2000

HASANOV A.J.

HARNACK'S INEQUALITY FOR THE SOLUTIONS OF KOLMOGOROV'S EQUATION

Abstract

In the work the non-divergent equation by Kolmogorov whose coefficient satisfies Cordes condition is considered. For the non-negative solutions of this equation in parabolic cylinders by Harnack type inequality is proved.

In the present work it is considered the operator

$$L = a(x, y, t) \frac{\partial^2}{\partial x^2} - x \frac{\partial}{\partial y} - \frac{\partial}{\partial t}, \qquad (1)$$

where $(x, y, t) \in \mathbb{R}^3$ and with respect to the coefficient a(x, y, t) the fulfillment of measurability and ellipticity conditions

$$0 < C_1 \le a(x, y, t) \le C_2 \tag{2}$$

is assumed.

The equation Lu = 0 is called Kolmogorov's equation.

The work is devoted to the proof of the inequality by Harnack for the non-negative solution of Kolmogorov's equation.

Let's consider the equations by Cordes, i.e. such equations

$$Lu=0, (3)$$

for which the constants C_1 and C_2 of inequality (2) satisfy the condition

$$\frac{2C_2}{C_1} < 3.$$

1°. Let's denote by $K_{y_0,R}^{l_1,l_2,\gamma_1,\gamma_2}$ cylinder determined by inequalities

$$t_1 < t < t_2, \ y_1 < y < y_2, \ |x - x_0| < R.$$

Let positive numbers S, β and R be given.

Let's assume

$$b_0 = \frac{1}{5\beta S},$$

and let $0 < b \le b_0$. Let's consider three cylinders (fig.1):

$$K_1 = K_{R,R}^{0,bR^2;0,2bR^3}, \quad K_2 = K_{R,\frac{R}{16}}^{\frac{31}{32}bR^2,bR^2;\frac{31}{16}bR^3,2bR^3},$$

$$K_3 = K_{R,\frac{1}{16}R}^{0,\frac{2}{32}hR^2,\frac{15}{16}hR^3,\frac{17}{16}hR^3}.$$

Denote by S_1 the unification of three bounds, i.e. $S_1 = ACC_1A_1 \cup CDD_1C_1 \cup BDD_1B_1$.

By definition of singular boundary of domain $S_1 \subset \Gamma(K_1)$ (see [2]).

Let's determine a function of the following form

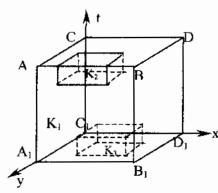


Fig. 1.

$$U(x, y, t) = \int_{E} g_{S,\beta}(x, \xi; y, \zeta; t - \tau) d\mu(\xi, \zeta, \tau),$$

where $E \subset K_3$ is B-set and the function

$$g_{S,\beta}(x,\xi;y,\zeta;t-\tau) = \begin{cases} \frac{1}{(t-\tau)^{S}} \exp\left[-\frac{(x-\xi)^{2}}{4\beta(t-\tau)} - \frac{3}{\beta(t-\tau)^{3}} \left(y-\zeta-(t-\tau)\frac{x+\xi}{2}\right)^{2}\right] & \text{for } t-\tau > 0 \\ 0 & \text{for } t-\tau \le 0 \quad (\text{except } t-\tau = 0, \ x-\xi = 0, \ y-\zeta = 0) \end{cases}$$

is a fundamental solution of the equation Lu = 0, when S = 2 and $\beta = 1$.

Let's give without the proof the following inequalities from work [2]:

$$\sup_{S_1} U \le \left(bR^2\right)^{-S} \exp\left[-\frac{1}{5\beta b}\right] \mu(E), \tag{4}$$

$$\inf_{K_2} U \ge \left(bR^2\right)^{-S} \exp\left[-\frac{1}{5.3\beta b}\right] \mu(E). \tag{5}$$

