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THE PROBLEM OF EXACT CONTROLLABILITY FOR THE EQUATION OF
’ OSCILLATION OF A STRING
Abstract

In the paper for the equation of oscillation of string for the given initial
displacement and initial velocity it is searched such boundary-value controls that at the
moment of time Y  reduced the displacement and velocity to the fimctions identically
equal to zero.

The problem of controllability for the partial differential equations is one of the
interesting questions of control theory (see [1], [2]).

Recently such problems are more intensively siudied by a number of
mathematicians (see {31, [4], [5], [6] and etc.).

In the present paper is considered the one-dimensional wave equation describing
the process of oscillation of a string for the time interval n=rf}, whose ends are the points
o, and x=1.

In each moment of the time g the oscillations process is characterized by the
displacement u(t,x) of points of a string and by the velocity «,(t,x) of these points. For
the fixed ¢ a pair of functions {u(t,x),4,{¢,x)} given on the segment 0< x</ is natural to
call the state of oscillation system of the moment of time .

Assume, that at the initial moment of time ¢:==0 displacement and velogity of
points of string are equal to #(0,x)=u,{x), (0, x)}=u,(x), and at the moment of time
¢=T displacement and velocity of points of a string are equal to #(7',x)=0, u,{T,x)=0
(this is called a rest-state),

Then there arises a problui of the exdstence of boundary controls at the ends of
string and which provides the transition of oscillation process from the state {uo (x),u, (x)}
&l 1 =0 to the rest-state at =T .

It is found that the solution of this problem essentially depends on what relation
are the length of the string ! and the moment of time T

Note that, the case u{f,0)=p(r), ult,])=1{t) has been studied by different
methods (see [1]. [6]), however plr}=v{r) in[1].
Let some controlled process be described by the one-dimensional wave equation:

u, —t, =0 in 0=(0,7)x(0,7) ()
with the initial \
w(0,x) =1, (x), #,(0,x)=u(x) in (0.0) (2)
and with the boundary conditions '
w(.0)= 1), . (LD=v) in (0.7). 3)

Assume ~that ELZ(O,I), u € (H](G,I))r,_ue LE(O,T), ve L [O,T]. Let’s denote
vi{t)= () v(r)) and the weak solution of problem (1)-(3) which corresponds to the
control v(t) by u= u(v)ﬁ u(t,x;v). Under the solution of problem (1)-(3) we understand
the function « from  Z*(Q), such that for any nle.x)  from
CE@), T, x)=0,n,{7,x}=0, 7.0} = 0. 7. {,) = 0 the integral identity
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JJulers — )l + I.f“ﬂ ()7, (0, x)ex ]ul (x)n(0, x)dx -
- Ij.“(t)’?x (1,0) - ?V(f)ﬂ(t,l)dt =0,

is fulfilled.
As said above, the following problem is set: find such a control v(¢) for which
u(T,x;v)-:O, u,(T,x;v):O. “4)
For the solution of this problem we’ll consider the following boundary-value problem
o, -D, =0 in O, (%)
®(0,x)=@°(x}), @,(0,x)=a'(x} in (0,i), (6)
®{,0)=0, @, (,)=0 in {0,7), (7

As is known [7,8] problem (5)«7) has a unigue solution @ in ](Q) for the given
&’ e H'(0,1), @' < 1*(0,7) moreover
oeclo,r] 1 (0.0)n o #'0,1)),

0,0, ecllo, 7} 200N cfo.1],20,7).
Further we’1l consider the following problem

Vy—Y.=0in @, (8)
w(7,x)=0, v (T.x)=0 in (0.0), (9
y(t.0)=@, (1.0), v (0)=0f1) in (0.7). (10)

As problem (1)-(3) this problem also is a non homogencous boundary problem. It is
obvious that the solution of this problem depends on @° (x) and ®'(x). As far as
@, (1.0)e *[0,7], (.7} #'[0,7], problem (8)-(10) has a weak solution from L*(Q)
and we uniquely determine the ope!_rator
1”@ b=y, 0,0y (0, )} (1)
Tempuorarily assume that, the operator L (which depends on T ) is reversible (for
sufficiently large 7 ) in suitable Hilbert spaces. Then the considered problem is solvable.
Indeed for the given uy(x), u,(x} we solve the problem
L, @' =~ w1} (12)
and find L{0, '},
Further we solve problem (5)-(7) and choose the control v(t)= (;z(f), v(t)) by the
following way
#(t)=0,(10), v(r)=(.)). (13)
Then from (12), (13) and (8)-(10) it follows that u(v)a yr , consequently, (4) is true and
we construct the control v{¢)} by (13) which reduces the system from the initial state
(ug,%, ) to the zero final state at time 7.

