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THE STABILITY OF THE INVERSE PROBLEM OF SCATTERING THEORY
FOR NONSELF-ADJOINT OPERATOR ON ALL AXIS

Abstract
The stability for non-self-adjoint operator on all axis is studied. The estimations
for the solutions and potentials of two non-self-adjoint operators have been obtained.

The questions about which information about the function g(x) or generally

about the operator L one can extract if the scattering data are known only on an interval
of variation of spectral parameter, has an important value. Therefore from physical point
of view the natural statement of the question about stability of inverse problems is such:
how much strongly can differ two problems whose scattering data coincide in the given

interval of variation p’. Stability of the inverse problem was studied in the series of

works ([1], [4], [5]). For the self-adjoint operator on semi-axis it has got the solution in
the V.A.Marchenko work [1].

In the present paper the stability for non-self-adjoint operator on all axis is
studied.

The results of [1], [2], [3] are used.

1. Operator L.
We'll denote by L an operator given in Hilbert space I.zl:— :r.*_.uo) by the
differential expression :
by=-y"+qx)y. (1.0
We'll assume that g(x) satisfies
|q{x]€€|ﬁ € I'(- ) (1.2)
for £ >0.
We’'ll denote by ¥{C_(x)} the set of boundary-value problems, whose

T se, ). Mg sc ().,

—an

where C, (x) are continuous monotone functions, correspondingly.

2. Special solutions of the equation [y = pz ¥
We'll denote by e.(x.p) the solution of the differential equation ly=S"y,

which have the following asymptotics on infinity for Imp > —%
€y {x, p)~ e™P for x>, e_ {x,p}-— e for x——co.
These solutions are holomorphic by p in half-plane Imp > —% { & is the number

that in the condition (1.2)) and admit the following representations with the help of
transformation operators
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eJx,p}: Ay fﬁ'+(x.r}e”pd-‘ : (2.1)

X

e_ (xf p) —e P 4 ?K # [x,r}e_"p dt . (2.2)

—gh

The kernel K, (x,#) have continuous derivatives which satisfy the inequalities

Lxad
iK‘(xJXii C,e “T for fe i (2.3)
el
|K_(x.t}<C;e 2 fort<x<a. (2.4)
Moreover, the kemels K, (x,r) are connected with the potential g(x) by the
following way:

q[x}= E%K_ {x,x}: —2% K, [x,x}.

3. Scattering data of the operator L.
According to [3] the Wronskian w(p)

wlp)=e_(x.p)e’ +(x.p) e (x.ple.(x,p)
is called denominator (of kernel of the resolving of the operator L). The denominator
w(p) has a finite number of zeros in the half-planc Im p = 0. These zeros are called

singular numbers. Let's denote by py...., p5 the non-real singular numbers, and singular
numbers laying on real axis by pg ... pg . Multiplicity of the root p; of the equation

w{p)=ﬂ is called multiplicity of the singular number p; and is denoted by
m, (k=15)
vip)

The function S{p)=—"-, where
wip)

w(p)=e, (x,_ ple_(x,p)_e\(x,_ ple_(x,p).
is called a scattering function. Parallel with S(p) the function S;(p):
S E
(o= SC2MCp)
w(p)
is used. The Fourier transformation of the operator L

i (xF%IS(p}ef**’frp, (3.1)
= *

Y &
5 === [Sip)e™ P dp (3.2)

is its important spectral characteristic together with scattering function.
Since S(p), S;(p) are the functions of (S) type [3]. the contour of integration is

any straight line in the strip 0<Im p <gg(gg = min{e/2.£,}. &, is a distance from the
axis Im p =0 to nonreal zeros of the w(p)).
The functions

Si ()= pit ()= (3.3)
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characterize the operator L on the pointwise spectrum. Here pj (x) are the polynomials
of the degree my —1 (see [3]). In the case of real potential and the multiplicity m; =1 the
polynomials pf [x} coincide with the normalized factors considered in the work [2].

The scattering functions .S[p] . the non-real singular numbers py..... o, and the
corresponding to them normalized factors are called the scattering data of the operator L.