2°. At first we will proof auxiliary lemma being a simple corollary from lemma of increase [2]. Let's assume

$$b = \min\left(\frac{1}{10C_2}, 1\right).$$

Lemma 1. Let in the cylinder $K_{\xi,\xi}^{0,b\xi^2,0,2b\xi^3}$ the domain D intersecting the cylinder $K_{\xi,\xi}^{\frac{1}{2}b\xi^2,b\xi^2;b\xi^3,2b\xi^3}$ and having limiting points on parabolic boundary of the cylinder $K_{\xi,\xi}^{0,b\xi^2;0,2b\xi^3}$ be located. Denote by Γ that part of boundary D, which is located strictly inside of cylinder $K_{\xi,\xi}^{0,b\xi^2;0,2b\xi^3}$. Let in D a solution of the equation (3), continuous in \overline{D} , positive in D and reducing to zero on Γ is determined.

Then for any h>0 there exists $\delta>0$, dependent on h,C_1 and C_2 such that from the inequality

$$mesD < \delta \xi^6 \tag{6}$$

it follows

$$\frac{\sup_{\overline{D}} u}{\sup_{D \cap K_{\xi, \frac{1}{2}}^{\frac{1}{2}b\xi^2, b\xi^3, 2b\xi^3}} > h.$$
 (7)

Proof. Let's take $\beta = C_1$ and $S = \frac{2C_2}{C_1}$. Then $b_0 = \frac{1}{10C_2}$, and by the condition $b = \min\left(\frac{1}{10C_2}, 1\right)$, i.e. the condition $b \le b_0$ is satisfied.

Let η be a constant of lemma 3 [2]. Then η in this case depends only on C_1 and C_2 . Let further m is such least natural number that

$$\left(1+\frac{\eta}{2}\right)^m>h.$$

Let's assume

$$\delta = \frac{b^2}{4^9 m^6}.$$

Divide the difference

$$K^{0,b\xi^2;0,2b\xi^3}_{\xi,\xi}\setminus K^{\frac{1}{2}b\xi^2,b\xi^2,b\xi^3,2b\xi^3}_{\xi,\frac{\xi}{2}}$$

into m parts by parabolic boundaries Γ_i of cylinders.

$$K^{(i)} = K^{\frac{1}{2}b\xi^{2}\left(1-\frac{i}{m}\right),b\xi^{2};b\xi^{3}\left(1-\frac{i}{m}\right),2b\xi^{3}}_{\xi,\frac{\xi}{2}\left(1+\frac{i}{m}\right)}, \quad i = 0,1,...,m-1.$$

 Γ_0 coincides with parabolic boundary $K^{rac{1}{2}b\xi^2,b\xi^2;b\xi^3,2b\xi^3}_{\xi,\frac{5}{2}}$. Let's assume

$$M_i = \max_{D \cap \Gamma_i} u$$
, $i = 0,1,...,m-1$.

Let M_i be reached at a point $(x^i, y^i, t^i) \in \Gamma_i$. Consider

$$K_{1}^{(i)} = K_{x',\frac{\xi}{2m}}^{t'-h\left(\frac{\xi}{2m}\right)^{2},t':y'+\left(x'-\frac{\xi}{2m}\right)(t-t')-2h\left(\frac{\xi}{2m}\right)^{3},y'+\left(x'-\frac{\xi}{2m}\right)(t-t')}.$$

It is easy to show that $K_1^{(i)} \subset K^{(i+1)}$, i = 0,1,...,m-1.

In the cylinder $K_1^{(i)}$ we will consider the cylinders

$$K_{2}^{(i)} = K_{x^{i}, \frac{\xi}{32m}}^{t^{i} - \frac{b}{2} \left(\frac{\xi}{8m}\right)^{2}, t^{i}, y^{i} + \left(x^{i} - \frac{\xi}{2m}\right) \left(t - t^{i}\right) - \frac{b}{2} \left(\frac{\xi}{4m}\right)^{3}, y^{i} + \left(x^{i} - \frac{\xi}{2m}\right) \left(t - t^{i}\right)$$

and

$$K_3^{(t)} = K_{x^i,\frac{\xi}{32m}}^{t'-b\left(\frac{\xi}{2m}\right)^2,t'-15b\left(\frac{\xi}{8m}\right)^2;y'+\left(x'-\frac{\xi}{2m}\right)(t-t')-17\frac{h}{2}\left(\frac{\xi}{4m}\right)^3,y'+\left(x'-\frac{\xi}{2m}\right)(t-t')-15\frac{h}{2}\left(\frac{\xi}{4m}\right)^3}.$$

