavior of the disk is described by the equations [3]
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where o, , 0, are normal stresses, v is Poisson’s coefficient, w is the angular velocity
of rotation, h(r) is thickness, p is density of the material.
As the criterion of optimality we take the minimum of weight

wh)= bjzn - ghlrir )

where a = inner radius of the disk, » = external radius. We take the boundary-
conditions

o,=0 for r=a and r=5b, 3)
Assume the material of the disk is subjected to the yield of the form
Flo,,04)<0l, (4)

where o, is a yield point under simple tension.
The restriction exists for the variable thickness of the disk:

h(r)= Ay . )
As the control function we take #(r}. Let’s complete Hamilton’s function:
A ,
H = 2nph(r)i, - —-‘{a, L g, ~0,)+ gw 2M(r)] +
h dr r E )
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Since the optimal trajectory is on the bound of the area of restrictions (4), then in the

considered case namely the “restricted” maximum principle holds [1-2]. So the adjoined

equations are written in the form
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As the phase velocity of the moving along trajectory of the point at every
moment of time is tangential to the bound, so
Plo,,o4,hh,r}=0. (8)

Solving (8) with respect to h(r) we obtain

h(r) = h, exp-{fglj[o', :ﬁ'e ;:a, - :;:U + pmzr]dr} , ©)
Fe [F'E » P'p ]., .
where F, ,F, are partial derivatives by o,,0, correspondingly.
Substituting (9) in (1) we have
(doy ]+v(‘5r “U'e)FnU

ar  r F, +vF,,
(10)
dog l+v(0'r—Ue)Fa, '

d 5 F, avF,

The joined equations (7) taking into account the accepted denotations are written
in the form

( i .
ar A iSO Ay + VA {Fﬂr_‘coa d(Fa )}

oy + —
dr r F, +vF, r dr
S amn
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The obtained results are applied to the general yield surface F.
Let
F=o! - 0,0, +o} (12)

Then
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Substituting (13) in (10) and (11), we obtain

_Cf'__ fs )_ (0‘,. "%)(Cfr ‘205)(1 +V)
dre’ " 2o, —og 1 - 2v)]
(14}
i(cr )= (0, —04 Mo, 20, M1 +v)
dar " r2-vle, o, (i -2v)]
The boundary conditions for the joined system have the form:
j'2(‘rlr:a =0 ’12 (r1r=b =0
diy _J—hy 34, +vA Mo, ~0,) (2 -v)

dr ) ¥ r[c,(Z—v)—ch(l—Zv}]z (15)
A, A4 3 +vi Mo, —oy)
dr 2 o 2-v)-0, (-2
Thus, we have two systems of differential equations (14), (15) and the system of
four boundary conditions which with Gamilton’s maximum condition give the necessary .
conditions to the solution of the formulated problem.
For Tresk’s yield condition _
Flo,,04)=max(o,|.Josl.lo, -0))=0,. (16)

In this case £, ,F, are constant, so

di- v d{ |
E(}'a,)"‘ dr(Fcrg)"‘O’ (17)

Then from (11} and (17) we obtain
@+ v\F,, + Fo k- MF, +1,F, )

d
—\-AF +A,F )= s
ar ( R ) ’(Fa, + vF, )
whence
r- MF,, +12F},’F:cr“, (18)
F, +F,
where a = (1 +v)—2— 2
F,, +vF, .
Substitution of (9) and (18) in (6) gives
L 0._,. ‘_0'9 a~l .
H =-2rph{r)+ c(l + v)—__mF,,r F r s:gn[—— ME, + A F ] (19 .

I’s required to determine the optimal controls A" (r)2 k, which maximizes (19).
The possible plastic regimes of the work are the followings
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2) o,=0,; 050, <0, (21)
3) o,=0,=0y. (22}
Let’s consider the points along AF (fig.1)

oy =0y; 0%0,50,;

23

£ =15 F, =0, (23)

Using (23) from (10} we obtain
do, l+voy,-o0,
dr v ro
Sy

o,=o,—kr ¥ (24)

where k, - integration constant.
Optimal control is determined by substitution (23) and (24) in (9)
, r f dr f rdr
h = hy exp [ln ;} —~0, _[ o T pw’ _[———«Y (25)
ar(co—klr v ] a[o'u—k,r v ]
Restrictions for h(r) are satisfied by selection of /4, . Let’s consider the points along EF
(fig.1)
A F
B E T
>
C D
Fig.1

o,=0;; 020, €0,
F,o=1, F, =0.

¥

Substitution of (26) in (10) gives

(26)
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da o, -

i - 1 a g
— ( +v)———--. s @
Cg =Gy »kzr‘u“’) .

where &, - positive integration constant. Optimal control is determined by substitution
(26) and (27) in (9)

» kZ ~{1+v} ~{l+v)} pc'-’z 2 2 .
=k —_2 - - [r - . 28
h(r) nexp{(l_'_v: - [r a ] 20, (r a )JL (28
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