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ON ONE BOUNDARY PROBLEM FOR THE 6" ORDER
POLYHARMONIC EQUATIONS

Abstract

The article is dedicated to the solution of one of the main boundary value
problems for a polyharmonic equation of the 6-th order, taken in two dimensional space.
The solution of the given problem is found as the sum of three potentials. The bound
Sformulas are proved for these potentials and their derivatives. Using these formulas the
solution of the boundary problem is reduced to the solution of series of Fredholm type
integral equations.

As it is known one of steps M.L. Rasulov is contour integral method [4]. [2] is
the investigation of a boundary value problem with complex parameter called a spectral
problem we have to note that transference of this theory to more than second order
equations is of special interest. There exist a lot of articles dedicated to the solution of
such problems (for ex. [3]-[7]).

Article [3] in which biharmonic potentials for space and plane cases, is found
very fruitful in this domain. The question on limit values of potentials themselves, their
normal derivatives, Laplacian operators and normal derivatives of Laplacian operator 1s
also investigated. Using the results of paper [3] in papers [5]-|7] the special potentials
depending on a complex parameter, good decreasing for sufficiently large values of this
parameter from some infinite part of a complex plane and having weak pointwise
singularity by a space variable are constructed. With the help of these potentials the
existence of solutions of boundary value problems in domain of three dimensions lor the
4" order [5] and 6™ order [6] polyharmonic equations by means of reducing them to the
system of regular integral equations is proved.

The present paper is dedicated to the investigation of a boundary value problem
for the 6™ order polyharmonic equations of 2 dimensional domain and namely the
problem of determination of solution of the equation
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where x = (x,,x,) is a point of some bounded domain D of two dimensional space £,
A is a Laplacian operator, I is a boundary of the domain D, n_ is the direction of the
interior normal to the boundary I' at the point zI', is considered. Without losing
generality assume that 4, (x)=1. We assume the fulfillment of the conditions:

1°. The real parts of roots of the equation
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vi— A (x? + A xh - 4(x)=0 (3)
are negative {REL’{QJ, the arguments of these roots and their differences are

independent of x.
2% The coefficients of the equation (1) A,(x)(k=0,1) have continuous bounded

derivatives to the (3 - 2k)™ order for all xe D+1", 4,(x) is continuous differentiable,
B, (x) {r’ =1,2; j= I[TE) and C(x) are continuous functions forall xe D.

3", The boundary I' of the domain D is a Lyapunov line with the number 0 <a <1 and
e A,

4" The right hand side ¥ {1&] of the equation (1) is continuous and has first order
continuous partial derivatives with respect to x, (i =1,2) forall xe D is analytic by 4 in
the domain R of the complex A4 plane, where R; is determined by the following form:

r
Ry =44; [A|=R, |a;gﬂ.|*=—+5]r (4)
where R is sufficiently large, and & = 0, small numbers.
5'. The boundary functions ¢, (,r,:t} (.9 = []._2} analytic by A functions in R; tending to
zero when |A| — o, uniformly with respect to argi. besides 9,(z.4) s =(0,1) have
continuous partial derivatives by z e I' 1o the 2™ order, and ¢,(z, 1) is continuous on I'.
In connection with that solution of non-homogeneous equation for homogeneous
boundary conditions is constructed with the help of Green functions. We’ll find a solution
of the problem for a homogeneous equation corresponding to the equation (1), i.e. for the
equation

L[ %=, 22),r (x,4)=0 (1)

unider the boundary conditions {?_].
By the scheme of potentials method the solution of the problem (17). (2) is sought
in the form of the sum of the potentials

Ulx, A) =W, (x, 1)+ W, (2, A)+ W, (x, 1), (5)
where W, {x._ ,»'L} {k = 1,_3] are potentials determined by the following form
W (x.A)= [B(x v, A)u (y, A)dT, | (6)
=
(k =1,2)
A tdR(x A s
W]{x,x.}: f%}g{) A}Grl o (7
T ¥

where P {x ¥V, P] is fundamental and F, [J;._ _1=,},} {.fr 2_.3} are partial solutions of the
equation (1°), and u, (y, 4 H =1, ] are the unknown densities to be defined.
The solutions P, {x,& A} are determined by the formulas
BxE,A)=P(x—£,.E21)+ i_[P, (x —n.m A (n.E.A)d, D, (R _3}
2

where P, (x—&,£,2) is fundamental, m{]r.i Px—&,E,4) (k= 2,3) are partial solutions of
the main part of the equation (1) with frozen at the point x =£ € D coefficients, i.c. the
next equations are valid
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By the scheme of the mentmned in article [4]-[6] the partial solutions
P (x~£&,£.2) (k =2,3) of the equation (1°") are determined by the following form
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Finally, the fundamental solution ﬂ(x—f;',f,l} of the equations (1°7) is
determined by the formula