4. Estimation of the special solutions.
Let’s wrile the integral equations which the kernels K, {x,f}

K, (x.0)+ ?K+{x,u}f+{u+:‘}1’u+ fulx+1)=0, —w<x<t<w, (4.1)

K_(x0)+ }K_{.t,u}f_{u-”}:’u-ﬁ flx+t)=0, —w<t<x<w (4.2)

satisfy, where
1= £+ T7E ) (42)

Let’s consider two problems with the potentials g;(x), g2(x). Let’s compose the
main integral equations for them, and subtract one from another

Kool + [hu+ 0K o (o + (Ao (u+ 0Ky, (xudu + £ 5. (x.6)=0. (4.3)

Kia-(oo)+ [ (u+0)Ky 2 (xu)du + ._Ff],}l—{“ + 1)Ky (x,u)du+ fia_(x+1)=0,(4.4)

where

K+ (x,0)= K2 (%,1) - Kop (x1),
S22 ()= fie(x)= fo1(x).
Ki4. fi+ and K»y, fo, are functions from the equations (4.1), (4.2) for the problems
with the potentials g;(x). g5(x) correspondingly. Since the estimation of the difference
e {x,p)— e, (x, p) is obtained analogously to the problem considered on the positive
semi-axis, we'll calculate the difference of the solutions ¢;_(x, p)—e5_(x.p).
For every fixed x solving (4.4) with respect to Kl_z_(_t,r ) we obtain

(4.5)

( .
K1.z_(x.r]=—{I+F._,J'<;Lfi,z_{x-r}~ Iﬁ_z_(u+r1ﬁfz_{x.u)du}, (4.6)
where g
= [ ulohi.

Note that the validity of the identity
+F ) =0 K K ) @.7

follows from the main equation. The operators K;_, ., ITiZ'J_:_1r are defined by the formula
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Kiif = Jj-’ﬂ-(y,r)f (ekr, ®K_.f ='},;;]_{;,y)f (¢ e

Granting (3.2), (3.3), (4.2) we find
fia- )= fl510) - o 0o + Lo (- e @®)

where Sll (). Slz{p} are the same functions that in the formula (3.2) for the equations
with the potentials g,(x), g2(x) correspondingly. Using these equalities and also the
formula (2.1), (2.2) the following lemma is proved.

Lemma 4.1. For all values of p from the domain Im p > —%, Impu=n, u=p;

~fer-(x, 1) - ez, )} = .}{m{f}—'&’2(5}}{-41,2—{#:3‘:1)' At,z-(#,hx}}ﬂ?: (4.9)

B g

o1 (v 1) - e, (x )} = Hfi‘l (1)~ &'2{’)}{44|3+{#:IJ)— Ay 24 Lﬂsfs-‘f}}ﬂff

x

where

Ay y(,x,0) == & p}ez JFIH] P}L-‘ (. p)er_(e,p)dp +

e, e (. i,[‘p*'i\ ; J_p;_}_ f/__‘_i._]}{w-.(f,f)ez_z{hp]] 7
p=Ppy

P —u

VoA
) sy () ] LU SERTIT I

ey (x peg. (v, #)Z[f”[i - L 4 J][ﬁ*{r’fhﬂ&’p]} ;
P=p

dp Idp o= u =

S I{p],S (p) are the functions from (3.1) for the equations with the potentials
@i(x). a2(x).
Let the data L?f[p),sf (p). pk{j]_.P%,-l of the problems with the potentials

qj{x] (j=1.2) coincide for Rf:p (o, N):
s'(p)=5%(p ]

S]':P 31 ._. for|Rep| 1|||hf+r;i Imp=n, n<g,,

pi()=pc2), B, =P, .
Let’s prove the following theorem.
Theorem 4.1. If the scattering data of two problems q;(x)eViCy(x)} (j=1.2)

coincide for all Re pz 15 {— o0, N], then for Re juz = [— -:-:.N} the following inequalities
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-

¥ e X
Kiof = [Ki(n)f(he, K of = [Ki(ep)f (e
Granting (3.2), (3.3), (4.2) we find |

fia-()=== fisl(o) - s (o) 0 dp + f;![a-, W-r Gl @)

where S'II (p), S}Z [p) are the same functions that in the formula (3.2) for the equations
with the potentials g(x), g2(x) correspondingly. Using these equalities and also the
formula (2.1), (2.2) the following lemma is proved.

