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UNIQUE WEAK SOLVABILITY OF THE FIRST BOUNDARY VALUE
PRORLEM FOR A HILBARG-SERRIN PARABOLIC EQUATION IN NON-
CYLINDRIC DOMAINS

Abstract

The first boundary value problem for a Hilbarg-Serrin parabolic equation is
considered in the paper. Its unique weak solvability in corresponding weight spaces of
Sobolev is established.

Introduction. Let G be a bounded #»-dimensional domain containing the origin
coordinates. Consider in G the first boundary-value problem for the Hilbarg-Serrin
equation '

XX, Py
Au+ ANy L = flx), xeG
,"Jzzl \x‘z 3x,ax_*,- f( ) (0-1)
U|p;=0,

where A >—1 is a constant. The problems of a weak and strong solvability of the problem
{0.1) in corresponding weight spaces of Sobolev have been studied in [1-3). The goal of
this work is the obtaining of analogies of these results concerning the weak solvability for
the case of Hilbarg-Serrin parabolic equation in so-called P-domains. Note that in the
general case, Hilbarg-Serrin parabolic equation doesn’t satisfy the parabolic condition by
Cardes [4]. As to the problem of solvability of boundary value problems for general
parabolic equations of second order, we shall indicate them in monograph [5-6].

1°. Notations, definitions and subsidiary statements.

Mention the notations and definitions used in this paper.
Let £, be an n-dimensional Euclidean space of points x ={x,,...,x,), D be a

bounded domain in £, with boundary 8D, moreover 0 e . By R,,, we denote (1 +1)-
dimensional Euclidean space of points (x,7)=(x,,...,x,,).
R =R Nilxe):r <0},

We call Qc R, the domain of paraboloid type (or £ -domain), ({7]) if its
section with any hyper-plane of 7 =7 (r <0) has the form:

X
x: eD;.
{ 24—1 }
O =@N{x1):-T <1 <0}, 8 =60N{{x.0):-T <t <0},
D; =N {{x.0):1 =T},
I{Q; ) is a parabolic boundary of the domain Q.. ([8]).
Consider a parabolic operator with coefficient determined on Q,

oOX,X, a2 8
L=axa ir 3 o A
’ :é:‘*—l) ox,ox;, ot (1.1)

Let
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where A is a Laplace operator, X ig a numerical parameter that satisfies the condition

1
—‘-?‘-(l{m, (12)
d = sup|y|.
yeld

Note that the condition (1.2) is non other than condition of uniform parabolicity of the
operator L on the domain Q. _

By the analogy with elliptic case the operator L we shall call Hilberg-Serrin
operator.,

The symbols u;, u, everywhere denote the derivatives

cu
Ex? and ——— 6xax (IJ], U )

il
wa =l b=t =Tt = S

iJ=l
Let a numerical number y satisfy the condition:

(/‘L --—-]+21n
d?

Y e g 400 |, (1.3)

AN
Cy (Q?.) is the space of all infinitely differentiable functions with a compact support in

o, . A{f(QT) is a space of infinitely ditferentiable finite functions in @, , for which the
integral

I(~ ty " wldvdt

o
is finite, L, {©,) is a class of measurable functions, u#(x,r} given in Q, with a finitc

norm

j4
TR (J( Yo dedr] .

Or

W, ”(Q? ) is a class of measurable functions u(x t), given in Q) with a finite norm

bl = U(- - g,)dxﬂ

w e (QI, ) is a closed subspace of W, Y (0, ), where A7(0) i is a dense set,

Wzl,; (Q?.) is a class of measurable functions of u(x,t), given in O, with a finite
norm

I8
l““w,“(g ( j‘mt)? (uz +ul +ul }chdr] \

,r

w 12‘}, (0, is a closed subspace of W;: (O, ), where 47{0; ) is a dense set.

