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ON THE QUESTION OF FATIGUE WEAR OF CIRCULAR DISK AT CYCLIC
BENDING BY UNIFORM PRESSURE

Abstract

On the base of damage accumulation conception the wear process of elastic-
plastic, linear articulated support of circular disk at bending of cyclic symmetrically
changeable uniform pressure is investigated. The components and the intensity of stress
are determined at any number of loading. The number of loading preceding the
appearance at the points of disk and the number of loadings before the destruction of disk
material are found. The corresponding graphics are determined before the beginning of
the given limit of wear.

Let's consider an elastic-plastic, linear hardening articulated-supported circular
disk of thickness h, radius a, which is bending by cyclic symmetrically changeable
uniform pressure *g. Such multi-repeated deformation of the disk leads to the

formulation of damages and as the final result to the destruction which begins from the
surface layers.

As a result. As a result destructed material of the plate is isolated from the
surface layers. Process of wear begins and this process runs in the direction to the centre
of disk. By attaining the limit of wear, the disk becomes unfit for the used aim. Coming
from the noted we’ll investigate process of fatigue wear from the point of view damage
accumulation conception. Noted in [6] many investigations of different authors [7-9]. in
which there are experimental proof of fatigue nature of wear also accompaning such
approach.

Let’s write out the kinetic equation describing the process of damage
accumulation at a material wears in case of non-stationary loading constructed by
L.Kh.Talybly [10]:

N
tip)=Hte }%L N (ot ). 7)) N3 o () 7))
,, (n—k)" dk ]
R TR SIOVT B s e )

Here noted: n -is the number of current loading; IT=II(x,n) is a

(1)

scalar value which characterizes the degree of damage of material; (x)=(xp,x9.x3)
are coordinates of body points; H(n) is a unique function of Heavyside;
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arc the given components of stress tensors at the end of the n-th loading:

MNog = Ngs (cr:,?”), Nig =Nyig (CI'T,T) are experimentally determined material functions
correspondingly the number of cycle before the destruction and the number of cycles
before the appearing the damage in material at different, independent of » wvalues

& * 2 ' :
o, =0, =const and T =Ty =const ; o, - is the doubled amplitude of stresses in case

of loading by the rule of symmetric cveles, in siresses, m - is an experimentally
determined constant of material; N - is the number of cycles subjected to determination
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before the beginning of damage accumulation at arbitrary o, (n) and T(n). As we see the
relation (1) takes into account the history of loading and the existence of incubation
number of cycles before the damages accumulation process begins is a condition of
damages; lI(N:, )= 0 are conditions of cyclic stability; N (Nug )=1 - is unknown desired
number of cycles before the destruction.

Following [10] for some materials we approximately can accept

®
N'“{JI’T = A =const. (2)
Noglo s T

Let’s denote that relation (2) are especially fulfilled for isothermal loading
processes. Subject to (2) from (1) we have [10]:
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The number of cycles before the beginning of the damage Bccumulation process N, is

determined from the condition TT(N7, )=0. If we apply this condition for example to the
relation (3) we’ll get [10]:

N N..
(1+m) [ — _kr“r’;‘—»=A"”’. (4)
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The condition (4) in [10] is called the damage condition and the cycle stability (small
cyclic fatigue) is I'_F(N*cr}zl If we use the relation (3) then we'll get [10]
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The condition [5] determine the numbers of eycles N, (x) at arbitrary given o, (k) and

T(k). Tt coincides with the analogous condition got by V.V.Moskvitin in [4] at the

assumption Nj; =0. Let’s denote some possible approximations of the functions

Nig =Nm(cr:_,r)(f=ﬂ,1} [10}:
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In the relations (6) and (7) ey ,bg.cep.5 .8 ,7 are conditions, which are subjected to the

extremal determination, cr;- is stress, 7, - is temperature of reduction, Ny, and Ny, -
are cycles before the destruction and before the appearance of damage in the material at
o, :0: and T:T;.

The process of disk wear we’ll investigate by using the above mentioned
relations. At this it is necessary to determine the component of tensor stress at any n-th
loading. First of all let’s consider the problem on disk bending by uniform pressure g

from the natural state (the loading). This problem is solved in [11] and we'll use this
solution.
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Let’s apply the cylindrical system of coordinates (r,o,z). The axis z we’ll direct
down. At this the surface z =0 will coincide with the middle of disk surface. As known
the equilibrium of circular disk is described by the differential equation

L ®)
dr r
where M, - is redial, M, - is tangential which are connected with the stresses by the

formulas o, and o,

h 5
2 2
M, =2[c,zdz, My=2[oq2dz,
0 0
Q - is transverse force, expressed by the formula
s 1
Q=-— [grdr=——gr, ©)