P(x-&,E 1) = Py(x—&.8,4)- ““E _Py(x—&,&,2),

where

Py(x-£,E,4)=

3 1 [
Rl-.£2)= o > ——— Kﬁ[ A J
2 [0 e)-ve) V)
key=]
where v, (£) (k = L_E) are the different roots of the equation (3) K,(z) is the zero order
Bessel functions of the second kind (see [8]).
With the help of asymptotic representations for Kﬂ,{z] and its derivatives ([8])
the correctness of the following estimates is proved for fundamental and partial solutions
and their derivatives

&'B(x8.2) _Cexpl-s

=] (s=0; k=13, i=12),

5).';-? | lj-]df_s |x --|l{i +5}
*AR(x.&,2)| _ Cexpl- E!f‘~|P‘ 51} (=01 k=13, i=12) (8)
et P
validfor x2£e D, Ae R; and
ovcaaicd o g e

idﬂ.v aka e |;4_|2 3+ FZ‘_}'|I_a
valid for z,yeT, A€ R;.
Finally, with the help of above mentioned estimates the jump formula is proved
for the potentials Fﬂ{x,ﬂ.} (k = ],_3) and their necessary derivatives.
For the potential W, (x, ) the jump formula

o6 2)= (5.2 (e 2 (A,
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valid for Le Ry, Te A,, (z,1)e C, holds.
For the potential ¥, (x, .) we have

Wy, (2.4} =W, (z,2)= J Py(z, 3, A)uy (v, A, (1)
dwl{z!";" :;#2{3! ] {.z A "]"} 1#‘2{2 }}
g |, e dn, A ar
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valid forall Ae R, . T e A, and p,(z,A)eC.
Finally for the potential W,(x,1) the validity of the following jump formula is
proved

Wlln‘{ ’;L i :'{zjv}"_iﬂ(::’l}: - 'u-"{z,;i) T
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+ dniyﬁ{z,y,f"v];ﬁbi,ﬂ,}a'f-}, (12)
[awg[ }w L 27(@(z.4)  da(za)
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24, i dben ; .
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valid for A€ R;, [ e A,, sz, A)e €, where 7(z) is a mean curvature of the curve I
at the point z e I” determined by the formula

z)= Ifx{mlfw-

Substituting (5) to the left hand s1de of the boundary conditions (2) allowing for
the jump formula (10)-(12) for the unknown densities [k = 3) we obtain the following
svstem of integral equations
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ulz,A)=o0lz,4) J'ﬁ_{d.__._ Jul(y. A)dr, (13)
where
{1z f}xl w2, A
uf:,/l]—i u‘.{_:.ﬁ_}i - iz )= |,';:{:._).J|
\ sz, A }/.I wi(z.1))
K(z,) /,}={KI.__{: v, 2 )]
where

vz, 1) = =24 4, (2)z(2)o, (2. 1) - 4, (2D, (2, 1),
yafz, A)= =220 4, (z) ()0 (2. 2) - A, (2. 1) .
wilz,4)=31"p,lz,4) .
I'he elements of the kernel K(z,v,A) are determined by the formulas
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Taking mto account the estimates (8) and (%) for the kernel KI':-:.__;'.}._} we can
show the correctness of the estimate
C l._mp[ ¢| |' —_1'”
K(z,y,1) =

e (14)
12—y

valid forall Ae R; and z.yeT.

By virtue of the inequality (14) a system of the integral equations (13} is regular,
consequently we can solve it by the method of successive approximations, where the
solution u(z,1) of the system (13) is analytic, bounded by A function in the domain R,
and continuous by z on .

Thus the following theorem is proved.



On one boundary problem for polyharmonic equations 27

Theorem. Under conditions 1", 3", 5" the problem (1), (2) has a unigue

analytical by A in R; solution Ulx,A) representable in the form of the sum of the
positials (5), whose densities are the solutions of a system of regular integral equations
(13). And to the solution U(x, 1) the estimates

oGl covl-ebit] (o

T e

E”U(x,l} [ exp{ £|;|.|‘d (x)]
T .

|
Pl i gy

(k=5.,6)

which are valid all . € Ry, xe D, c D, and d(x) is the shortest distance from the point
x € D, 1o the boundary I of the domain D, holds.
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ASLANOVA N.M.

THE STABILITY OF THE INVERSE PROBLEM OF SCATTERING THEORY
FOR NONSELF-ADJOINT OPERATOR ON ALL AXIS

Abstract
The stability for non-self-adjoint operator on all axis is studied. The estimations
for the solutions and potentials of two non-self-adjoint operators have been obtained.

The questions about which information about the function g(x) or generally

about the operator L one can extract if the scattering data are known only on an interval
of variation of spectral parameter, has an important value. Therefore from physical point
of view the natural statement of the question about stability of inverse problems is such:
how much strongly can differ two problems whose scattering data coincide in the given

interval of variation p’. Stability of the inverse problem was studied in the series of

works ([1], [4], [5]). For the self-adjoint operator on semi-axis it has got the solution in
the V.A.Marchenko work [1].

In the present paper the stability for non-self-adjoint operator on all axis is
studied.

The results of [1], [2], [3] are used.

