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HARNACK’S INEQUALITY FOR THE SOLUTIONS OF
KOLMOGOROV’S EQUATION

Abstract

In the work the non-divergent equation by Kolmogorov whose coefficient
satisfies Cordes condition is considered. For the non-negative solutions of this equation
in parabolic cylinders by Harnack type inequality is proved.

In the present work it is considered the operator
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where (x, y,t)e R' and with respect to the coefficicnt a(x, y,t) the fulfillment of

measurabilily and ellipticity conditions
0<C, <afx, y,0)<C, 2)
is assumed.
The equation Lu ={ is called Kolmogorov’s equation.
The work is devoted to the proof of the inequality by Harnack for the non-
negative solution of Kolmogorov’s equation.
Let’s consider the equations by Cordes, i.e. such equations

Lu=0, (3}
for which the constants €, and C, of inequality (2) satisfy the condition
20,
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1°. Let’s denote by K} 37" cylinder determined by inequalities
h<I<ty, B <y<y,, [x—x|<R.
Let positive numbers S, 8 and R be given.
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and let 0 <b <4, . Let’s consider three cylin- G
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Denote by S, the unification of three bounds, i.e. 7y
S, =4CC, 4, JCDD,C, UBDD,B, . Fig. 1.
By definition of singular boundary of
domain S, < T'(K,} (see [2]).
Let’s determine a function of the following form
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where E « K, is B-setand the function
gS.ﬁ(xa‘g;y:C;t—‘E)?—'

_ (:—lr)““'exP{ (x-¢) 3 (y_;-(:—r)i‘%i]z} for t-1>0

| apt-1) Bl-ty
0 for t-7t<0 (excepti-t=0,x-E=0,y-¢=0)
is a fundamental solution of the equation Lu=0,when §=2 and S=1.
Let’s give without the proof the following inequalities from work [2]:

sgp U< (bR 2 )‘H exp[w ﬁ}u(ﬁf) . (4
. - 1
1}1{12fU = (sz) > cxp[-' 5—,3-%}:()5) . (5)

2°. At first we will proof auxiliary lemma being a simple corollary from iemma
of increase [2]. Let’s assume
b = min 1 J .
10C,

r?. 3
Lemma 1. Let in the cylinder K?;é” 0,264

the domain D inmtersecting the

L2 et et 3
—be BELBER 2hE .
cylinder K* : and having limiting points on parabolic boundary of the

3

cylinder K| :2‘52"0’255" be located. Denote by T that part of boundary D, which is located

. 3
strictly inside of cylinder K 2:‘:"’52‘”’2"’5 . Let in D a solution of the equation (3),

continuous in D , positive in D and reducing to zero on T is determined.
Then for any h>0 there exists § >0, dependent on h,C, and C, such that
[from the inequality

mesD < 8&° (6)
it follows
sup u
2 >h. (7)
sup u
Lhe? 4e? pet 3
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Proof. Let’s take S=C, and S :——92-. Then &, :—-l~—-, and by the condition
C, 10C,

b=min ! J |, L.e. the condition b < b, is satisfied.
10C,

Let n be a constant of lemma 3 [2]. Then 7 in this case depends only on C, and
C,. Let further m is such least natural number that
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(I+E} >h.
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Let’s assume
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into m parts by parabolic boundaries I, of cylinders.
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K¥ =k o F= 0, m—
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I', coincides with parabolic boundary K 2 . Let’s assume
3
M =maxu, i=01..m-1.

OO

Let M, be reached at a point (x" ¥t )E I, . Consider
i ol 22m (A —-‘;m\’
K!(f}=K‘ 2(2»:;‘ gy t \(1 -1 }2)-[ J ¥ 4| pn }{f -t }
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It is easy to show that K,(’) CK(HI}, i=01,..,m-1,

In the cylinder X% we wiil consider the cylinders
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1t is clear that
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mesKy = f g (®
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Let’s denote the set Dﬂ K( by D'. If now we will apply the lemma 3 [2] to the
cylinders K,(’ , Kg”‘, KJU and domain D', then we obtain that

mesk
sgpu > [1 + n—————MK }Ds:‘{p{ ) u. %
On the other side
SUpE = SUp U< SUp M=u ( oy “’)= M, . (10)
Dy voklt pngi!
Besides a point (x' Lt )e DN Kg"J , therefore
sup uzuly,y.r )= M, . (11)

prarty
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Then from (9), (10) and (11) we obtain that

mesk }M,- . (12)

. e s

mesk;
Now, taking into account now (8), we obtain

. 1 .
meskE = mes(Kg’} \ D’) > mes(K @ )— mesD > 5 mes (K §’)).
Thus from (12) we conclude
M, 2 [1 + EJM, .
2
If we will repeat all these operations when i = 0,1,...,m -1, then we will receive that
M, > (l + —g—] M,

