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ASYMPTOTIC ESTIMATIONS OF APPROXIMATION OF FUNCTIONS BY
LINEAR POSITIVE OPERATORS

Abstract

At the given paper the conception of Hegenbauer derivative is introduced and the
asymptotic estimations of the approximation of functions which have the Hegenbauer
derivative by linear positive operators generated by summation of ultraspheric series by
some generalized methods, are established.

Let L., [ 1.1} be a space of functions summable with p-th degree and with the

Syt
weight ,Ln{:c}:(l—,vr“)A 3P
To the functions fel, associate its Fourier-Hegenbauer series

()~ Xar (R (). (D
ni=0
where P7(x) are polynomials of Hegenbauer which form the orthogonal system on the
segment [~ 1,1] with the u(x) weight.
Let ®={p, {1}}, (polr)=1,n= 1,2....) be a sequence of functions defined on the

set G and r,; is a limit point of this set.
The summation of series (1) by the @ method leads to the interval of the form

[1].
Ij{f;x}:-%:jfiﬁf[x}xi (t)sin®* tdr, 2)
r[—Jr' A+ ] 0
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where

K:"{r]=Zmﬂ(ﬂ{malﬂ"{cnsrl 3)

is the kernel of summation of series (1) by the & method.
The expression

n-1
fs’:f{xﬂ}ﬂ A;]"f{xu]— Z,?w {I - cnsr]v,
=

where o, = f(x,) and e, , (v=1.2,...n - 1) are some constants, let’s call the n-th
difference of Taylor type at the x; point.
Here
o1+ -'-] o
At f(x)= II}—EM L{Lx cost + /1 —x? sin:cosm}[sin 0)**do
r| ]—]1'{&} 0
\ 2
is a function of generalized shear [2].
Let’s give the following
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Definition. If there exists a finite limit of the expression at (1—cost)” &) f(x,)
for t =0, then this limit we ll call the n-th derivative of Hegenbauer at the point x, and
we Il denote it by Di”:' flx,) ie.

" .
im0 po ), 4)
=0 (] —cost)

The next theorem gives us the expansion of the functions of generalized shear by

the Hegenbauer derivative and it is an analogue of Taylors theorem
Theorem 1. If for faction f(x) at the point x, exists the n-th Hegenbauer

derivative D f (x,) then at this point there exists the Hegenbauers derivatives of order
v (v=12,.,n— 1), moreover a, = DE”] flx,) and the following relation

A2 £lx0)= 7o)+ 3 DY) £ )i = cose)’ + ol(1 - cost)). (5)
v=|
Proof. From (4) we have

n=2
ﬂ?lf[ } A.lllf{xﬂ}_f{xﬂ}_ zam{i —CGS.I'}I
oSN vl : -t ={J[l —cos.r}.
(1 —cost)™ {1-cost)"”
Whence it lollows that

2 ‘.EN—lf{].u} {,-j_|]
o, = lim—————=D X ls
o] .'El-sﬂ {]_ = Cﬂs"]”_l g f( U)

Continuing so we'll receive
a, =DV f(x,), (v=12.,...n-1). (6)

The statement (5) of theorems follows from (4) and (6).

Let’s denote by Wf’][— 1,1] the set of functions which has the r -th Hegenbauers
derivative at the point x = [., 1,1] :

Let

,uf[“; =} l{l ~cost)' ;EI'J, =12}

The next theorem is some analogue R.Mamedov's one theorem ([3], p.79).

Theorem 2. (basic) Ler f e W [-11] and K*(t)=0. Ifeven at one j=12....

tim gl gl < 0, (7)
then the following relation
: 1 : L o i
lim -ﬁm[ﬂi (f:2) - £ ()= 3 DI () } =D f(x). (8)
= v=l

is true.
Proof. It follows from the theorem | that

A1 £(x) = ()= 3 D0 £(x)(1 - cost)’
im el =D s(x).

(=20 (1 —cost)'
Then according to R.Mamedov’s one theorem ([3], p.75) the equality
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i yal = i)
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will hold if we prove that

: o (8)
,llﬂ 5 |(]—ms.r}";ﬂ e t
where
a,(8)= L7 [B5 (e}0]: Bs (t) = vs ()1 - cose)”,
(0, 0=<t<8;
()= I, s<r<x.
Really

T

a (8)= —cost)' K2 (t)sin** rdr <

e
2
TN —cost) | j‘l I—mst}]' [(1—cose)™ K} {e)sin™ tdt <
1"[]]"[}_ + - ].‘i
2 2
a = - & I_Jrr_.l]
Er[ﬂ.ll {:DSI} I(iucnsf)”J'IKj(t}Sinufdi‘: L —
1"(111" g 113 (l—cnsb)
\2, 21
From here it follows that
., (6) |
L’“l{ ~cost)' GJ (1-cos8) nu I"] ;