In the domain @, consider the first boundary value problem
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u ot
Lu=Au+A S
wEoH 214(- 1y oxx, Ot S Z 1ox, (1.4)

“lrlQ:- =0
where f L, (0,), f* €L, (@), k=1n.
Definition. Under the weak solution of Hilbarg-Serrin equation with a right hand
it &
side f+ Z-g%— we shall understand such a function u(x,1)e W, O(Q? ) that satisfies the
k=i
integral identity

Jooywoasar— - ¥ £, a2 a3 It

x 9, dxdt + l”%”) j( 1Y "uddxdt -y [(~ 1) Qudxde = [(~1) fIdxdi -
Or O

- j(-¢ }:f"S dxdt (1.5)

O
for any 9(x,t)e W w{0).

Clarify briefly the derivation principle of (1.5). For this, it is necessary to cut off
the domain @, from above by a hyperplane  =—-¢ for sufficiently small positive £ and

write the Hilbarg-Serrin operator in the form of sum of a divergent part and small terms.
Then, the equation is considered in the layer O, =0r V(. and both parts of the
equation are multiplied by the function (~7)" - 9(x,7), where 9 € 47(Q, ) and they vanish
near the parabolic boundary I‘( ' m). Integrating both sides of the equation with respect
to O, and using Ostrogodsky’s formula we are led to expressions that uniformly depend
on &,

Tending £ to zero we derive the integral identity (1.5).

Fridrichs type inequality. let @O bhe a domain described above and

u(x,yew s (Q, Then it is valid inequality
fey o (veddvdt <C - J'(- oY ul(x, ¢ )xdr, (1.6)
oy

where a constant C > 0 -depends only on the don‘:am o, .

Proof. Since the domain ; is bounded, then there exists a parallelepiped K =
={(x.1):~R<x <R, -T<t<0} inside of which we can arrange ¢,. Let
u(x,t}e 47 (0, ). Continue the function w{x,7) by zero in X .

We have

ult, x, x") = ult,-R,x'} + ju] (&3, %' Yy = _Tu, {t,y,x')dy,
’ ~R -R

where x' = (x,,...,x,
Thus,
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N .. X
uz(t,x,,x')z{ Iu,(l,y,x')asz <2R qudy. (1.7)
- R

Multiply both sides of the latter inequality by (- )’ and integrate with respect to
the domain X . Since in K\Q; u=0, we get

Jloy a2 ooy ju,z(; oWy 528 [ | J-1) ;ul 13, Yy =
=2R jdy ((~ 1Y uldxdt = 4R? [( 1Y} dxdt (1.8)

-R Oy
(1.6) is obtained from (1.8) WIth the help of the passage to the limit.

2°. Main a priori estimate.

By deriving the main a priori estimate we use the same scheme as in deriving the
main integral identity.

Let O, , have the same meaning that above, but A:f( ?.’&.) is a totality of all

functions from 47 (Q, ), vanishing near the parabolic boundary F( “). It is easy to see

Lu= Au+2.2£( 5 } A(n+-1)”%juj~u,. @.1)

i, f=1 =l 4 -

For any function u(x,?)e A, ) we have

- j(—  uludxdt = - j(_:)?‘mmd: 5 [y ( ) ) )dde

EELTe

SN I)"T—ju cuddt+ [tV wwdedt =, ¥ Ty, + T 4. (22)

=y, O
On the other hand,
= J(” Y uAudxdt = - I( I)"Zu u,ddr = [(~ !)"Zuzdxdr_
Ure =t
= j’(~r)"u;dxdz; 2.3)
Uy e
) I(~r)"[ ’ ]dxdt—lz [SOE " S dedt; 2.4)
L=l ( ) LISy, )
n+1)z I uudxdt A(’H'])Z _f ( )dxa‘x_
ﬁ1Q_! 2 f= I() 4( )
_Anlnl) ooy W
= 5 Qj( t) 4(_t)dxdr,. (2.5)
= oV wmddr = f(-1) () nctr. | @.6)
Ur, 2Q?'.n;

Clarify briefly how we can transform (2.6). We have
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flo) ) = § 2o u? e - ﬂ iy -t @

1.