It is clear that

$$mesK_3^{(i)} = \frac{b^2 \xi^6}{2 \cdot 4^8 m^6}.$$
 (8)

Let's denote the set $D \cap K_1^{(i)}$ by D'. If now we will apply the lemma 3 [2] to the cylinders $K_1^{(i)}$, $K_2^{(i)}$, $K_3^{(i)}$ and domain D', then we obtain that

$$\sup_{D'} u \ge \left[1 + \eta \frac{mesE}{mesK_3^{\{i\}}}\right] \sup_{D' \cap K_2^{\{i\}}} u. \tag{9}$$

On the other side

$$\sup_{D'} u = \sup_{D' \cap K_1^{(i)}} u \le \sup_{D \cap K_2^{(i+1)}} u = u(x^{i+1}, y^{i+1}, t^{i+1}) = M_{i+1}.$$
 (10)

Besides a point $(x', y', t') \in D' \cap K_2^{(i)}$, therefore

$$\sup_{D' \cap K_2^{(i)}} u \ge u(x', y', t') = M_i. \tag{11}$$

Then from (9), (10) and (11) we obtain that

$$M_{i+1} \ge \left[1 + \eta \frac{mesE}{mesK_3^{(i)}}\right] M_i . \tag{12}$$

Now, taking into account now (8), we obtain

$$mesE = mes(K_3^{(i)} \setminus D') > mes(K_3^{(i)}) - mesD > \frac{1}{2} mes(K_3^{(i)}).$$

Thus from (12) we conclude

$$M_{i+1} \ge \left(1 + \frac{\eta}{2}\right)M_i$$
.

If we will repeat all these operations when i = 0,1,...,m-1, then we will receive that

$$M_m > \left(1 + \frac{\eta}{2}\right)^m M_0$$

so by a maximum principle [2]

$$\sup_{D} u > h \sup_{\substack{K^{\frac{1}{2}b\xi^{2},b\xi^{3},2b\xi^{3}}\\ \xi,\frac{\xi}{2}}} u.$$

Lemma has been proved.

Let's consider the following transformation

$$x' = x + x_0 - \eta, \ t' = t + t_0 - b\eta^2, \ y' = y + (x_0 - \eta)(t - b\eta^2) + y_0 - 2b\eta^3.$$
 (13)

It is easy to check that the operator (1) remains invariant at transformation (13). If we apply transformation (13) to cylinders

$$K_{\eta,\eta}^{0,b\eta^2,0,2b\eta^3}$$
 and $K_{\eta,\eta}^{\frac{1}{2}b\eta^2,b\eta^2;b\eta^3,2b\eta^3}$,

then these cylinders will pass correspondingly to the following

$$K_{1} = K_{x_{0},\eta}^{t_{0} - b\eta^{2}, I_{0}; y_{0} + (x_{0} - \eta)(t - t_{0}) - 2b\eta^{3}, y_{0} + (x_{0} - \eta)(t - t_{0})},$$

$$K_{2} = K_{x_{0}, \frac{\eta}{2}}^{t_{0} - \frac{1}{2}b\eta^{2}, I_{0}; y_{0} + (x_{0} - \eta)(t - t_{0}) - bR^{3}, y_{0} + (x_{0} - \eta)(t - t_{0})}.$$

$$(14)$$

Then we can receive the statement similar to lemma 1 in cylinders (14).

Lemma 2. Let all conditions of lemma 1 be satisfied in cylinders (14).

Then for any h>0 there exists $\delta>0$ dependent on h,C_1 and C_2 such that from the inequality $mesD<\delta\eta^6$ it follows the inequality

$$\frac{\sup u}{\sup_{D \cap K_{1}}} > h. \tag{15}$$

Now it is possible to formulate an inequality by Harnack for the non-negative solution of the equation (3).