Fa 2

r - is current radius of disk.
We'll consider the plane stress state of disk. We suppose the disk’s material to be
mechanically incompressible. In addition we have

D‘z=d{pz——-ﬂ‘,¢=ﬂ, £m=£,¢=ﬂ,sz=—{sr+s¢}. (10}
Besides we omit the small components of stress and deformations
O 20, &5 =0, (11)

Where above we’ll denote; o; - are components of tensor siresses, & - are components
of tensor deformations. The elastic state of disk is determined from the relation
ste) = 2Gele), (12)

6=0. (13)

Here .'-}U- =0y —uﬁ,;,-, ey =&y —&8,; are components of deviator of stresses and

0

Kroneker's symbols 8 =3¢ is relative change of volume, G - is a shear modulus.

We suppose that the elastic — plastic state of disk is determined from the relations
of the theory of elastic-plastic deformations of A.A.llyushin [11] with the linear
hardening

]

deformations, o=o /3 is mean stress, & =E‘-j5,}- /3 - i1s mean deformation, & ij - are

2o
Si = 3.9: €ji s (14)
o, =Ao, +3G(1- A, , (15)
0=0. (16)

| 1

; i 3 2 : : 2 2
Here in addition noted: o, =[5-5'5,-S£,-)2 arc intensity of stresses; &, :[;ey-eﬁJz arc

intensity of deformations, 4 - are coefficients; 0<A<1;o, is a yield point on the
stresses connected with the yield point on the deformations &, with the relation:
o, =3Gs, .
From the elasticity relations (12), (13) subject to (10), (11) we have
cr&,g} =27 (25&,9} + E_E'E]}, (mn
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o =26{2:) + £} (18)
From the relation of elastic — plasticity (14)-(16) subject to (10), (11) we'll get
2o
nq_:gg—;t(z% +&,) (19)
2a,
y=——\2¢e, +&, ) 20
o =5= (26, +5,) (20)

e
In addition between the values o, and £, hold the relation (15). The value &, subjectto

(10), (11) is expressed in the next form
1

2
& :E&E + &6y +£$}5. (21)
Let's use the known hypothesis of Kirkhov-Leva disk bending. In addition we can write
Ep =—Z¥ps gq‘_lz_zx:p1 {22}

where . and x,, are redial and tangential curves of disks which are formulated by the
deflection of the disk w{r) by the next relations:

d? | dw d\ry
S et =_( *P], (23)
dr? r dr dr

The curves y, and y, connected by the bending moments M, and M, [11]:

Xr=

1 1
M,.:D{]—I(x,+§-xm], Mm:D(]—}{x{p+ELJ, (24)
where D =Gh' /3. Besides
I Y
0. for a{% |£a,
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i 3
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Allowing for (24) in the equation of equilibrium (8) by using (9) and the last formula
(23). we get the equations for the determination of . After the determination x,,, the
7, 15 determined according to (23) and also the deflection w{r) by integrating one of the

first two relations (23). In addition we are to consider the boundary conditions for
articulated — supported edge:

Wreg=0, M,|._,=0.
At the first loading of disk by the uniform pressure g before the appearence of plastic
deformations the points deflection of middle surface (z = 0), according to [11] will be

4 2 4

w[‘“}=l_lqa3 l_l4 'r2 )i 3r4 . (25)
64Gh Ika*  Ha

Plastic deformations appears at pressure

e IJ&hza_\c
i 21a*
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At g > gy it holds the approximate solution of A.A.Ilyushin [11]

2or 2 4
L gﬂf1~5r—+ iy B (26)
28k | 1147 11a?

Here £j =&, when r:ll_.zzgr. For the determination of &) by the g in [11] it is

' 2
constructed a graphic between the values ﬂ’m%. At full inclusion of elastic-
& léo,

plastic domain of the disk £; =3,55;, when r=0.z =§ [11]. In this case

2
hOs g _1250,, zﬂﬂ}:ﬂ,?ﬁﬁg, @27

where z,(r) is a boundary equation, which separates the domain by elastic and elastic-

plastic deformations.
Using formulas (25) and (26) in (29) we determine the corresponding curves

J"{{;}, Xrs Xy in future substituting their obtained values in (22) we find the elastic

and the elastic plastic deformation

G 2 ST 2
£l = (?w% el = I :f+3’—2 , (28)
lﬁﬁh Ve a8 16Gh L
b 2 /
.ﬁ:,::j'r"—':I ) LA ; Eg —zh i (29)
Thl . 2)

Allowing for (29) in (21) we'll determine the intensity of the deformation & :
|

2 EJ!’ . 473
g, =2=£01 494847 139 : 30
Tk a4J (30)

By using the formulas (15) and (30) we find the expression for the values o /& :

