ÇAVUŞ A., ABDULLAYEV F.G.

ON THE UNIFORM CONVERGENCE OF THE GENERALIZED BIEBERBACH POLYNOMIALS IN REGIONS WITH K-QUASICONFORMAL BOUNDARY

Abstract

Let G be a finite domain in the complex plane with K-quasiconformal boundary, z, be an arbitrary fixed point in G and p > 0. Let $\varphi(z)$ be the conformal mapping from G onto the disk with radius r > 0 and centered at the origin 0, normalized by $\varphi(z_\circ)=0$ and $\varphi'(z_\circ)=1$. Let us set $\varphi_p(z):=\mathring{J}[\varphi'(\zeta)]^{1/p}d\zeta$, and let $\pi_{n,n}(z)$ be the generalized Bieberbach polynomial of degree n for the pair (G,z_s) that minimizes the integral $\iint \varphi_p'(z) - P_n'(z) \Big|^p d\sigma_z$ in the class \tilde{A}_n of all polynomials of degree $\leq n$ and satisfying the conditions $P_n(z_0) = 0$ and $P'_n(z_0) = 1$. In this work we prove the uniform convergence of the generalized Bieberbach polynomials $\pi_{n,n}(z)$ to $\varphi_p(z)$ on \overline{G} in case of $p > 2 - \frac{K^2 + 1}{2K^4}$.