1. Operator L.
We'll denote by L an operator given in Hilbert space I.zl:— :r.*_.uo) by the
differential expression :
by=-y"+qx)y. (1.0
We'll assume that g(x) satisfies
|q{x]€€|ﬁ € I'(- ) (1.2)
for £ >0.
We’'ll denote by ¥{C_(x)} the set of boundary-value problems, whose

T se, ). Mg sc ().,

—an

where C, (x) are continuous monotone functions, correspondingly.

2. Special solutions of the equation [y = pz ¥
We'll denote by e.(x.p) the solution of the differential equation ly=S"y,

which have the following asymptotics on infinity for Imp > —%
€y {x, p)~ e™P for x>, e_ {x,p}-— e for x——co.
These solutions are holomorphic by p in half-plane Imp > —% { & is the number

that in the condition (1.2)) and admit the following representations with the help of
transformation operators
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eJx,p}: Ay fﬁ'+(x.r}e”pd-‘ : (2.1)

X

e_ (xf p) —e P 4 ?K # [x,r}e_"p dt . (2.2)

—gh

The kernel K, (x,#) have continuous derivatives which satisfy the inequalities

Lxad
iK‘(xJXii C,e “T for fe i (2.3)
el
|K_(x.t}<C;e 2 fort<x<a. (2.4)
Moreover, the kemels K, (x,r) are connected with the potential g(x) by the
following way:

q[x}= E%K_ {x,x}: —2% K, [x,x}.

3. Scattering data of the operator L.
According to [3] the Wronskian w(p)

wlp)=e_(x.p)e’ +(x.p) e (x.ple.(x,p)
is called denominator (of kernel of the resolving of the operator L). The denominator
w(p) has a finite number of zeros in the half-planc Im p = 0. These zeros are called

singular numbers. Let's denote by py...., p5 the non-real singular numbers, and singular
numbers laying on real axis by pg ... pg . Multiplicity of the root p; of the equation

w{p)=ﬂ is called multiplicity of the singular number p; and is denoted by
m, (k=15)
vip)

The function S{p)=—"-, where
wip)

w(p)=e, (x,_ ple_(x,p)_e\(x,_ ple_(x,p).
is called a scattering function. Parallel with S(p) the function S;(p):
S E
(o= SC2MCp)
w(p)
is used. The Fourier transformation of the operator L

i (xF%IS(p}ef**’frp, (3.1)
= *

Y &
5 === [Sip)e™ P dp (3.2)

is its important spectral characteristic together with scattering function.
Since S(p), S;(p) are the functions of (S) type [3]. the contour of integration is

any straight line in the strip 0<Im p <gg(gg = min{e/2.£,}. &, is a distance from the
axis Im p =0 to nonreal zeros of the w(p)).
The functions

Si ()= pit ()= (3.3)
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characterize the operator L on the pointwise spectrum. Here pj (x) are the polynomials
of the degree my —1 (see [3]). In the case of real potential and the multiplicity m; =1 the
polynomials pf [x} coincide with the normalized factors considered in the work [2].

The scattering functions .S[p] . the non-real singular numbers py..... o, and the
corresponding to them normalized factors are called the scattering data of the operator L.

4. Estimation of the special solutions.
Let’s wrile the integral equations which the kernels K, {x,f}

K, (x.0)+ ?K+{x,u}f+{u+:‘}1’u+ fulx+1)=0, —w<x<t<w, (4.1)

K_(x0)+ }K_{.t,u}f_{u-”}:’u-ﬁ flx+t)=0, —w<t<x<w (4.2)

satisfy, where
1= £+ T7E ) (42)

Let’s consider two problems with the potentials g;(x), g2(x). Let’s compose the
main integral equations for them, and subtract one from another

Kool + [hu+ 0K o (o + (Ao (u+ 0Ky, (xudu + £ 5. (x.6)=0. (4.3)

Kia-(oo)+ [ (u+0)Ky 2 (xu)du + ._Ff],}l—{“ + 1)Ky (x,u)du+ fia_(x+1)=0,(4.4)

where

K+ (x,0)= K2 (%,1) - Kop (x1),
S22 ()= fie(x)= fo1(x).
Ki4. fi+ and K»y, fo, are functions from the equations (4.1), (4.2) for the problems
with the potentials g;(x). g5(x) correspondingly. Since the estimation of the difference
e {x,p)— e, (x, p) is obtained analogously to the problem considered on the positive
semi-axis, we'll calculate the difference of the solutions ¢;_(x, p)—e5_(x.p).
For every fixed x solving (4.4) with respect to Kl_z_(_t,r ) we obtain

(4.5)

( .
K1.z_(x.r]=—{I+F._,J'<;Lfi,z_{x-r}~ Iﬁ_z_(u+r1ﬁfz_{x.u)du}, (4.6)
where g
= [ ulohi.