Theorem 1 (Harnack's inequality). Let in cylinder $K_{R,R}^{0,bR^2;0,2bR^3}$ the nonnegative solution u(x,y,t) of the equation (3) be determined.

Then

$$\sup_{\substack{K \frac{1}{32}hR^2 \frac{2}{32}bR^2 \frac{12}{16}hR^3 \\ R, \frac{1}{32}R}} u(x, y, t) / \inf_{\substack{K \frac{31}{32}RR^2 \\ R, \frac{1}{32}R}} u(x, y, t) < C_3,$$
(16)

where $C_3 > 0$ is a constant dependent on C_1 and C_2 .

Proof. It is clear that it is enough to prove the theorem for the case R=1. Let's designate for convenience

$$K_1 = K_{1,1}^{0,b;0,2h} \; , \quad K_2 = K_{1,\frac{1}{32}}^{\frac{31}{32}b,b;\frac{31}{16}b,2h} \; , \quad K_3 = K_{1,\frac{1}{32}}^{\frac{1}{32}b;\frac{2}{32}b;b;\frac{17}{16}h} \; .$$

Then the proved inequality (16) will be of the following form

$$\sup_{K_3} u / \inf_{K_2} u < C.$$

The theorem will be proved, if from the assumption

$$\sup_{K_1} u = 2$$

will follow

$$\inf_{K_1} u > v,$$

where v > 0 is a constant dependent on C_1 and C_2 .

Let's assume

$$\widetilde{K}_3 = K_{1,\frac{1}{16}}^{0,\frac{1}{32}b;\frac{15}{16}b,\frac{17}{16}b}$$
.

Let's denote by G_1 the set of points $(x, y, t) \in \widetilde{K}_3$, where u(x, y, t) > 1. Let's assume in Lemma 2 $h = 2^7$ and we will find corresponding δ . Further assume

$$\varepsilon_0 = \left(\frac{1}{4096}\right)^6 \delta \ . \tag{17}$$

Let's consider two cases separately:

mes
$$G_1 \ge \varepsilon_0$$

and

mes
$$G_1 < \varepsilon_0$$
.

Case 1. mes $G_1 \ge \varepsilon_0$.

Let $S = \frac{2C_2}{C_1}$, $\beta = C_1$. The equation (3) is a Cordes type equation by, therefore

S < 3. Besides that $G_1 \subset K_{1,1}^{0,b;0,2b} \subset K_{1,1}^{0,l;0,2}$. Then by property of (S,β) -capacity $\gamma_{S,\beta}(G_1) \ge CmesG_1 \ge C\varepsilon_0$ (see [2]).

Let μ be admissible measure on G_1 such that

$$\mu(G_1) > \frac{1}{2} \gamma_{S,\beta}(G_1) > \frac{C}{2} \operatorname{mes} G_1.$$

Let's assume

$$V(x,y,t) = \int_{G_1} g_{S,\beta}(x,\xi;y,\zeta;t-\tau) d\mu(\xi,\zeta,\tau) - b^{-S} \exp\left[-\frac{1}{5\beta b}\right] \mu(G_1).$$

Then using from increase lemma and a maximum principle (see [2]) it is easy to obtain that

$$u|_{K_2} \ge v|_{K_2} \ge b^{-S} \exp\left[-\frac{1}{5,3\beta b}\right] \mu(G_1) - b^{-S} \exp\left[-\frac{1}{5\beta b}\right] \mu(G_1) >$$

$$\ge \frac{C\varepsilon_0 b^{-S}}{2} \left(\exp\left[-\frac{1}{5,3\beta b}\right] - \exp\left[-\frac{1}{5\beta b}\right]\right).$$

Thus in case 1 for v we can take

$$\frac{C\varepsilon_0 b^{-S}}{2} \left(\exp \left[-\frac{1}{5,3\beta b} \right] - \exp \left[-\frac{1}{5\beta b} \right] \right).$$

Case 2. mes $G_1 < \varepsilon_0$.