Lemma 4.1. For all values of p from the domain Ilmu > —%, Imu=n, u=p;

~fer(x. ) - er_(x, )} {A,«, (b x,0) = Ay 5 #er}} . (49)

f
_{El+[x i E'2+ s ,u ajifi"i{f {fi| 24_{# x,f ] A2y [;J.,I.,x}}di

where

s (u,x)= el—{x!F;E—(xﬂ‘] J‘ISII{P;;'_SIZ[p]lel_(_,ﬁp}ez_{Lp)dﬂ 24

;o P-u
+ e (%, p)es (x,#]:a[ Py, [é] ~F [ijJ][ el—(:f}fiz{”’}-]Fm :

A] 2-[-{}1 X I} El+{x yk}i_ hu l {p Z{P)JLI-P(LP}EEi-{r! ;JJdp_,.

4 P _.“

s pr(-4)_p: e (t.pler. (0. p)
+é€ (xnuk [x,,“} {P [— |— P ._ +h 24V s
1+ p E &y idp ) ks idp pz . #2 e

S'(p),Sz{p] are the fumctions from (3.1) for the equations with the potentials
@1(x). 92(x).

Let the data {S’-’f[p],Sij{p). Pl {j].P@} of the problems with the potentials
q J-[x] (j =1.2) coincide for Re pze{— o, N):
s'(p)=5%(p),

Si(p)=Si(p). forRep|<yN+n>, Imp=n, n<g,
pe()=pc2). B =P, .
Let’s prove the following theorem.
Theorem 4.1. If the scattering data of two problems q; (x)evic.(x)} (j=12)

coincide for all Re pz = {— w0, N), then for Re u e {— w,N) the following inequalities
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4¢* 1 Co
le1-(x.1) —ep (.}’ < *Cae”] ¢ ), (4.10)
ch,u ‘ Rc,u
N

levs (r.10) -2, () <2 c,(x) @.11)

‘Rey + RE}.'.I
2N

rrN[ 1-

\
are correct,
Proof. Let’s bring proof for Ee._(_\:, ,u]— e3_ {x, _u].

For the conditions of the theorem and from lemma 4.1 for Re ,uz g(-w,N)

_(x, x, Sl N_SE
Ao (px0)==1 & “2];2 (x.11) [ wfl—ﬁ,ﬂ}ez—(ﬁp)ﬂ'ﬁ
IR:p|:=- }"n"+.'r]n1 e

Im p=n

follows.
Granting the formula (2.2), (2.4) we obtain the estimation

X
|ej-_ (x, p1 <~ lm "[I + RKJ-_[x,r1dI] St P [I + C;eﬂ)
—0
for the solutions ej-_[x,p] (= 1,2_].
Using this estimation, by the correlation ([3]

B3
].—_%_ pl—=
5 1Pl
(uniformly in the strip |].m p]ﬂq for every 1 < gy ) we obtain
2xImp —& L2t Imp — &l
e (I+Cae } (1+Cae )2’:

|"1I,2~{F:1J1i -
& ‘S]I(P}_ S]E{de elemﬂezfn(.] + c;e{.‘t )2[] + C;eﬂr
. < f
[Re pl>y N +n* ":’2 _”2‘ (“h 2 ;_|ﬁ'“’“‘2|+R’”‘_2 Wi
G g i 2N N+n2

f 2
g2xlmp 2 (1 + f:;;e“f [l ¥ Cgef’)

Now the inequality (4.9) follows from (4.7)
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2x[m#[1+(:' € )4 fﬂfi’] r} QQ{IIEZWdI{

(. 9)- 2 () <

‘Re,u |+Rapl | —oc
hNl-—————
2N |
\ A
IJ.Im,u{ m}a
" de ]"'{: e c (.I}
‘Reyzhf{ey
N I1-—
2N

Theorem is proved.
Remark.

ler- (1. x) - ez_{,ufx}z A (I +Cre™ )2

is obtained from the representation (2.2), therefore (4.8) is nontrivial in the domain,
where {_ (x} <N,

5. Estimation of potentials,
Mow let’s estimate difference of the potentials q][x}—qz[x} of the considered
problem. For definiteness in (2.3), (2.4) we’ll take a=0 and we'll lead the further
calculations for xe(-e,0), since the case xe(0,%) is analogous to the problem

considered on the positive semj-axis.
By fulfilling of the conditions of Theorem 4.1 we obtain from the formula (4.6),
(4.7), (4.8) :

% T aa o = fls20)-sl(p)er- (v pkr (rop)dp . (5:)