Note that the validity of the identity
+F ) =0 K K ) @.7

follows from the main equation. The operators K;_, ., ITiZ'J_:_1r are defined by the formula
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Kiif = Jj-’ﬂ-(y,r)f (ekr, ®K_.f ='},;;]_{;,y)f (¢ e

Granting (3.2), (3.3), (4.2) we find
fia- )= fl510) - o 0o + Lo (- e @®)

where Sll (). Slz{p} are the same functions that in the formula (3.2) for the equations
with the potentials g,(x), g2(x) correspondingly. Using these equalities and also the
formula (2.1), (2.2) the following lemma is proved.

Lemma 4.1. For all values of p from the domain Im p > —%, Impu=n, u=p;

~fer-(x, 1) - ez, )} = .}{m{f}—'&’2(5}}{-41,2—{#:3‘:1)' At,z-(#,hx}}ﬂ?: (4.9)

B g

o1 (v 1) - e, (x )} = Hfi‘l (1)~ &'2{’)}{44|3+{#:IJ)— Ay 24 Lﬂsfs-‘f}}ﬂff

x

where

Ay y(,x,0) == & p}ez JFIH] P}L-‘ (. p)er_(e,p)dp +

e, e (. i,[‘p*'i\ ; J_p;_}_ f/__‘_i._]}{w-.(f,f)ez_z{hp]] 7
p=Ppy

P —u

VoA
) sy () ] LU SERTIT I

ey (x peg. (v, #)Z[f”[i - L 4 J][ﬁ*{r’fhﬂ&’p]} ;
P=p

dp Idp o= u =

S I{p],S (p) are the functions from (3.1) for the equations with the potentials
@i(x). a2(x).
Let the data L?f[p),sf (p). pk{j]_.P%,-l of the problems with the potentials

qj{x] (j=1.2) coincide for Rf:p (o, N):
s'(p)=5%(p ]

S]':P 31 ._. for|Rep| 1|||hf+r;i Imp=n, n<g,,

pi()=pc2), B, =P, .
Let’s prove the following theorem.
Theorem 4.1. If the scattering data of two problems q;(x)eViCy(x)} (j=1.2)

coincide for all Re pz 15 {— o0, N], then for Re juz = [— -:-:.N} the following inequalities
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-

¥ e X
Kiof = [Ki(n)f(he, K of = [Ki(ep)f (e
Granting (3.2), (3.3), (4.2) we find |

fia-()=== fisl(o) - s (o) 0 dp + f;![a-, W-r Gl @)

where S'II (p), S}Z [p) are the same functions that in the formula (3.2) for the equations
with the potentials g(x), g2(x) correspondingly. Using these equalities and also the
formula (2.1), (2.2) the following lemma is proved.

Lemma 4.1. For all values of p from the domain Ilmu > —%, Imu=n, u=p;

~fer(x. ) - er_(x, )} {A,«, (b x,0) = Ay 5 #er}} . (49)

f
_{El+[x i E'2+ s ,u ajifi"i{f {fi| 24_{# x,f ] A2y [;J.,I.,x}}di

where

s (u,x)= el—{x!F;E—(xﬂ‘] J‘ISII{P;;'_SIZ[p]lel_(_,ﬁp}ez_{Lp)dﬂ 24

;o P-u
+ e (%, p)es (x,#]:a[ Py, [é] ~F [ijJ][ el—(:f}fiz{”’}-]Fm :

A] 2-[-{}1 X I} El+{x yk}i_ hu l {p Z{P)JLI-P(LP}EEi-{r! ;JJdp_,.

4 P _.“

s pr(-4)_p: e (t.pler. (0. p)
+é€ (xnuk [x,,“} {P [— |— P ._ +h 24V s
1+ p E &y idp ) ks idp pz . #2 e

S'(p),Sz{p] are the fumctions from (3.1) for the equations with the potentials
@1(x). 92(x).

Let the data {S’-’f[p],Sij{p). Pl {j].P@} of the problems with the potentials
q J-[x] (j =1.2) coincide for Re pze{— o, N):
s'(p)=5%(p),

Si(p)=Si(p). forRep|<yN+n>, Imp=n, n<g,
pe()=pc2). B =P, .
Let’s prove the following theorem.
Theorem 4.1. If the scattering data of two problems q; (x)evic.(x)} (j=12)

coincide for all Re pz = {— w0, N), then for Re u e {— w,N) the following inequalities
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4¢* 1 Co
le1-(x.1) —ep (.}’ < *Cae”] ¢ ), (4.10)
ch,u ‘ Rc,u
N

levs (r.10) -2, () <2 c,(x) @.11)

‘Rey + RE}.'.I
2N

rrN[ 1-

\
are correct,
Proof. Let’s bring proof for Ee._(_\:, ,u]— e3_ {x, _u].