Let's assume

$$K^{(\rho)} = K_{1,\frac{1}{32}+\rho}^{\frac{b}{32}(1-\rho^2),\frac{2}{32}b;b(1-\rho^3),\frac{17}{16}b}$$

It is clear that $K^{(0)} = K_3$ and $K^{\left(\frac{1}{32}\right)} \subset \widetilde{K}_3$.

Let's assume

$$G_{\rho}^{(1)} = G_1 \cap \left(K^{(\rho)} \setminus K^{(0)}\right).$$

by virtue of (17) we have

$$mesG_{\frac{1}{64}}^{(1)} < \left(\left(\frac{1}{64}\right)^2\right)\delta$$
.

On the other side

$$mes G_{\rho}^{(1)} \ge O(\rho^6)$$
 for $\rho \to 0$.

Then

mes
$$G_{\rho}^{(1)} \ge O(\rho^{12})$$
 for $\rho \to 0$,

that is why for sufficiently small $\rho > 0$

$$mes G_{\rho}^{(i)} > (\rho^2)^6 \delta$$
.

Therefore there exists such ρ_1 , $0 < \rho_1 < \frac{1}{64}$, that

$$mes G_{\rho_1}^{(1)} = (\rho_1^2)^6 \delta$$
 (18)

Let's find on parabolic boundary of the cylinder $K^{(\rho_i^2)}$ a point $(x^1, y^1, t^1) \in G_1$, in which $u(x^1, y^1, t^1) \ge 2$.

Let's take the cylinder

$$K_{(1)} = K_{x^1, \rho_1^2}^{t^1 - b\rho_1^4, t^1; y^1 - 2b\rho_1^b + (x^1 - \rho_1^2)(t - t^1), y^1 + (x^1 - \rho_1^2)(t - t^1)}.$$

It is easy to show that this cylinder is located in a gap between the cylinders $K^{(0)}$ and $K^{(\rho_1)}$.

Let's assume

$$v_1(x, y, t) = u(x, y, t) - 1$$
.

We have $v_1(x^1, y^1, t^1) \ge 1$ and $v_1(x, y, t) > 0$ in G_1 , $v_1(x, y, t) \le 0$ outside of G_1 . Let's denote by $D_{(1)}$ that component of the set $G_1 \cap K_{(1)}$, which contains a point (x^1, y^1, t^1) .

Let's apply to the cylinder $K_{(1)}$ and to domain $D_{(1)}$ in it lemma 2 that is possible by virtue of (18):

$$\sup_{D_{(1)}} u > \sup_{D_{(1)}} \mathbf{v}_1 \ge 2 \cdot 2^6.$$

Let's denote by G_2 the set of points $(x, y, t) \in \widetilde{K}_3$, where

$$u(x,y,t)>2^6.$$

Let's consider $K^{(\rho_1+\rho)}$, $0 < \rho < \frac{1}{32} - \rho_1$. Let's assume $G_0^{(2)} = G_2 \cap (K^{(\rho_1+\rho)} \setminus K^{(\rho_1)})$.

From the relation $0 < \rho < \frac{1}{32} - \rho_1$ follows that $\rho_1 < \rho + \rho_1 < \frac{1}{32}$, that is why $K^{(\rho_1 + \rho)} \in \widetilde{K}_3$. Since $\rho_1 < \frac{1}{64}$ and $G_2 \subset G_1$, then by virtue of (17)

$$mesG_{\frac{1}{64}}^{(2)} < \left(\left(\frac{1}{64}\right)^2\right)^6 \delta.$$

Again it will be

$$mesG_{\rho}^{(2)} \ge O(\rho^6)$$
 for $\rho \to 0$,

consequently,

$$mesG_{\rho}^{(2)} \ge O(\rho^{12})$$
 for $\rho \to 0$.

Then for sufficiently small positive ρ on those by the previous reasons

$$mesG_{\rho}^{(2)} \geq (\rho^2)^6 \delta$$
.

