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ON NORMS OF INTERMEDIATE DERIVATIVES IN SPACES OF SMOOTH
VECTOR FUNCTIONS ON ALL AXIS

Abstract

In the paper the values of norms of operators of intermediate derivatives in the
Sobolev type spaces are found.

Let H be a separable Hilbert space, 4 be a positive-definite self-adjoint
operator in H .
Denote by L,(R:H) a Hilbert space of the vector-functions f(r) with values

from H , measurable and quadratically integrable by Bochner with the norm
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Further we determine the space [1]
WP(R: H)=p:u e L(R: H), A™ue Ly(R: H)}
where n=1 is a natural number, and the derivatives are understood in sense of the theory
of generalized functions. We determine the norm in W' (R: H) in the following form
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As it is known by the theorem on intermediate derivatives [1, p.29]. the operators
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are bounded. The norms of these operators are calculated in [2] and equal
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i.e. they have the exact inequality
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Further from density theorem [1, p.29] it follows that D,(R:H) is a set of
infinitely differentiable functions with compact carriers in R that are dense in the space
Wy (R:H).

Let s=0 be an integer number. Then it's easy to see that the operators
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A7 }F:WE’I”{R H)-> W5 {R:H} are continuous operators. Really, assuming that

ue D, (R:H) we obtain
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In the present paper we find the values of norms of operators of intermediate derivatives

M;,(R)=  sup )NAH i m”w ' (k: H)

Ozuchy* (R:H

for the fixed natural s> 0.
From the inequality (3) it follows that

/2
2 2
MJ'.S{R}E (Nn+.i',j a5 Nn+s.j+s]l L]
and the numbers NL 5] N,i s, j+s are determined from the equality (2).

The following holds
Theorem. The norms of operators of intermediate derivatives
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Proof. Let uc D, (R: H). Then cnnsidcr the functional
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for B e[0,M; _2
it’s uh\fluus that
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If we denote the Fourier transformation of the vector-function () by wu(&). then from
Plansharel theorem if follows that
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where the polynomial operator bundle P_,-{eﬁ:ﬁ:A} with real arguments to £ and
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Blee R pe(0,M72)) is determined in the following form:
P:.(E B :A):ngnuj - AE[ﬂ+s} _ﬁ(éz_uz{ms-;} +§2{j+.¢}f!2{n-_j})‘ (8)
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Show that for £ R and f§ [0, M“z (R)) the bundle P; (£:p: A) is positive. Really, for
ueo(d) (u=pg>0), £ R and fe[0,M73(R) we have
P(ﬁ ﬁ ,u) £ [n—aj+HI{nnr] ﬁtu 2n+s .']- Ifn—_.l}lézli.l-“]):
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Consequently, from spectral expansion of the operator 4 it follows that P; (E:B:4)>0

for £eR, pe[0,M73(R)) and therefore from the equality (7) it follows that for
Be[0.M75(R)) and ue Dy, (R: 1)

E;(wp)>0, j=12,..n-1. (9)
Thus passing to the limit in the inequality (9) when £ — M’;:‘; (R) we get that for all
ue D, (R: H) the inequality
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holds.
It follows that
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Show that the inequality (10) is exact.

_,r'=1,2,..,,r;—]. {lﬂ}

r-i0)

With this aim for the given £>0 we show the existence of such a vector
function u,()e W3+ (R: H) that
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We'll search the vector function aeg(.*] in the form of u.(f)=g.(tkp where

peD A2n+e) | lol=1,and g.(r) is a scalar function from the space W5 *(R;C), C isa
&

complex plane. Using Plansherel theorem we write the inequality (11) in the equivalent
form
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Here g_(£) is Fourier transformation of the vector-function g, (r) and the bundle
Ple.M72(R)+£,4) is determined from the equality (8) substituting B by
M5 (R)+e.
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Let the operator 4 have if only one eigen value u, then we take ¢ as a
corresponding normed vector i.e. Ap= o, jof =1. In this case it’s casy to see that

(g M2 (R)+e, A}.p ) (,M {R)+g,y)

MNow at the point £ € £ such that
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Then in the point £ ={gue R
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If the operator 4 hasn’t an eigen vector, then for any ueo(4) and for any§ >0 using
the spectral expansion of the operator 4 we can construct the vector

05 € D(A 2["”}), Hqtrg !| =1 such that
A"ps = u"og +0{5], {5 —}D], m=12...
by the inequality (13) P; %;M}i (R)+ .E.'._..‘i):pa .05 ){ 0 for small & >0. Thus we always

can construct the vector o, {p” =1 such that ij;M;i (R)+ .E:,AJ:p. {p){ () at some point

£=Egu . Since (F;kﬁw;ﬁ (R)+ E,A}p,{p) is a continuous function of the argument &
then the inequality (13) are satisfied in some interval (17;,17,) containing the point

FA
E=Epu. Now we can construct the function g, (r). Let gs(é} be an infinite
differentiable function with carrier in the interval (ng.1;). Denote its inverse Fourier
transformation by g, (t)

. »
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By Peli-Wiener theorem g, (I}EW s [R E] and for the vector-functions u, {I] g E{I}
from the inequality (7) we obtain

EJ-[HE,JU J {g (). M ;- {R}+s)=
Yo shobif

Since for £ & (1.7, ) {PJ-LE,MJ-J{R )+ &:;A}g,cp)«: a0, then E; (HL.._M}i. + .&:J-:: 0.
Consequently the inequality (10} is exact. The theorem is proved.
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