For the conditions of the theorem and from lemma 4.1 for Re ,uz g(-w,N)

_(x, x, Sl N_SE
Ao (px0)==1 & “2];2 (x.11) [ wfl—ﬁ,ﬂ}ez—(ﬁp)ﬂ'ﬁ
IR:p|:=- }"n"+.'r]n1 e

Im p=n

follows.
Granting the formula (2.2), (2.4) we obtain the estimation

X
|ej-_ (x, p1 <~ lm "[I + RKJ-_[x,r1dI] St P [I + C;eﬂ)
—0
for the solutions ej-_[x,p] (= 1,2_].
Using this estimation, by the correlation ([3]

B3
].—_%_ pl—=
5 1Pl
(uniformly in the strip |].m p]ﬂq for every 1 < gy ) we obtain
2xImp —& L2t Imp — &l
e (I+Cae } (1+Cae )2’:

|"1I,2~{F:1J1i -
& ‘S]I(P}_ S]E{de elemﬂezfn(.] + c;e{.‘t )2[] + C;eﬂr
. < f
[Re pl>y N +n* ":’2 _”2‘ (“h 2 ;_|ﬁ'“’“‘2|+R’”‘_2 Wi
G g i 2N N+n2

f 2
g2xlmp 2 (1 + f:;;e“f [l ¥ Cgef’)

Now the inequality (4.9) follows from (4.7)
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2x[m#[1+(:' € )4 fﬂfi’] r} QQ{IIEZWdI{

(. 9)- 2 () <

‘Re,u |+Rapl | —oc
hNl-—————
2N |
\ A
IJ.Im,u{ m}a
" de ]"'{: e c (.I}
‘Reyzhf{ey
N I1-—
2N

Theorem is proved.
Remark.

ler- (1. x) - ez_{,ufx}z A (I +Cre™ )2

is obtained from the representation (2.2), therefore (4.8) is nontrivial in the domain,
where {_ (x} <N,

5. Estimation of potentials,
Mow let’s estimate difference of the potentials q][x}—qz[x} of the considered
problem. For definiteness in (2.3), (2.4) we’ll take a=0 and we'll lead the further
calculations for xe(-e,0), since the case xe(0,%) is analogous to the problem

considered on the positive semj-axis.
By fulfilling of the conditions of Theorem 4.1 we obtain from the formula (4.6),
(4.7), (4.8) :

% T aa o = fls20)-sl(p)er- (v pkr (rop)dp . (5:)

2n

—

|R¢: pI}-hl ,-"'.-'+r]2
Im p=n

Chosen by the same method that in [1] the sufficiently smooth function g{x)
which is equal to zero outside of the interval (xp — h.x). is multiplied by (5.1} and is
integrated. Afier the integraticm by parts we find

L fa0)-a0k@a-L  f5i)- s2eo)

2
J‘U_h |Re pl=4 N +7?

Im p=n (5.2)

*n
x fey_(t.p)es (1. p)g'l0)drdp .
Xg—h
The following lemma is proved.
Lemma 5.1. Let the problems ig il }}f: ViC_(x)}, potentials ¢ J,[ ) be bounded

in the inferval {xﬂ — hyxg) and

()= [@)+ g ()

Then for any continuous differentiable function g(x). which is equal to zero
outside of the interval {xy — h,x; ), the identity
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j'?l-sfp}eZ-{‘ p)g (1)t = I{ ()~ g)0- (Y™ dt + r(p,xp. h)

xo=-h 4=
is correct, where

T Pl *"”" —ex) )+ g (- 20)) ¢

L 4hC_ (In}'"—iitxu}ﬁ— (. xq) xhg'(:]df .

Iﬂ‘“h

m_[p,xﬂ}=r_nax{ sup iej_[f,pl},

i=12 —<tL Xy
(2
‘F_; {"‘ ksﬁ IE|I} 1

[
B_(h.xg)= max4l sup

J=11 xp—h<i<xy
X
g@p)= [P g (.
xp—h
g{x] is chosen by the following way ([1]). Let

65{1]:31 I[—sinl] ey a3
T A

X —-‘1
B

&_(t) do not decrease on the interval (xﬂ, —h,xg— g] do not increase on [xu —--E._xﬂJ y

have n—2 continuous derivatives, be negative, even, be equal to zero outside of the
interval (x; — h,xp) and integral from it on all straight-line be equal to unit.

As the function g(x) we’ll take the solution of the differential equation

g'(x)+ g(x)0_(x)=6.(x) + C5_(x).

(C — const) vanishing for x = x. For x5 — h < x < x; we obtain the inequality

_s_[x}gm(ﬁ,xﬂ]a_{x}gef:txu}a

lg'(x) - 8. (x) < w(h,xq )5 _( il+m:' (xo }Eﬁﬂ‘-{xa}],
wlh,xg)= max lo_(x)-0_(»).

