2000

KHANKISHIYEV Z.F., ISKENDEROVA S.S.

THE INVESTIGATION OF STABILITY OF A DIFFERENCE PROBLEM FOR A SYSTEM OF DIFFERENTIAL EQUATIONS OF SIMULTANEOUS PROPAGATION OF SOUND AND HEAT

Abstract

Application of a finite difference method to the solution of mixed problems for system of differential equations describing sound and heat propagation in gas is considered in the paper. The stability of a difference problem approximating the initial value problem to within $O(h+\tau)$ is proved by energetic inequalities method.

It is known that sound propagation in gas with heatconductivity σ , isothermic velocity of sound C and adiabatic constant $\gamma > 1$ is described by a system of differential equations [1]

$$\frac{\partial u}{\partial t} = c \frac{\partial w}{\partial x} - c(\gamma - 1) \frac{\partial e}{\partial x},$$

$$\frac{\partial w}{\partial t} = c \frac{\partial u}{\partial x},$$

$$\frac{\partial e}{\partial t} = \sigma \frac{\partial^2 e}{\partial x^2} - c \frac{\partial u}{\partial x}.$$
(1)

Here u = u(x,t) is sound propagation in gas, w = w(x,t) and e = e(x,t) are perturbations of volume and inner energy of gas.

In the paper we'll consider the following mixed problem for the system (1): we are to find the functions u = u(x,t), w = w(x,t) and e = e(x,t), $0 \le x \le l$,

 $0 \le t \le T$, satisfying for 0 < x < l, $0 < t \le T$ the system (1) and additional conditions

$$u(x,o) = u_0(x), w(x,0) = w_0(x), e(x,0) = e_0(x), 0 \le x \le l,$$
 (2)

$$u(0,t) = \mu_1(t), \ w(l,t) = \mu_2(t), \ e(0,t) = \nu_1(t), \ e(l,t) = \nu_2(t), \ 0 \le t \le T.$$
 (3)

§1. Difference problem.

a closed domain $\overline{D} = \{0 \le x \le l, 0 \le t \le T\}$ we define a $\operatorname{domain} \quad \overline{\omega}_{h\tau} = \overline{\omega}_h \times \overline{\omega}_{\tau}, \quad \text{where} \quad \overline{\omega}_h = \left\{ x_j = jh, \ j = 0, 1, \dots, N, \ h = \frac{l}{N}, x_0 = 0, \ x_N = l \right\},$

 $\overline{\omega}_{\tau} = \left\{ t_n = n\tau, \ n = 0, 1, ..., M, \quad \tau = \frac{T}{M}, t_0 = 0, t_M = T \right\}.$ The value of a grid function

y = y(x,t) in the node (x_1,t_n) of the grid $\overline{\omega}_{hx}$ is denoted by $y_i^n : y_i^n = y(x_1,t_n)$.

Associate the problem (1)-(3) with the following difference problem:

$$\frac{u_{j}^{n+1}-u_{j}^{n}}{\tau}=c\frac{w_{j}^{n}-w_{j-1}^{n}}{h}-c(\gamma-1)\frac{e_{j}^{n}-e_{j-1}^{n}}{h}, j=1,2,...,N,$$

$$\frac{w_{j}^{n+1}-w_{j}^{n}}{\tau}=c\frac{u_{j+1}^{n+1}-u_{j}^{n+1}}{h}, j=0,1,...,N-1,$$

$$\frac{e_j^{n+1} - e_j^n}{\tau} = \frac{\sigma}{2} \left(\frac{e_{j-1}^{n+1} - 2e_j^{n+1} + e_{j+1}^{n+1}}{h^2} + \frac{e_{j-1}^n - 2e_j^n + e_{j+1}^n}{h^2} \right) - \tag{4}$$

$$-c\frac{u_{j+1}^{n+1}-u_{j}^{n+1}}{h}$$
, $j=1,2,...,N-1,n=0,1,...,M-1$

$$u_j^0 = u_0(x_j), w_j^0 = w_0(x_j), e_j^0 = e_0(x_j), j = 0,1,...,N,$$
 (5)

$$u_0^n = \mu_1(t_n), w_N^n = \mu_2(t_n), e_0^n = v_1(t_n), e_N^n = v_2(t_n), n = 0,1,...,M$$
 (6)

We are to note that this difference problem involving partial derivatives of functions u(x,t), w(x,t) and e(x,t) up to needed orders in variables x and t, approximates the initial value problem (1)-(3) to within $O(h+\tau)$.