Therefore there exists such ρ_2 from an interval $\left(0, \frac{1}{64}\right)$ that

$$mesG_{\rho_2}^{(2)} = (\rho_2^2)^6 \delta$$
 (19)

Let's find on parabolic boundary $K^{(\rho_1+\rho_1^2)}$ a point (x^2,y^2,t^2) , in which $u(x^2,y^2,t^2)>2\cdot 2^6$. Let's take the cylinder

$$K_{(2)} = K_{x^2, \rho_1^2}^{t^2 - b\rho_2^4, t^2, y^2 - 2b\rho_1^6 + (x^2 - \rho_2^2)(t - t^2), y^2 + (x^2 - \rho_2^2)(t - t^2)},$$

since that this cylinder is located in gap between cylinders $K^{(\rho_1)}$ and $K^{(\rho_1+\rho_2)}$. Let's assume

$$v_2(x, y, t) = u(x, y, t) - 2^6$$
,

thus $v_2(x^2, y^2, t^2) > 2^6$ and v(x, y, t) > 0 in G_2 , $v(x, y, t) \le 0$ outside of G_2 . Let's designates by $D_{(2)}$ that component of the set $G_2 \cap K_{(2)}$, which contains a point (x^2, y^2, t^2) .

Applying to the cylinder $K_{(2)}$ and domain $D_{(2)}$ in it lemma 2, we will find

$$\sup_{D_{(2)}} u > \sup_{D_{(2)}} v \ge 2^6 \cdot 2^7 = 2 \cdot 2^{2 \cdot 6}.$$

If $\rho_1 + \rho_2 < \frac{1}{64}$, then we will continue the process. Let's denote by G_3 the set of points $(x, y, t) \in \widetilde{K}_3$, where $u > 2^{2 \cdot 6}$.

Let's consider $K^{(\rho_1+\rho_2+\rho)}$, $0<\rho<\frac{1}{64}-\rho_1-\rho_2$. This implies that $\rho_1+\rho_2<\rho+\rho_1+\rho_2<\frac{1}{64}$, that is why $K^{(\rho_1+\rho_2+\rho)}\subset\widetilde{K}_3$.

Let's assume

$$G_{\rho}^{(3)} = G_3 \cap \left(K^{(\rho_1+\rho_2+\rho)} \setminus K^{(\rho_1+\rho_2)}\right)$$

and we will find such $\rho_3 < \frac{1}{64}$ that

$$mes G_{\rho_3}^{(3)} = (\rho_3^2)^6 \delta$$
,

and on parabolic boundary $K^{(\rho_1+\rho_2+\rho_3^2)}$ the point (x^3,y^3,t^3) is contained, where $u(x^3,y^3,t^3)>2\cdot 2^{26}$. Then in gap between $K^{(\rho_1+\rho_2)}$ and $K^{(\rho_1+\rho_2+\rho_3)}$ we will find the cylinder $K_{(3)}$ and in it the domain $D_{(3)}$ and so on.

We will continue this process until it becomes for the first time $\rho_1+\rho_2+...+\rho_k\geq \frac{1}{64}$. Further such moment will come: when the sum $\rho_1+...+\rho_k$ will exceed $\frac{1}{64}$ otherwise we could continue this process infinitely and as at each its step the value u increases more than 2^6 times, the function would appear unbounded in \widetilde{K}_3 .

So, let

$$\rho_1 + ... + \rho_{k-1} < \frac{1}{64}$$

and

$$\rho_1 + \dots + \rho_k \ge \frac{1}{64} \,. \tag{20}$$

For every number i, i = 1, 2, ..., k there corresponds a set $G_{(\rho_i)}^{(i)} \subset \widetilde{K}_3$ satisfying the equality

$$mesG_{(\rho_i)}^{(i)} = (\rho_i^2)^6 \delta \tag{21}$$

and

$$u|_{G_{(p_i)}^{(i)}} = 2^{(i-1)0}. (22)$$

From (20) it follows that there exists such i_0 , that

$$\rho_{i_0} > \frac{1}{2^{\frac{i_0}{2} \cdot 8}}.$$

Otherwise

$$\begin{split} \rho_1 + \rho_2 + \dots + \rho_k &\leq \frac{1}{2^{\frac{1}{2} + 8}} + \frac{1}{2^{\frac{2}{2} + 8}} + \dots + \frac{1}{2^{\frac{k}{2} + 8}} = \\ &= \frac{1}{2^8} \left(\frac{1}{2^{\frac{1}{2}}} + \frac{1}{2^{\frac{2}{2}}} + \dots + \frac{1}{2^{\frac{k}{2}}} \right) < \frac{1}{64}, \end{split}$$

but it is impossible by virtue of (20).