Now we’ll find sufficient conditions for reversibilily of the operator £ . Let’s
introduce the scalar product

(tho @'} fo" )~ o0k, 0.0k e
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Smoothing the initial functions ®°(x) and ®'(x)we obtain that the solution of problem
(5)-(7) is sufficiently smooth. Further multiplying equation (8) by <D(r,x) and integrating
by part we’ve:

(Llo®.0'} fo°.0']) = ;ﬂ@l-(t,l) + @2(1,0)|ar.

Then passing to the limit with respect to smoothing parameter we obtain that the lasi
equality is true for the initial functions ®°(x) and ®'(x). This procedure we’ll call as
“smoothing procedure™. Let’s show that for the sufficiently large T

(Tj[cbz (.0)+ mi(r,{))]dt}m (14)

determines the norm on the set of the initial dates {€D°,¢)'} of problem (5)-(7) and norm

(14) is equivalent to the ordinary norm of the space H' (0,!] x I? (0,1).
It is easy to prove the correctness of the following inequality: there exists such a
constant ¢, that :

Zﬁqﬁ (1) + @2 (.0)dr <, []icb” H;m ol (DJJ . (15)

This follows from the results of paper [9]. Now our aim is to prove the correctness of the
inequality

forerattofuze-nfjol,,, 0y, ) 09

where ¢, and T, are some constants.

To prove (16) we’ll apply again the «smoothing procedure». Considering this
we’ll multiply both sides of equation (5) by m(x)@x(t,x} and integrate by parts, where
m(x) =x-1.

We’'ll use the following denotations:

X = 0, (1 ()0 (2

7
]
0

E(I)rv;—ﬁmf[t,x)+(Di(t,x)}dx, |

where E(t) is the energy integral of equation (5) at the moment of time ¢. From equation
(5), it is easy to obtain that;

E()=E, = %;[[(tbg(x))z 0 .

After multiplying equation (5) by m{x)}D_(t,x) and integrating by parts, we obtain

33(@ ,,m(;’c)(ibjr - (I)Mm(x)d)x)ixdr =0

or

7 Y ¥
jo,mx). x| - | fmlx)o,®, drdt - [mlx)0ldi
5 g 0O ]

¢
+
¥
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Zj @, (m(x)®, ) dxds = 0.

Hence, we have

X- :j{ 3@(@,2 ), dixdt - Z[l@i(t,ﬂ)dt +

Ry
From the condition ®(;,0)=0 it follows that @, (;,0)=0. Then

N ]ﬁg’-‘l(mi)xdxdr . Zj;jcpidxdz =

1 i I l i
X+ 5] | jcpfdxd: - 0]@3 (£,0)ar + 5 chbi(r,o)dx -

_[i[ O3 (¢, x)dxdt + ?ﬂmidxdr =0.
g0 on

Ml—'

Hence it follows that
X- %Zj'tbi(r,o)dt N %3}[@3@,){) S
From this equality passing to inequality we cbtain
TE, <|X]+ éj}j@(;,o)a. (17)
1t is obvious, that

] | 1 ! ! ) ,
J‘d),(l,x)m(x)lbx 3 Ju:)cbrl < ?Er;f;!m(x] ‘[((I)," + CI)X}ix =IE,. .
10 - o

Therefore |X ‘ <2]E, . Then from inequality (7) we obtain

1 -
by o 2E, + Eﬂjcni (£,0)dx,
and hence it follows that
j He 0k 2= (:r 2)E, .

Thus, we proved the inequalily

j’m (o> -anf (o ﬁ 2)f + ') s (18)

Now, to prove inequal:ty {18) it is sufﬁc:ent to require that the solution of equation (5)-
(7) fulfilled the following inequality

:jmz(:,z)dc > %(T - 21)J(¢>“ (x)f x (19)

Then from (18) and (19) it follows inequality (16) where ¢, = }, T,=2I.

Thus, we showed that for the sufficiently large 7 norm (14) and ordinary norm
in H'(0,1)x £*{0,1) are equivalent. In turn this shows that the operator L is reversible, L

is isomorphic from H'(0,7)x £2{0,1) to (H' (0!)) x 12(0,1). So the following theorem has
been proved .
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Theorem. Let T > T, =2 and inequality (19) be fulfilled for the solution ® of

problem (3)-(7). Then for each given pair (uq,u,) from L*(0,1)x (H '(0,!)) one can find
the control v(t)=(ult)v{t))< L0, 7)x L, (0,7), such that (1) reduces the system from
the initial state {u,,u, )} to the zero final state at time T

Note. One can cite an example, that for solution of problem (5)~(7) the inequality
(19) is fulfitled. For example, let ®(¢,x) be a solution of the boundary-value problem

¢, -D, =0,
(I)(O,x):sin-;f;x, @,(0,x}=0,
®(1,0)=0, ®© (.1)=0.
It is obvious that ¢J(t,x)=cos—%tsin-§—}x, and for this funciion the ineqpality (19) is

automatically fulfilled.
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