We can easily verify that the difference problem (4)-(6) admits under known u_i^n, w_i^n and $e_i^n, j = 0,1,...,N$ to find u_i^{n+1}, w_i^{n+1} and $e_i^{n+1}, j = 0,1,...,N$.

Let $\alpha = \frac{c\tau}{h}$, $\beta = \frac{\sigma\tau}{2h^2}$. Further we shall use the following denotations adopted in

[1] and [2]

$$\Delta_{+}y_{j}^{n} = y_{j+1}^{n} - y_{j}^{n}, \quad \Delta_{-}y_{j}^{n} = y_{j}^{n} - y_{j+1}^{n}, \quad \Delta_{-}\Delta_{+}y_{j}^{n} = y_{j+1}^{n} - 2y_{j}^{n} + y_{j+1}^{n},$$

$$(y^{n}, z^{n}) = \sum_{j=1}^{N-1} y_{j}^{n} z_{j}^{n} h, \quad (y^{n}, z^{n}) = \sum_{j=1}^{N} y_{j}^{n} z_{j}^{n} h, \quad [y^{n}, z^{n}) = \sum_{j=0}^{N-1} y_{j}^{n} z_{j}^{n} h,$$

$$[y^{n}, z^{n}] = \sum_{j=0}^{N} y_{j}^{n} z_{j}^{n} h, \quad ||y^{n}|| = \sqrt{(y^{n}, y^{n})}, \quad ||y^{n}|| = \sqrt{(y^{n}, y^{n})},$$

$$||y^{n}|| = \sqrt{[y^{n}, y^{n})}, \quad ||y^{n}|| = \sqrt{[y^{n}, y^{n}]}.$$

Using these denotations we rewrite the difference equations (4) in the following way:

$$\begin{cases} u_{j}^{n+1} - u_{j}^{n} = \alpha \Delta_{-} w_{j}^{n} - \alpha (\gamma - 1) \Delta_{-} e_{j}^{n}, \ j = 1, 2, ..., N, \\ w_{j}^{n+1} - w_{j}^{n} = \alpha \Delta_{+} u_{j}^{n+1}, \ j = 0, 1, ..., N - 1, \\ e_{j}^{n+1} - e_{j}^{n} = \beta \Delta_{-} \Delta_{+} \left(e_{j}^{n+1} + e_{j}^{n} \right) - \alpha \Delta_{+} u_{j}^{n+1}, \\ j = 1, 2, ..., N - 1, \ n = 0, 1, ..., M - 1. \end{cases}$$

$$(7)$$

§2. The investigation of stability of a difference problem.

Consider the difference equations (7) with homogeneous boundary conditions

$$u_0^n = 0, w_N^n = 0, e_0^n = 0, e_N^n = 0, n = 0, 1, ..., M,$$
 (8)

and initial conditions (5). We shall study the stability of the difference problem (7), (8), (5) by energetic inequalities method.

Multiply both sides of difference equations in (7) by $(u_j^{n+1} + u_j^n)h$, $(w_j^{n+1} + w_j^n)h$, $(e_j^{n+1} + e_j^n)h$ respectively, and sum the obtained equalities in all j:

$$\|u^{n+1}\|^2 - \|u^n\|^2 = \alpha \sum_{j=1}^N \Delta_- w_j^n (u_j^{n+1} + u_j^n) h - \alpha (\gamma - 1) \sum_{j=1}^N \Delta_- e_j^n (u_j^{n+1} + u_j^n) h,$$