Then (21), (22) give us

$$mesG_{\rho_{i_0}}^{(i_o)} = \left(\rho_{i_0}^2\right)^6 \delta > \left(\frac{1}{2^{i_0+16}}\right)^6 \delta = 2^{-6(i_0+16)} \delta , \qquad (23)$$

$$u\Big|_{G_{\rho_{i_0}}^{(i_0)}} > 2^{(i_0-1)6}. \tag{24}$$

Let μ be an admissible measure determined on $G_{\rho_{i_0}}^{(i_0)}$ and such that $\mu\left(G_{\rho_{i_0}}^{(i_0)}\right) > \frac{\gamma_{S,\beta}\left(G_{\rho_{i_0}}^{(i_0)}\right)}{2}$, so owing to property of (S,β) - capacity (see [2])

$$\mu(G_{\rho_{i_0}}^{(t_0)}) > \frac{C}{2} mes G_{\rho_{i_0}}^{(t_0)},$$

i.e.

$$\mu\left(G_{\rho_{i_0}}^{(i_0)}\right) > \frac{C}{2} 2^{-6(i_p+16)} \delta$$
 (25)

Let's consider the function

$$v(x, y, t) = 2^{(i_0 - 1)\delta} \left[\int_{G_{\rho_{i_0}}^{(i_0)}} g_{S,\beta}(x, \xi; y, \zeta; t - \tau) d\mu(\xi, \zeta, \tau) - b^{-S} \exp\left[-\frac{1}{5\beta b} \right] \mu(G_{\rho_{i_0}}^{(i_0)}) \right].$$

In lower base of the cylinder K_1 outside of $\overline{G}_{\rho_{i_0}}^{(i_0)}$ it is negative, on lateral bounds, which are parabolic boundaries is negative owing to lemma 2 (see [2]). Outside of set $G_{\rho_{i_0}}^{(i_0)}$ in K_1 it does not exceed $2^{(i_0-1)6}$. So by a maximum principle it does not exceed and everywhere in $K_1 \setminus \overline{G}_{\rho_{i_0}}^{(i_0)}$.

Applying the inequality (5)

$$\inf_{K_{2}} u > \inf_{K_{2}} v \ge 2^{(i_{n}-1)6} b^{-S} \left(\exp \left[-\frac{1}{5,3\beta b} \right] - \exp \left[-\frac{1}{5\beta b} \right] \right) \mu \left(G_{\rho_{i_{0}}}^{(i_{0})} \right) >$$

$$> 2^{-103} C \delta b^{-S} \left(\exp \left[-\frac{1}{5,3\beta b} \right] - \exp \left[-\frac{1}{5\beta b} \right] \right).$$

The number staying in the right side of the last inequality we will take as v. It obviously depends on C_1 and C_2 .

The theorem has been proved.

References

- [1]. Ландис Е.М. Уравнения второго порядка эллиптического и параболического типов. Москва, 1971, с.287.
- [2]. Гасанов А.Д. Качественные свойства решений уравнения Колмогорова. Материалы XI Республиканской Конференции молодых ученых по математике и механике, Баку, 1994. с.65-68.
- [3]. Купцов Л.П. Теорема о среднем и принцип максимума для уравнения А.Н.Колмогорова. Матем. заметки, 1974, 15, №3, с.479-489.

Hasanov A.J.

Institute of Mathematics & Mechanics of Azerbaijan AS.

9, F. Agayev str., 370141, Baku, Azerbaijan.

Tel.: 39-47-20 (off.), 69-08-86 (apt.).

Received March 10, 2000; Revised August 30, 2000. Translated by Mirzoyeva K.S.