Estimate the integral _[-;%((_ ty HE}jxdt_ . ’
Ora
To this end, arrange the layer {,, in a parallelepiped D, x(-T,~g) and

continue the function (v r)” u® by zero to this parallelepiped. Denote a new function by
_[ I F(z X Yt =

Ft,x). Then
( )r z}ixdt 1 D’

= P_[F(— s,x)dx—L{F(« T,x)dx ,

 where P, is an upper edge of the parallelepiped and P, > D,_.
We see from the construction of F(t,x) that

IF(W T,xpx=0,

n

[Fleexad=| [ey () ax<[c-eF
7, D,
After transtorming (2.7) we finally arrive at the expression

Jo, =L j( Y wldedt + olg), £ -3 0+ (2.8)
Q? ¥
In (2.2) consider (2.3), (2.4), (2.5), (2.8). We get
— [ o) uludxdt = f(~1) wldsdi + 1Y [(—:)*’ s e -
g UIL !-'f‘l()l ( I)
/ln(n+l

—vF(! x)dxdf

f)}-xl: r E}d

sup] ’ mes, D, —o(.e‘) >0+,
xedd,

I(~ 1y - e )dxerr— j( oY Nldedi+ofe), £—>0+. (2.9)

Pass to the llmlt for £ —» 0+ and write the obtained expression in the form

ty iV + uu xzmM tf ———
eyt 232, L oo g

a4 2
- j—r)”uLudxdt. ' (2.10)
We see from (2.10) that for v
¥ 2M, 2.1
4 .
( J (- z)f’[u + /Z ( )u,ungxdt < wg{(- 1) uludxdr . (212)

For if-(ﬂ—%‘—)aﬂ >0 forany g >0 we have
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2
- u,dxdt < %‘— _[(~ tY —dxdt +

, x,-

4{- 1)
j( ” S u,u dxdt . (2.13)
]Q 1= I ( )
(On the other hand
(~1Y ddr*—— —ty dxdi =
%“rzr““ ?05( e
=2 2.14
20{ | (2.14)
We gel from (2.13) and (2.14)
T8 [~y ddt < O Y L u dxd (2.15)
55 Jo o gty [0 S
For &, = -’; from (2.15) it follows
2
fl-1y == it < = j( )Zw—uudxd: (2.16)

o 4_(“-"-} Q ul()

Taking (2.16) in (2.10) we conclude

@ r)”[ preiy u_,}dxdrg

22 n(n +1)-8y N

2

O R
j‘( ¢y Z ( ")u u dxdt J’(- tY uludxdt . (2.17)
ig=t
Solve the inequahty
2&n(n+21)~—8y {_1_:2_%’
n
we obtain
nz()b - -}-Z-J +2An
d
Y>> =Y. (2.18%)
8
}m(n -+ 1)
On the other hand y « ———~= <¥,.Return to
(2.12). As we had shown above (2.12) is satisfied, when
> Anln +1) ‘
4
But
Ayt ){ x5, ) (2.19)
— UM = L, | . )
h.x=14(_ t) ’ 1=l 2Nt J .
If A=>0,then ' '
¢ 2
I
A ——u, | 20, (2.20}
L; 24—t

But if
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——‘-}2—<A<0,

then

2
,1[ 2}7%) 2 Ad%?. 2.21)
f] -

We get from (2.20) and (2.21) that there exists €, > 0 such that

&, [(~ 1) uldxdt<— [(— 1Y uLudxdt . (2.22)
0, o9
2 ]
-— |+ 24
n[l d2)+ " in (n+l)

Return to the case when y e . As we had shown above in

8 ’ 4

this case (2.17) is fulfilled.
2+ )=y 1, A O<e; <l
d

Then there exists such £, >0 that > "
" 3

Then we obtain from (2.17)

, 1Yz
(-1 [uf + [—3*1— - ——] 3y, ]dxdi <~ [(~ 1Y uLudsdt . (2.23)
Q{ dz = 14( ) “ OJ; .
We get from (2.17) and Fridrichs type inequality that there exists such a positive
constant g, that

gy J (=) wdxdi < [(~ 1) uLudxdr . (2.24)
O Or
Thus, we arrive at the main & priori estimate which we formulate in the form of
theorem.

Theorem 2.1. Let Q.- P be a domain, D be its basis, moreover Oc D and

(l———]+2}{n
d?

ye 3 i+ |, Then for the Hilbarg-Serrin operator on Qr and for any

Sunction ulx,1)eW (0, ) there exists such a constant C >0 not depending on the

choice uecW y (O, ) that it is valid the inequality
”u”u’l )~ C”LHHJZ L0:) (2.25)

3%, Unique solvability of the first boundary value problem.