$$\|[w^{n+1}]\|^{2} - \|[w^{n}]\|^{2} = \alpha \sum_{j=0}^{N-1} \Delta_{+} u_{j}^{n+1} (w_{j}^{n+1} + w_{j}^{n}) h,$$

$$\|e^{n+1}\|^{2} - \|e^{n}\|^{2} = \beta \sum_{j=1}^{N-1} \Delta_{-} \Delta_{+} (e_{j}^{n+1} + e_{j}^{n}) (e_{j}^{n+1} + e_{j}^{n}) h - \alpha \sum_{j=1}^{N-1} \Delta_{+} u_{j}^{n+1} (e_{j}^{n+1} + e_{j}^{n}) h.$$

By virtue of boundary conditions of (8) after some transformations we get:

$$\begin{split} &\sum_{j=0}^{N-1} \Delta_{+} u_{j}^{n+1} \Big(w_{j}^{n+1} + w_{j}^{n} \Big) h = - \Big(u^{n+1}, \Delta_{-} \Big(w^{n+1} + w^{n} \Big) \Big], \\ &\sum_{j=1}^{N-1} \Delta_{+} u_{j}^{n+1} \Big(e_{j}^{n+1} + e_{j}^{n} \Big) h = - \Big(u^{n+1}, \Delta_{-} \Big(e^{n+1} + e^{n} \Big) \Big], \\ &\sum_{j=1}^{N-1} \Delta_{-} \Delta_{+} \Big(e_{j}^{n+1} + e_{j}^{n} \Big) \Big(e_{j}^{n+1} + e_{j}^{n} \Big) h = - \Big\| \Delta_{+} \Big(e^{n+1} + e^{n} \Big) \Big\|^{2} - \Big(e_{1}^{n+1} + e_{1}^{n} \Big)^{2} h. \end{split}$$

With regard to these three equalities we can write the last three equalities in the form

$$\|u^{n+1}\|^{2} - \|u^{n}\|^{2} = \alpha (u^{n+1} + u^{n}, \Delta_{-}w^{n}) - \alpha (\gamma - 1)(u^{n+1} + u^{n}, \Delta_{-}e^{n}),$$

$$\|[w^{n+1}\|^{2} - |[w^{n}\|^{2} = -\alpha (u^{n+1}, \Delta_{-}(w^{n+1} + w^{n})],$$

$$\|[e^{n+1}\|^{2} - \|e^{n}\|^{2} = -\beta \|\Delta_{+}(e^{n+1} + e^{n})\|^{2} - \beta (e^{n+1} + e^{n})^{2} h + \alpha (u^{n+1}, \Delta_{-}(e^{n+1} + e^{n})).$$

The validity of the following equality follows from these three equalities

$$S_{n+1} - S_n = -\beta \left(\gamma - 1 \right) \left[\left\| \Delta_+ \left(e^{n+1} + e^n \right) \right\|^2 + \left(e_1^{n+1} + e_1^n \right)^2 h \right], \tag{9}$$

where

$$S_n = \left| \left[u^n \right] \right|^2 + \left| \left[w^n \right] \right|^2 + (\gamma - 1) \left[e^n \right] \right|^2 + \alpha \left(u^n, \Delta_- \left(w^n - (\gamma - 1) e^n \right) \right]. \tag{10}$$

From (9) by virtue of inequalities $\beta > 0$, $\gamma > 1$ we have

$$S_{n+1} \le S_n, \ n = 0,1,...,M-1.$$
 (11)

Now prove that by fulfilling some conditions S_n determines the norm.