Passing here to the limit at r — 7, and taking into account the condition (7) we’ll

get (9). Theorem is proved.
Let’s consider the integral Vallée-Poussin-Hegenbauer [1]

(i)

VA(fix ;I———--—j'l ()47 £(x)sin®* tat,
a3

where
V()= T(n+24+1) n

1 Ccos
4 [) +—] {H‘ + A +—J
. 2

which is a linear positive operator.
it is easy to count that

3

L4
2

2 0(A)(m + 24 + ur[v + A+ ;]
{;]r [,1+ --}]"I:n+v+2;1 +1) '

From which follows that at j=1,2,.. and n—» =

plt= v [{1 -mst)“:ﬁ]~
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_ 1
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S
Ha F[v+ﬂ.+-1] "J
2

3.0, (10)

On the other hand

2 F{x‘u}l"(v + A+ %]

I+

T F{%]I‘l(ﬂ_ + %]

From (10) it follows that it holds the condition (7) of theorem 2, that is why it is

-1;. (11)
n

true.
Theorem 3. If f € W\" [~ 1] then at n— oo it holds the relation

m-2 L
20 -5 o) el L4kt J[ﬂ&f”f(x)wfﬂ]-—%-

oI

The statement of this theorem follows from theorem 2 and from the relation (11).
Let’s consider the Jackson-Hegenbauer integral

Xm
. ni
i x| SIN—

Jr(®)

D, (f:x)=

A fx)sin®* edt, (12)
0 nsin;

—

1
where ——— is a normalizing set.
77 @) :
The integral (12} is a linear positive operator.
For this operator at n — o«

2*1 (.!'c TRy —J
ul = D7, J1 - cost) :0]- = (13)

R
freals)”
203
From this operatorat j=12,... and p >«

i A 1
#E—J] P I[.k+_,r+l+5][3]l. |
T~
Ha F{k A4 l] "
2
i.e. the condition (7) ofthmrem 2 is fulfilled, that is why it is true.
Theorem 4. If f W[~ 1,1] then at n— e it holds the relation

r=1 Zrl"[r + A+ ;—] 1
D 32)- 1)~ T o)1l = —— 21 (0)+ o)} -
L I'L}L + 5}! "

The statement of this theorem follows from theorem 2 and from the relation (13).
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Let’s calculate Iu[*] for the operator (2). Using the formula 7.311 (3) at page 840
from [4] we’ll get that

T(A)2* 24 (v + A) Lﬁ: + A+ ]F{v + 24 (k +1)

=§{*U [;] A + D0k +1- V)00 + v+ 24 +1)

From here follows the next equality:

O F{Hi} 1-0,(r )] (14)

o, (r).

ulT " 2242|2441 1-g,(r)
me _3_[1+11{2A+1)¢3{r}—3 (24 + 3o, (c) + 44 + 8 i)
AT 252 R e )e, @)= 4{A + D, () + 24 +3
[4]
sttt | \)
BT - 4 IO 3}{{9. +1)24 + 1024 +3)o, ()
— 64+ 2024 + 1024 + 5)o, (r) + 32(4 + (L + 2X4 + 3)o, (r) - (16)

—3(A +3)(24 + 3024 + 5)- {4 + 1X24 + s (z) -
23(A + 2024 + D, (2)+ 3(1 + 1024 + 5)o, (2) - (2 + 2)22 + 5)} .

From {14)-(16) and theorem 2 the following corollaries
Corollary 2.1. Let feW,'[-11] and K}(1)=0.If

1-g,(r) 42 +1)
lim ;
—’ol—fpj{‘t} 2A+1

L(fx)- f(x)
ul

then the equality

=D{f(x)

lim
T=4Ty

s true.

This result has been received by the other way in [5] (see p.70 theorem 2.1.2), i.e.
it is special case of theorem 2,

Corollary 2.2, Let feWH![-11] and K} (t)=0. ¥
(z,ﬂ + Dy () - 324 + 3o, (r) + 42 +8 3(4+2)

I (22 + o, (r)- 42 +1)p,(r)+224+3 A+1 7
then the equality

lim {2 (730~ ) - DY 1G] = P £ ().
is true.
Corollary 2.3. Let feW[-11] and K*(t)20. If
lim {2+ 124 + 1024 + 3, (r) -
—6(2 +2)24 + 1)(24 + 5)o, (r) + 32(4 + 1)(4 + 2)(& + 3)p, (r) -
~3(A+3)22 +3)24 + 5)- (A + 124 + Vs (r) -

~3(4 + 2)24 + Do (r) + 3(A + 124 + 5)p (z) - (& + 2022 + 5)1 ' =8(1 + 3),

then the equality
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T=Fly

lim ﬁq[ﬁ (£3%)- £(x)- DV £ (<)) - DY £ ()] = D £ ().

is true.
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