2n

—

|R¢: pI}-hl ,-"'.-'+r]2
Im p=n

Chosen by the same method that in [1] the sufficiently smooth function g{x)
which is equal to zero outside of the interval (xp — h.x). is multiplied by (5.1} and is
integrated. Afier the integraticm by parts we find

L fa0)-a0k@a-L  f5i)- s2eo)

2
J‘U_h |Re pl=4 N +7?

Im p=n (5.2)

*n
x fey_(t.p)es (1. p)g'l0)drdp .
Xg—h
The following lemma is proved.
Lemma 5.1. Let the problems ig il }}f: ViC_(x)}, potentials ¢ J,[ ) be bounded

in the inferval {xﬂ — hyxg) and

()= [@)+ g ()

Then for any continuous differentiable function g(x). which is equal to zero
outside of the interval {xy — h,x; ), the identity
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j'?l-sfp}eZ-{‘ p)g (1)t = I{ ()~ g)0- (Y™ dt + r(p,xp. h)

xo=-h 4=
is correct, where

T Pl *"”" —ex) )+ g (- 20)) ¢

L 4hC_ (In}'"—iitxu}ﬁ— (. xq) xhg'(:]df .

Iﬂ‘“h

m_[p,xﬂ}=r_nax{ sup iej_[f,pl},

i=12 —<tL Xy
(2
‘F_; {"‘ ksﬁ IE|I} 1

[
B_(h.xg)= max4l sup

J=11 xp—h<i<xy
X
g@p)= [P g (.
xp—h
g{x] is chosen by the following way ([1]). Let

65{1]:31 I[—sinl] ey a3
T A

X —-‘1
B

&_(t) do not decrease on the interval (xﬂ, —h,xg— g] do not increase on [xu —--E._xﬂJ y

have n—2 continuous derivatives, be negative, even, be equal to zero outside of the
interval (x; — h,xp) and integral from it on all straight-line be equal to unit.

As the function g(x) we’ll take the solution of the differential equation

g'(x)+ g(x)0_(x)=6.(x) + C5_(x).

(C — const) vanishing for x = x. For x5 — h < x < x; we obtain the inequality

_s_[x}gm(ﬁ,xﬂ]a_{x}gef:txu}a

lg'(x) - 8. (x) < w(h,xq )5 _( il+m:' (xo }Eﬁﬂ‘-{xa}],
wlh,xg)= max lo_(x)-0_(»).

X —hEx, ¥5x,
These inequalities together with Lemma 5.1 lead to the estimation

Jfl t.pJea_(t. p)g (e )de
+r{p,xg,h)< z{g]nip[_m I{l + C_(x) 5 C2(xo)m2(p,xo) "

el lof

Xp

[{g'0)- gl0)0_ (e ar| +

.T-D—.PF

=
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2 &
+ o {xﬂ )B_ {:ﬂ F] Jm=(p. %) [Er.r +18C_(xg ]h(l o (xﬂ}"-'fhc" (o }]]} 5
1P
Whence according to the identity (5.2) it follows, that

fg (tfe (0) - g2 ()l ‘ é J{S; (p)- Sf{p)]x

|-xu | [Re p|:~~.," Nenl
Imp 7
2y ] 2 [, c) | €2 (gl )],
fﬂl (6. p)er_(t. p)g (1 dtdp| <= (hJ e H\/NH? IR
+ 2C. (x)B{h, all ]mf, {xﬂ) (4?1 +9C_(xy }Ir(l i v B (xﬂ ]}ieh{:' (xo })J
n\[h’ +n1
mylxg)= sup  m_(p.xp).
{Re pl=y N+n?
Im p=n

Using the last inequality the following theorem is proved.
Theorem 5.1, If scattering data of two problems g I (x)e F{C 5 [x)} coincide for

all Re p3 c(~o,N) and N + .-r;2 =1, then on domain where
|
ﬂin(ﬂu +1 ]]H[C {x
N +n?

the inequalities

|ijx}—q2{x]52nln[N+n J+3} ’-EECi x}ﬁ, hx)+ Sy [h x}}

YN an?
e Bl 402 |+ 1f

h= S("u’+1q J_ ﬂln[ + 17 )] J
s {hx}—ma‘x\{ sup ‘ I:ﬂ

i=i x<f<x+h

?_{h,xz a:-si sup ’q_}-(jl]:, x<0.

L2| v pretex ']

are correct. Fere

ﬁ+{h, :'} axJ sup

J=1.2] LI{E{J:h"I

g, ()5
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