50 by a maximum principle [2]
supu > h sup u.
o %bgz_sgz_a;-‘.n;-‘
£2
Lemma has been proved.
Let’s consider the following transformation

X =x+x,~0, ' =t+4~bn*, YV =y+ (xu —r}){t—bn2)+y0 —-2bn. (13)
It is easy to check that the operator (1) remains invariant at transformation (13). If we
apply transformation (13) to cylinders

) F 2 i ¥
0.65.0.26n" Shn".Antihnt 26
Km0 and K2, ,
rl'v'z_

then these cylinders will pass correspondingly to the following
K, = K;‘ﬁ: syt {ren Mt 1200 ot {m-m o) ’l
(iF]

(14)
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2
Then we can receive the statement similar to lemma | in cylinders (14).

Lemma 2. Let all conditions of lemma 1 be satisfied in cylinders (14).

Then for any /s >0 there exists § >0 dependent on A,C, and C, such that from

K, =K

the inequality mesD <8n° it follows the inequality

supu
> h. (15)
sup u
Now it is possible to formulate an inequality by Harnack for the non-negative
solution of the equation (3).

Theorem 1 (Harnack’s inequality). Let in cylinder K3 %" the non-

negative solution u(x, y,r) of the equation (3) be determined.
Then
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sup wlx,y,1) 1 inf ulx, y,8)< C;, (16)
Lae? Zotd Mo ot apt Mpa® 2p0?
Ko T e i 16
H‘?Iik Rk

where Cy >0 is u constant dependent on C, and C, .
Proof. It is clear that it is enough to prove the theorem for the case R=1. Let’s

designate for convenience
3, .30, 5, 1,217
— gU.80.28 B A T — k3232 716
K, =K}; , Kq—KIZI L Ks“Kl 3 .
) ‘1

Then the proved inequality (16) will be of the following form
supue’ii)fu‘cc.

Ky 2
The theorem will be proved, if from the assumption
supu=2 -
Ky
will foliow
i;{lf u>v,

where v> 0 is a constant dependent on C, and €.

Let’s assume
1, 15 17

T
K, = KL;; 1616
Let’s denote by G, the set of points (x, y,t)e K,, where u{x,y.f)>1. Let’s
assume in Lemma 2 #=2" and we wiil find corresponding & . Further assume
Ry
£€q :[Z@g 3. (7
Let’s consider two cases separately:
mes Gy 2 g
and
mes Gy < g;.
Case 1. mes G, 2 ¢,.
2C,

MR

1
S <3. Besides that G, < K{"*** < K}*>. Then by property of ($, B} -capacity
Ys.p (G])z CmesG > Cg, (see [2]).

Let u be admissible measure on G, such that

Let §= B =C,. The equation (3) is a Cordes type equation by, therefore

. 1,y C
;U((J] ) > E?’s.;‘; (G, )= ?m‘?SGI .
l.et’s assume

-8 1
Vi yt)= fgs 080,850 -7)duls ¢ )47 EXP[“@;}M(G})-
o
Then using from increase lemma and a maximum principle (see [2]) it is easy to obtain
that
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u‘xz z V‘K'z 2b exp‘:‘m:‘#( 7)-b exP‘:_ “S‘E"},U(G )

) 5,3pb L sppl)

Thus in case | for v we can take

Cegh™ exp| ~—— | —ex rm—z—-
2 P "53ps | P [ sph ()

Case 2. mes G| <gg.

Let’s assumc
r‘:
K(P} K:Z
: I
It is clear that K ):K3 and K\ K, .
Let’s assume '
G0 =6, N{x® 1\ k@),
by virtue of (17) we have

On the other side

mesGE)ZO(p"’) for p—0.

Then
mesG(])>0(p )}br p—0
;} _ kd

that is why for sufficiently smalt p >0
mes(r ( )66

Therefore there exists such p,, 0 < p, < é , that

mes Ggl] z(pf)ﬁ6 . (18)
Let’s find on parabolic boundary of the cylinder K{”'z) a point (xi,y',t’)e G, in which

u(x',yl,t] )2 2.
Let’s take the cylinder
K - Kf] —r‘}_{)[‘ a4 ! ;.1’1 -~2.‘l;.?;s +(.l'1 —.0;1 I.r—.- ! ],yl + {xi »pf IF—FJ )
U} Xl,piz !