1

p2 4 Y 3
el g 1‘”““ 19+847 +397 a1
£ 28y a’ i
Mow let’s find the elastic and the elastic.—plastic stresses state of disk allowing for (28) in
relations (17) and (18) we’ll get
olf) = 3gza’( 5, sr” 1 (32)
8k ;
r2 i
ol udt s (?n (33)
h e oo

Substituting of the relations (29), (31) in (19) in (19) and (20)
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g =] 7+55 FM+BGRSI[49+H4%+39?.—4 | (34)
a’ Th g a a |
= : I i,
5 Y T ¥ 2 4 I_E
o, ;ir? +755 | M+361£3 49+ 847 +39° (35)
\ a ) Th a a

Thus all the unknown values at the first loading of disk by the uniform pressure g are

known. Now let’s consider the question on determination of stress components at
symmetric cyclic g, i.e. at cyclic loading of disk by the uniform pressure +g. Let’s

suppose that disks material has the cyclic hardening [12]. In this case for the
determination of stress components at n-th (in odd) loading we can use the
V. V.Moskvinin formula [12]:

TR BV ) PR (B (B ) 13

Here u‘Er-”'}- are the stress components at . -th (in odd) loading: the constant f (0< f < 1)

(36)

and the function f(n) are determined from the experiment [12]: o - are the stress

components which appears at the first elastic-plastic loading; cr}f}- are some imaginary

stress which are determined as solution of the corresponding problem of the theory of
elasticity of initial loading at g = g5.
Corresponding to (32) we can write

ol = oy + (i~ P + - B)f oy ~o). G
o) = pa +(1- ot + (1~ Bk, - o)) 39

Here o, and o, are determined by the formulas (34) and (33), a&fj and (TEG‘II by
the (32) and (33) but addition g =g, and there is a connection between g and

eh=(,)™5 [11], established from the solution of the problem on elastic-plastic
2

bending of disk at the first loading, In the formulas (37) and (38) » is a number of odd

loading.

Since we consider the cyclic hardening material of the disk and symmetric cycles
of loading then after the significant number cycles which hold at wear at every next cycle
loading the area of loop of the hysterises becomes small and we can neglect this area. It
means that at the limits of every cycle the component of stress at even numbers of

looking can be accepted equal by absolute value of stresses components at corresponding
odd numbers of loading.

Starting from this we accept
oom)=200"), o7 (n) =20 . (39)

MNow in formulas (39) » is any number of loading. The intensity of stresses

'
(3 _» et ;
{F: = =5 -.S"-r-] in this case is represented by the formula
3 i U}
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1
& L] LI L 2
o, =|:[cr,. _UFU¢+(GIP}2i| N

which allowing for (39) is represented in the next form

1
o} =202, 0 ,mo0n +oh )2, (40)
where o, = cr&,"}, . =-:r£"].
We are interested in the process of wear at » =0 (in the direction z) and the
beginning of the process at r = a. Starting from this, from (32)-(35) we determine

Tglr=0=04|r=0 :ﬂ—___;kﬁn“} 3Ges, (41)

2

{E} ( _ 2lgza
|r=0=6e0 = e (42)
Golroa =0.860, ], =g,gf,f.‘£{1j__}”_ﬂ ,,3[;53;,%), (43)

2]qza

o). =0860),_, =086 =L 5

(44)

The relation (41)-(44) simplify the expression (40):

. 6G{l — A )z&¢ g
l:"+|:-=[|' o 2"::""213'4"4rl---ﬂ =20,p|r=0 = E[B[AT)EEE"‘ 3'("5'3‘1} i

PP o S e 2
12G(1 - A)ze})

L I 7 =l,8?6[ﬁ 2

—EG .l]

_ﬁ]zlg;; OB llzfs{l l}zan i l_?lqza ]} 46)

h l 3 4k

P, 3 s :
Now it is necessary to determine the expression —- . At this we can accept cr; =2o0,.In

as
this case from (45) and (46) we have
L]
G:— E r={)
= =20 ()L, 47
&y r=0 2!7_5-
L]
o i
= =52=0938(L3 + f(n)Ls). (48)
o 2o
Flr=a i
Here
f . ' =z
L :ﬁLG{?{] =-A]z.t:,;} ;J [ ﬁ}llqza : (49)
oh ) 8k,
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number of loading before the destruction of disk edges (r = a) are determined, which
became equal to the number of loading before destruction of the point r=0, z=023h
(fig.1). The weared (destructed) region of disk is shown in fig.2.
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Fig.1. The curve of damages {I -N= NE,) and destruction (2 ~N=N.;)
af points of disk at ¥ =10

Fig.2. The weared (destructed) region aof disk
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