X —hEx, ¥5x,
These inequalities together with Lemma 5.1 lead to the estimation

Jfl t.pJea_(t. p)g (e )de
+r{p,xg,h)< z{g]nip[_m I{l + C_(x) 5 C2(xo)m2(p,xo) "

el lof

Xp

[{g'0)- gl0)0_ (e ar| +

.T-D—.PF

=




The stability of the inverse problem 35

2 i
+ C. {xﬂ )B_ {:ﬂ F] Jm (p, %) [Er.r +18C_(xg ]h(l +C_ (xﬂ}"-'fhc" (o }]]} ;
1P
Whence according to the identity (5.2) it follows, that

fg (tfe (0) - g2 ()l ‘ é J{S; (p)- Sf{p)]x

|-xu | [Re p|>4/ N +1*
Imp 7
2y ven?] 2 [, ) €2 (gl )],
fﬂl (t.p)ea_(1, p)g'(r)dtdp| <= (hJ e H\/NH? IR
+ 2C. (x)B{h, all ]mf, {xﬂ) (4?1 +9C_(xy }Ir(l i v B (xﬂ ]}ieh{:' (xo })J
n\[h’ +n1
mylxg)= sup  m_(p.xp).
iHe p}::-yl'h' +1°
Im p=n

Using the last inequality the following theorem is proved.
Theorem 5.1, If scattering data of two problems g I (x)e F{C 5 [x)} coincide for

all Re p3 c(~o,N) and N + .-r;2 =1, then on domain where
|
ﬂin(ﬂu +1 ]]H[C {x
N +n?

the inequalities

|ijx}—q2{x]52nln[N+n J+3} ’-EECi x}ﬁ, hx)+ Sy [h x}}

YN +n?
v Wl ot

h= S("u’+1q J_ ﬂln[ +1] )] J
s {hx}—ma‘x\{ sup ‘ I:ﬂ

i=i x<f<x+h

?_{h,xz a:-si sup ’q_}-(jl]:, x<0.

L2| v pretex ']

are correct. Fere

B (h.x)= axJ sup g, ()5},

J=1.2] LI{E{J:h"I
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BILALOY B.T.

NECESSARY CONDITION OF BASISITY OF POWER SYSTEM IN £,

Abstract

At the paper the system of power is considered {A[.r]llp" (1); E{r}ﬁ* {r}}, nkz0,
where Alr), B(t) and olt) are complex valued fimctions on la.6]; @ is a complex
confugation. It is proved that at definite conditions on the functions A{I}, B{a‘} and q:{{]
necessary conditions of basisity of this system in L, 1< p <+ is |m{r.‘] = const.

Let’s consider the following “double of powers”
Lo (0 BOF ()}, nk=0, ()
Alr), Blt), ol¢) are complex-valued functions on [a,b], § is a complex conjugation, The

necessary and sufficient condition of completeness and minimality of the system (1) n
L, was obtained in paper [1]. The basic properties of the system (1) in L was

completely investigated in paper [2], in case when {p[t}se” . It appears, this case for
basisity is exclusive.
So, let in some Banach space B “double” system

4 g{g}, n, k=0 (2)
be given.
Definition. The system (2) makes up a basis in B, if for ¥x< B there exists a

unique sequence of numbers {a; .a {, mk =0, such that

N i |l|' "
lim 125:; X} +Y) arx; — x|
m

Wt NT- -w:l 0 i

=0,

where || || is a norm in B.
So, let the functions A(r). B{t) and olr) satisfy the following conditions:
1) Alr), B(t) and o'(t) are measurable on (a.b). moreover

Su[:i"»];aii/]{f]' : ;iB(I]ﬂ; @'{rf jf_é M <+

2) l"=cp{[a,b]} is a closed {:p(a}:np{h]} piecewise smooth simple [ﬂE intl"] Radon’s
curve or simple Lyapunov contour;
3) alt)=arg Alt), plt)= arg B(r) are continuous functions with bounded variation on
la.b].
For definiteness we’ll assume that when the point ¢ =ol¢) by increasing ¢ runs
along the curve I', the internal domain intT" remains at the lefl.
Theorem, Let the fimctions A(f}. B[;) and L[J{:'] satisfy the conditions 1i-3). If the
system (1) makes up a basis in L, 1< p<o, then |f.p(:] = const,

Proof. Let's suppose the contrary. Let

= H?ﬁtifp{:}r > Iﬂﬁllm{:} e
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Since the system (1) make up a basis in f.ﬂ(u,.ﬁ}, then ¥f e L it holds the following

biorthogonal expansion:

£0)= 4603 a,0" () + BOS8,5().

m=ll LE

Let's denote
)= a,9(). (3)

From the basisity and from condition 1) it follows that Srel . {n,b]. Let's

consider the following power series:
Flz)= oz
n=0
The radius of convergence of this series we'll denote by R;. Let’s show that
RyzR. Let R;<R. Since, |pf I is continuous on [a,b], then it is evident that
3, ::[a b|, for which R= f’tp }' Consequently, 38 is the neighborhood G. {ID}
[.f o —6] (at 7, =@ or 1, =b one-sided neighborhood) of point 1y » such that for
VteGslyy) we have: R, <lotf<R, ie. m{in}|up{.*}ﬂ= rs > R,. From the convergence of
; izl

the series (3) in L, it follows that

f
’Ja”q:l"{fﬂf._n —+0, for n— o, where ||,i"||f = _ﬂf{fjﬂdr_
: @
As a result Hﬂ'ntpﬂ{fm =0, n o,
Lolghn, )
I ;
As known, r, :_JT 50, there exists the sequence of natural numbers
limy