It is easy to show that this cylinder is located in a gap between the cylinders K© and

K(Pl) ,
Let's assume

v,{x,.1)= ufx, y,1)-1.
We have \-'l(x',y',tl)zl and v {x,.6}>0 in G,,v,(x,»,t)<0 outside of G,. Let’s
denote by Dy that component of the set G, () K, which contains a point (x], y',t').
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Let’s apply to the cylinder K;; and to domain Dy in it lemma 2 that is possible by
virtue of (18):

supu >supv, 22-2°%,
D{\} J'_Jh}

Let’s denote by G, the set of points (x, y,r)r—; f3, where
u(x,y,t):> 2°.

Let's consider X'"*?, 0< ol <§12~—— o, . Let’s assume

G!{JZ) =G, n(K(P:+P}\K(Pl J')'

From the relation 0<p< 515“ p, follows that p, <p+p 4%, that is why
Kool e K,.Since p, <gl;{ and G, — G, then by virtue of (17)
- ] <3 &
mesG{f) <[(w] J &,
w 64
Again it will be
' rnest) > O(pé) for  p—0,
consequently,
mestf} 2 O{p'z) Jor  p—>0.
Then for sufficiently small positive p on those by the previous reasons
mes(}f} = (pl)éﬁ .
Therefore there exists such p, from an interval (0,—;—4} that
mesGE) = (pf)ﬁﬁ . (19)

" Let’s find on parabolic boundary K{""‘Pg] a point (xz,yz,zz), in which
u(xz,yz_.lz)> 2-2%. Let’s take the cylinder

Ko = Krz ~bp3 ,fz._s'l—zhp§’+(x3—p§ I:—le_v2+[:2 ~-p§Iv’—12]
2)7 Bt i )

since that this cylinder is located in gap between cylinders K and Ko,
Let’s assume

v, (%, 1) = ulx, v,1) -2,
thus vz(xz,yz,rz):»f and v(x,),1)>0 in G,, v(x.»,/}<0 outside of G,. Let's
designates by Iy, that component of the set G,{1Kp,), which contains a point
(x2, %),
Applying to the cylinder K(;) and domain Dy, in it lemma 2, we will find

supu >supv >2°.27 =2.27¢,
Diy Dyzy
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If pj+p,< 61_4 , then we will continue the process. Let’s denote by G, the set of points
(x, y,te 1?3 , where u > 2%%

Let’s consider K" 0<p< '61-.1_ p,~P,. This implies that

O+ 0 <p+ptp, <6—14, that is why Klevemto) cK,.

Let's assume
GE) = G3 N (K{P: + 3 +p) Y K{_PHP;))

and we will find such p; < é that

mes GE;) = (,012 )65 s

and on parabolic boundary K(p‘””-“”}) the point (x3,y3,t3) is contained, where
u(xa,y3,t3)>2-22'6. Then in gap between K#ea) and K+p2+0) wwe will find the
cylinder K5y and in it the domain J);y and so on.

We will continue this process until it becomes for the first time

[ol s N R "6% Further such moment will come: when the sum p, +..+ p, will

1 : . . . o .
exceed “ otherwise we could continue this process infinitely and as at each its step the

value # increases more than 2° times, the function would appear unbounded in f3 .

So, let
o < —
P + Py 64
and
1
ot >, 20
ol 24 64 20
For every number i,/ =1,2,...,4 there corresponds a set G{;{) — Ea satisfying the equality
mesG{), =(p? ' 5 Q1)
and
_~li-lj
u|oé‘}) =2 (22)

From (20) it follows that there exists such i, that
o
27
Otherwise
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1 1 B
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but it is impossible by virtuc of (20).
Then (21), (22) give us
6
; 1 O .
mesGie) = (2 f 5 >(2%+!6] § =2 ity 23)
o > 20875 24

Let u be an admissible measure determined on Gg‘_’} and such that
2 {io)

)

Piy

, 50 owing to property of (S, B)- capacity (see [2])

N C 1y
p(GL:u))>-é—mesG£in),
ie,
p(G(’“})>%2'6(’"”6]6. (25)

pl()

Let’s consider the function

Vi p0)=29%) foo (Ep -1 )du(E.g o)~

A}
(}Pf
u

R
-5 § axnl —~ ——— G{’u)) .
p{ SﬁbJ’u( |
In lower base of the cylinder X, outside of G fff“-} it is negative, on lateral

bounds, which are parabolic boundaries is negative owing to lemma 2 (see [2]). Outside
of set GE:;"]) in K, it does not exceed 21k g0 by a maximum principle it does not
exceed and everywhere in K, \ G ;:”}.

Applying the inequality (5)

-3 Y - ______I__ _ l-___l_,..
>27% s (exp[ 5,-3;3&} e SﬁbD-

The number staying in the right side of the last inequality we will take as v . It obviously
depends on C, and C,.
The theorem has been proved.
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