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LONGTERM STRENGTH OF ROTATABLE ANISOTROPIC RING
Abstract

On the basis of damageability conception the destruction process of cylindrical
anisotropic ring rotating with constant angular velocity is investigated. The non-linear
integral equation of destruction front is obtained and numerically solved. The obtained
simulations allow to discover the difference of degree and kind in destruction process for
anisoiropic and isotrapic rings.

Bodies of revolution manufactured from material with higher values of specific
elastic and strength characteristics is used successfully in constructions working at higher
rotational speed. Therefore they are used as flyweels accumulating mechanical energy.
Because of low specific strength of metals and other materials having large specific mass
we can’t prepare from them the flyweels enduring the higher rotational speed. The rise of
accumuiating energy is attained by means of increase of moment of inertia of rotatable
body for which it’s required to increase
the size of flyweels and complicate the
technology of energy accumulation. By
using flyweels from reinforced materials,
the increase of accumulated energy is
attained because of rise of rotational
speed of flvweels.

For reeling flyweel the
cylindrical curvilinear anisotropy, the
transverse isotropy holds when the
surfaces of isotropy are coaxial
cvlindrical  surfaces. Besides  the
cylindrical symmetry also hold. For
rotatable flyweel representing an
elastic sylindrical anisotropic ring, the
conditions ensuring the state of plane
stress are realized.

Let’s assume the following
dimensionless quantities
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Then for dimensionless stress we obtain the expression in the form of
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It"s easy to be convinced that for n =1 the expression (2) passes into the known
formula for isotropic material. In fig.2 the comparative diagrams of distribution along the
radius of ring of stresses for ¥y =0,5; v,.5 =0.3 depending on the anisotropy parameter »
are reduced.

From these it follows that as in isotropic case (n=1) the tangential stress is
prevailing, in addition its maximal tending value for all cases are attained on interior
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Fig.2.

contour of ring. This predetermines the use of destruction [2] criterion along the most
tangential stress
Ty *'M*GH =g {3]

where M is an hereditary type damage time operator. o is instantaneous limit of
strength of material. This damage operator is contained in deformation equations [2,3].
Under continuous active loading the damage operator behaves as an ordinary operator of
hereditary elasticity that allows to use correspondence method for determination of
stresses for the known elastic solution. Assuming the constancy of Poission coefficients
and also supposing that the anisotropy is found only in distribution of instantaneous
elasticity of modulus, we obtain that for the considered problem in the presence of
damage the stress distribution is also given by the formulas (2), with only difference that
the relations of instantaneous elasticity of modulus are contained in them.

As it was noted the prevailing tangential stress oy attains its maximal tending
value
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on the interior contour x =y . It means that destruction will begin on interior contour. In
addition the destruction time #;, is delermined from the destruction (3)
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Here o =0/ pw”R;, and M(r) is a difference kernel of damage operator.

So for example for the weak-singular damage operator M {r]=1r_a;-:x:
A=const; 0<a <1, we obtain
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The quantum of time from beginning of application of loading to the moment of
initial destruction is called incubation period. From non-negativity of right-hand side of
(6) the constraints for the values of mechanical and geometrical parameters, anisotropy
parameter follow for which incubation period of development of distribution is valid.

In time around of interior contour the extending circular ruptured zone whose
boundary forms destruction front is formed. We obtain the equation determining the low
of its motion. Assume that the material of the ring at destruction front completely loses its

FAN
carrier ability. Then it’s necessary in the representation stress of og to assume the
interior radius depending on time. Substituting ¥ = B(r); x = B(r), r <1, we obtain
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This formula is for stress in time ¢, when the destruction front has the coordinate ,ﬂ{r}

in layer, where the destruction front attains in time ¢ > r . In this layer in the time ¢ when
destruction front approaches to it, the tangentia] stress will have the following form
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Then according to the fracture criterion (3) we obtain the next motion equation of
destruction front

(7)
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representing itself subject to the formulas (7) and (8) the second Volterra non-linear

integral equation with respect to the function ,8{:) Where ,B(r]:y for 0<r=t5. In
view of complexity of analytic solution we solve this equation numerically for the

following values of numerical parameters: v,5 =0.3; ;9 =2; a=0; 0,025, B;=03; 0,5
for mentioned above singular kernel of damage operator. In fig. 3-5 the simulations
characterizing the low of motion of destruction front for the values of anisotropy
parameter n = Eg / E, equal 0.5; 1 (isotropy): 2; 2,25 are given.
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From them it follows the increase of non-linear character of motion of destruction

front with increase of the parameter n and the late or the early depending on the relative
thickness of fiy on set of development of destruction process, which on initial stage
oceurs sufficiently slowly, but then it acquires avalanche character.
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Fig.5. B, =0,3; a=0,025.
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