L 1om

fuk}'” 1+ My —>o0 for which R, = [hm Tla, J - Since r; > R, then for sufficiently large

"T-"IIE(r{., ”) i.e. |.:1,JJ ™ {11}1, WIEGJ{!G}

Hy

Vi

Thus "a,,l ™ JL Gl u::"ﬁ:—ﬂ, for sufficiently large k. We get the
-p hhag iy |

contradiction. Then R, = R .
Whence it follows that for ¥/ e I.P{a._h} the function F(z) is analytic in the

By s }f';];T| as a result ‘{p{r}"#] |

circle Cp(0)= {EECHZ|{R}. Since r< R, then 38, is a neighbourhood of some point
r € a,b), such that |q:{:‘l-c: R for Wi Eﬁﬂ (z)=|z =05, T+ :‘iﬁ], It is evident that
F*[o(t)]= 7 () almost everywhere on D; (z).

From the conditions 1), 2} it follows that the series iﬂm’; " converges in L, ik

m=(}
Consequently

fia,,a" Edi = Z.:r j"'*a" 0, Vkz0.

[ =il i}
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From this equation and Smirnov’s [3, s.424] theorem it follows that there exists

the function F(z) from the class of Smimov E,(intI'), for which F'(&)=Ya,&".
=i

almost everywhere on I'. By the condition 2) intI" belongs to the class C of Smimov’s
[4. 5.90] domain. Since F,"(£)e L,(T') then again by the Smirnov’s theorem [4, 92] the

function F;(z) belongs to the class £ {mtI} From the previous consideration it follows
that ,*{ (()]= £ [ole)] almost everywhere on ‘DE..{ ). Then from the uniqueness
theorem of Privalov [3, s.413] it follows that F,(z)=F(z) in intI". Consequently
F(z)e Ep{intl'] and F *E(p{r)}z f*(t) almost everywhere on [a,b}, It is proved

analogously that the function @(z)= F: z" belongs to the class of Smirnov E, (intI)

iMﬁ

and @lolr)]= ibﬁ‘fﬁ" () almost everywhere on [a,b].

L e

As a result we get that the function F(z) and ®(z) are the solutions of the
following conjugate problem in Smirnov class E F{intl"}:

A)F*[olt)]+ BE)D" [ole)]= £(t) almost everywhere on [a,b]. @

Let’s consider the system:
0e" (1) BOB” (1))0 - (5)

where A{I]E Alr)- [ﬁ’{.‘ ]'I : E{! I}-[tp .r}] , 50
(0) = arg A() =)+ argo'())and Br)=arg B1)= Bl0) - ars ().
b
It is easy to show that the system (5) is complete in L‘{{a,b} [L + e =1| iff the
A

conjugate problem

Ble)- o'(t)- @7 [oe)]+ 4t)-5'(1)®; [o(r)]= 0 almost everywhere on [a,b]
has only a trivial solution in Ep{":nll"}. So we get that if the system (5) is complete in
Lq{a,h] then homogeneous problem of conjugation (4) has only a trivial solution in the
class E, (intT).

According to paper [1], let’s find the value @ for the system (5):

@ =L{E[a}— B(b)+a(b)- ala)+ %{argq:'{a}— argm'(h}]} + % -1.

2x
Sinceargo'(h) - argt.p'(a] =2r we get:
a=-y+1,

where y :é{a[ﬁ]- ala)- g(b)+ pla)].

By the results of [1] the system (5) is complete in L, iff @ *_il. Again by the
q

results of paper [ 1] the system (1) is minimal in L,;[a,h} ifo=y-1> . i.e. o< £ . As
i
a result the system (5) is complete in L*,{a, b). so, the homogeneous conjugation problem
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From this equation and Smirnov’s [3, s.424] theorem it lollows that there exists

the function ﬁ;{z] from the class of Smimov ,!;',{intl'}. for which F,'(é}= Eané".

m=l
almost everywhere on I'. By the condition 2) intI” belongs to the class C of Smimov’s
[4, 5.90] domain. Since £, [C]E L, {l"] then again by the Smirnov’s theorem [4, 92] the

function F(z) belongs to the class £ . (intI'). From the previous consideration it follows
that F,‘[{p[.rj]=.""[{p{f}] almost everywhere on Dy (r). Then from the uniqueness
theorem of Privalov [3, s.413] it follows that F,(z)=F(z) in intI". Consequently
F(z)e Ep{intf'] and F'[olt)]= £*(r) almost everywhere on [a,b]. It is proved

analogously that the function @ ] Zb z" belongs to the class of Smirnov E (mtl
n=

and @olr)]= ihﬁ" () almost everywhere on [a,b].
w=dl

As a result we get that the function F(z) and @(z) are the solutions of the
following conjugate problem in Smirnov class £ {intl']'

At)F*[ole)]+ B(t)® [o(r)] = £(r) almost everywhere on [a,b]. (4)