Let's consider $[u^n, \Delta_w^n]$:

$$\left| \left(u^{n}, \Delta_{-} w^{n} \right) \leq \left| u^{n} \right| \right| \cdot \left| \Delta_{-} w^{n} \right| \leq \left| u^{n} \right| \times \sqrt{\sum_{j=1}^{N} \left(\Delta_{-} w_{j}^{n} \right)^{2} h} \leq \left| \left[u^{n} \right] \right| \sqrt{4 \sum_{j=0}^{N} \left(w_{j}^{n} \right)^{2} h} \leq 2 \left| \left[u^{n} \right] \right| \left| \left[w^{n} \right] \right|^{2} + \left| \left[w^{n} \right] \right|^{2}.$$

$$(12)$$

In a similar way we have

$$|u^n, \Delta_{-}e^n| \le |u^n| \cdot |\Delta_{-}e^n| \le |u^n|^2 + |e^n|^2.$$
 (13)

With regard to the last two equalities for S_n we have:

$$S_n \ge (1 - \alpha \gamma) [u^n]^2 + (1 - \alpha) [w^n]^2 + (\gamma - 1)(1 - \alpha) [e^n]^2.$$
 (14)

Hence, by virtue of $\gamma > 1$, it follows that if $1 - \alpha \gamma > 0$ or the same $\tau < h/c\gamma$, then $S_n \ge 0$.

So, if it the condition

$$\tau < \frac{h}{c\gamma} \tag{15}$$

is fulfilled. Then S_n determines the norm. On the other hand by virtue of the inequality (11) we have:

$$S_n \le S_0, \quad n = 1, 2, ..., M$$
 (16)

Estimate S_0 from above. With regard to inequalities (12) and (13) we have:

$$S_{0} \leq (1 + \alpha \gamma) |[u^{0}]|^{2} + (1 + \alpha) |[w^{0}]|^{2} + (\gamma - 1)(1 + \alpha) |[e^{0}]|^{2} \leq$$

$$\leq K (|[u^{0}]|^{2} + |[w^{0}]|^{2} + |[e^{0}]|^{2}),$$
(17)

where

$$K = \max\{1 + \alpha \gamma, (\gamma - 1)(1 + \alpha)\}. \tag{18}$$

Thus, by virtue of inequalities (16) and (17) the next theorem is valid

Theorem 1. For solving a difference problem (7), (8), (5) by fulfilling the condition (15) the estimation

$$S_n \le K([u_0])^2 + [[w_0]]^2 + [[e_0]]^2, \quad n = 1, 2, ..., M,$$

is valid. Where S_n and K are respectively determined by equalities (10) and (18).

Let $0 < \varepsilon < 1$ be an arbitrary number. Instead of the condition (15) we require the fulfillment of the condition

$$\tau \le \frac{h(1-\varepsilon)}{c\gamma} \tag{19}$$

By fulfilling this inequality we have

$$1-\alpha\gamma \geq \varepsilon$$
, $1-\alpha \geq \frac{\varepsilon}{\gamma}$.

With regard to these inequalities, by virtue of the inequality (14) we get:

$$S_n \ge \varepsilon \cdot L(\left| [u^n] \right|^2 + \left| [w^n] \right|^2 + \left| [e^n] \right|^2),$$

where

$$L = \min\left(\frac{1}{\gamma}, \frac{\gamma - 1}{\gamma}\right). \tag{20}$$

Hence and from the inequalities (16) and (17) validity of the inequality

$$|[u^n]|^2 + |[w^n]|^2 + |[e^n]|^2 \le \frac{K}{\epsilon I} (|[u_0]|^2 + |[w_0]|^2 + |[e_0]|^2). \tag{21}$$

follows.

Theorem 2. By fulfilling condition (19) the difference problem (7), (8), (5) is stable and for its solution the estimation (21) is valid, where $0 < \varepsilon < 1$ is an arbitrary number, K and L are positive constants that are defined by the equalities (18) and (20).

References

- [1]. Рихтмайер Р., Мортон К. Разностные методы решения краевых задач. М., «Мир», 1972, 420 с.
- [2]. Самарский А.А. Введение в теорию разностных схем. М., «Наука», 1971, 552 с.

Khankishiyev Z.F., Iskenderova S.S.

Baku State University named after E.M. Rasulzadeh. 23, Z.I.Khalilov str., 370148, Baku, Azerbaijan. Tel.: 97-21-72 (apt.), 38-25-18 (off.).

Received May 16, 2000; Revised September 20, 2000. Translated by Aliyeva E.T.