1 Y
[A——-—)+22Ln |
d’

Theorem 3.1. Let ye 2 90 |. Then the problem (1.4} is

unique solvable in the space W ]23 (Q?-).
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Proof. First we prove the existence of the  solution. Assume again
Or,=0;\0,, e€(0,7). Let D,=D,D,—»D for h—0+ and domains D, have

sufficiently smooth boundaries. Moreover, we smooth functions f Fok= i,_n and f
which are in right-hand side of (14). We denote the smoothed functions by f** and f*,
where u >0,

Let Q- P be a domain with basis D,, O, =07 \ (., settle £>0and ©>0,
> 0. Consider the problem (1.4) in the domain Q;s . It is known that this problem has

a unique solution #/* & C‘”(_I,’;"L_). We have
XX, " 5f’f
S, +1 =f+2 - (3.1)
St R T

where we omit the indices u;’ * for the reduciion of notation.

Both sides of (3.1) we multiply by {~r) ult, x) and integrate with respect to the

au+/lz

ynye) 3

domain Q] . We get

J( tY Aut - udxdt + A j( 1Y u ;86 [?x;)u‘, dt — Afn + 1) %
o, OF, g
( 1 —uudedt ~ [(~tY u-u,dxdr = ( 1Y f - udxdt +
Z o h
Q;._&. o,
+ J= t)*’z f —u dxdt . (3.2)
Qh .

Further we have

ft )[u g )oudxdt—

A(n+1)—4"/ 9

o, e
2 ”
x [ dvdvole)= [ (<o) Y7 wndi = [(~1) £ uddt, 6 >0+, (3.3)
oh, 4-1) ok, = af.

Settle >0, 1 >0 and pass to the limit for £ — 0 + . Denote a limit function by

uH (¢, x).

1) Let An(n +-21)— 4y Ln(.; + i)

of (3.3) is positive. Besides, if A >0 then

lil (_ )uu >0.

ni=

<0.ie. y2 . Then, the second integral at the hand side

But if ——lz—<ﬂ<0,then
d

H

XJC
/ U, > A du 2.
Py

1=l

2) LetM:-O,i.e,y ’1’”(0 D Then

o~
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E(_ﬂ_i—_l)_—-ill I(“t u’ dd!‘_zl n(n+1) 8y I(_ )yz udedt . (3.4)

2 ( ) n* o =4 _)

2 1
e e2a
" (A dl}- n.).n(nH)

b H

Note that for y €

8 2
22a(n+ )-8y 1 5 M 3.5
T ittt E 2

where 0 < u <1,
Consider {3.4) and (3.5) in (3 3). We get

I t)”(u 213 dedtm j-ry [z f‘-u,—fu]dxdt. (.6)

e e 14( ) o
p-

2]<0,then

Since

:124( )r ;'—(ﬂ 11Vu‘ (3-?)

i =l

Taking (3.7) in to account in (3.6) we deduce

o (oY uldvdi < j(_ 1)’(2 e ]dxdt. (3.8)
of oF
Jf we estimate the right hand side of (3.8) in a standard way and use the Frederichs type

inequality we deduce
iy <M 3-9)

where a constant A doesn’t depend on #"* . Continue the function x™* by zero in
O, \QI . It is obvious that the continued function will be an element of the space

W‘E%Q?) and the estimate (3.9} is valid in the norm W '??,(Q?) Hence it follows that

there exists such a sequences u, > 0,4, -0 for k>0, m = that »"™* tends to

some function ueW 55(0;) weakly in W%{0,). 1t is easy to see that the function

u(x,t) is the solution of the problem (1.4).

To prove the uniqueness of the solution it is sufficient to use the procedure in
proving the existence of the solution with small alternations and to obtain the estimate

Hu“wz,‘_;.{g?.} EC[[. Uy ton * é”f 'k”z.z_r(gt.;]

with a constant ' not depending on a function .
The author wants to express his deep gratitude to his supervisor Prof.
1.T.Mamedov for the problem statement and for his constant attention to the paper.
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