Let’s consider the system:
O ﬁ{:)a"m]m.. )
where E{i‘]i [ {]] b B{.r] Blr) [ ’{I;l] ' so
a(t)=arg Alt)=a(r)+ argo'(r)and B(r)=arg B(e)= plr) - argo’(r).
|

p
It is easy to show that the system (5) is complete in Lq{a,b] [—+ —=1/| iff the
P g

conjugate problem

E[t}-{p'{:‘]"l?f{ ]+ Ale)-9 (t)ds [-;p ] 0 almost everywhere on [a b]
has only a trivial solution in ﬁﬂ{mlr}. So we get that if the system (3) is complete in

L (a.b) then homogeneous problem of conjugation (4) has only a trivial solution in the
class Ep(inll"}.
According to paper | 1], let’s find the value @ for the system (5):

=3 Ble)- )+ ) a(0)+ 2 rzo o) argo8) |+ 2 -1
"4 P P
Sinceargg'(h) - argg'(a)= 27 we get:

a=—y+],

where y :-zl;;[ﬁz[h}—a{a]— ,B[!J}-r ,B[f:]].

By the results of [1] the system (5) is complete in L, iff @ £~1~. Again by the
i

results of paper [1] the system (1) is minimal in er(a,b} ifw=y-1> 2 ie @< l As
q g
a result the system (5) is complete in L, (a,b), so, the homogeneous conjugation problem
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Ale)F* [ole)]+ B(e)®~ { t)]=0. almost everywhere on [a,B]
has only a trivial solution in E i {intI“ ). Thus, the problem (4) is uniquely solvable in
E (intT).
Since r < R then it’s evident that 3z, € extI” such that |z[,|<: k. Let’s consider
the function

tp'[f

belongs to the class £, (intI') and moreover

It is evident that the function f,(z)= T
=5

Ale) 15 [ole)}= £(t) on [a,8].
Comparing this problem with (4) from the uniqueness we receive that
Flz)= f(z), ®(z)= 0 in intT". So £(z) is an analytic continuation of the function f(z)
from the domain intI" in C,(0)\intI". But from the uniqueness of analytic continuation
it follows that it’s impossible, because z, e C, is a pole of the function folz) in C,(0).

The theorem is proved.
Let’s formulate the following easily provable lemma.
Lemma: The sysiem

Rel4()o" ()] tm[a(e)e" ()], - (6)

makes up a basis in L'::,{a,f:], Pzl iff the system

4" @) 203" O,
makes up a basis in L, (a.b).
The corollary follows from this lemma.
Corollary: Let the function Alt) and olt) satisfy the conditions 1)-3). If the
system (6) makes up a basis in L* {a b} | < p<+w then er II = const.

Note. The theorem can be proved in common assumptions with respect to the
function A(¢), B(r) and ¢fr).
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DZABRAILOV A.D,, MAYOROVA LV,

THE PROPERTIES OF TRACES OF FUNCTIONS
ON THE BOUNDARY OF A SURFACE

Abstract

At the paper the properties of L - traces of functions of many variables defined
on domain G c E,_ satisfying “the condition of o -semi-horn” are considered. The
estimations of norms of traces of fimctions by norm of kmown spaces B;;"{G :5) of the
generalizing spaces S.M Nikolsky-O.V.Besov (s =1) and the B-spaces functions with
dominate mixed derivatives are proved.

Introduction. At the paper the definitions of the known spaces
B (G:s ), (1
of the functions f = f(x) of the points x=(x:..x )Je £, =E, *..E, of many groups
of variables x, = {.TM e }E £ (k=12,..5), (m +n, +.+n =n) defined on
domain G < K, which satisfies “the condition o -semi-horn™ ([1]) are cited.
A class of surfaces
=g (2)
of dimension m=m +m,+..+m, <n=m+n+..+n (l<a<s<n), where
1<m, <n, (k=1,2...a) is introduced the notation of L » traces on the surface T, is
given, in case when this surface T, is on the boundary 8G of domain
GeClo;H) (3)
and on the base of new integral representations given in monography [1]. the estimations
of L -traces of functions and their corresponding derivatives on the surface I, by

norms of given spaces (1) is proved. Thus it is necessary to note that these spaces in case
s =1 are the generalizations of corresponding spaces

B;5 (G:s).
of S.M.Nikolsky-O,V.Besov (1< p<@ <o, 0 ==) and in case s=n generalizations of
the known spaces S7,B(G) - S.MNikolsky (#==) - A.D.Dzabrailov (p=8) -
LT.Amanov (1< p<f<m).

1.Main definitions and notations.
1.1. Spaces. Let

r=l:r|;...;r_~.} (11
be a “positive vector” with coordinate vectors », = {rh, ;..,;r,-,_ﬂcj [k = l._,i,..ﬁ]l.
Let

] (e (1.2)
be an “integer non-negative vector™ such that 7, , is the greatest integer number smaller

than , , at j=12,..n forall k=12,..,s.




