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ON SOLVING A SYSTEM OF THE FIRST ORDER PARTIAL DIFFERENTIAL
EQUATIONSIN DISTRIBUTIONS

Abstract
In the paper the motion of vibro-correctness was introduced and the conditions
were obtained under which the system of the first order differential equations with

generalized effectsis vibro-correct.

Let it be required to find a solution of the system
x = f,(x y,u,9,t,8)+ ¢, (x.u,t,shlt),

: ()
Vs = £, (% ¥,u,9,t,8) + @, (y, ,5t)4(s)
in the rectangular G = (to 4 )>< (SO, S, ), satisfying the following conditions
X(t,,)=w,(s), seS=(s,.s), o

y(SOat)z V’z(t)v teT= (tO’tl) >
where derivatives are understood in the sense of generalized functions theory, f;,y; are
n, -dimensional functions, i=1,2, ¢; are n xm matrices, (u(t), S(S)) is m+m,
dimensional function of bounded variation, (L](t), 9(3)) are distributions of zero order [1,
p-203-208].
In the case, when ¢; =0, i =1,2 the analogous problems were studied in [2] and
in the case, when @, =b (t,s), i=1,2 in [3].
Definition 1. For the absolutely continuous function (u(t),%(s))e AC,, (T)x

x AC,, (S) the function (x(t,s), y(st))e C(T; L" (S))x C(S; L" (T)) is called a solution of

the problem (1), (2), if it satisfies almost everywhere in G the system of integral
eguations

x(t.9)=v1(5)+ [[1, (. 5). Y. Ehu(e) 9(6) 7.5)+ 0, (e, Shu(e) v sl

3)

S

ys)=10)+ [0t )yl hu) 8ot )+ 0 o) Ser )il o

where C(T; L" (S)) is the space of continuous mappings T — L"(S).
Let the following conditions be fulfilled:

a) v, (S) elL” (S): ¥, (t) elL® (T);

b) vector functions f,(x,y,u,9,t,s),i=1,2 are continuous on (X,y,u,9)e R ™M™
for a.e. (t,s)e G, measurable on (t,s) for all (X, y,u,S) ;

¢) matrix functions o, (X,u,t,s) and ¢, (y, 9,s,t) are continuous (X,u,t)e R"xR™xT
and (y,19,s)e R xR™ xS for ae. S€S and teT, measurable on s€S and
teT for all (X,u,t) and (y, 4, s) respectively;
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d) for the fixed function (u(t),%(s)e AC., (T)x AC (S) and for any functions
(x(t,s) y(st))e Su(G)={x y)eClT:L" (S)x s L™ T)) %= (S) (g < R
) <R SES, R>0}
||f x(t,s) y(sthut) Hs)t.sf<m(ts), i=12;
o, (x(t, s).u(t ,t,s)||<n1 t,s),[lo,(y(s,t) &(s) st)<n,(st),
1,2

o
where m(t,s)e L(G),i=12;n,(t,s)eL, (T,L(S)), n,(st)eL,(S,L(T)), besides, for

95060, (.30 (6) and () ) ACy <A 1)
o hul(r). o) .0) £ (X0 W thu(e) (.0 o = [ (W YR(e) -

)

)e
fi(

—x(f,-xm(%,s)dﬂfpi(a((f),amv(a,-)—y(o,-xw ou(x(to)ultht.o)-

LM N < H LK) K T [ou(5s S e)
_(pZ(y(S’T) S’TMLZ M (1) r2(3(s ’S]|y S, T S’Tmu‘z(to,t)’

holds, where 7, (u(tht)e L(T), p,(9(s)hs)e L(T),i=1.2, 1,(ultht)e L (T), r.(d(s)s)e
eL,(S), Ge =(t),t)x(s),8), t, <t<t,, s, <S<S.

Theorem 1. Under the conditions a)-d) for the fixed absolutely continuous
functions u(t), 8(3) there exists a unique local solution of the problem (1), (2).

The theorem is proved with the help of contracted mappings principle.
In the case when (u(t),9(s)) (or at least one of them) are functions of bounded

variation the defining of solution of the problem (1), (2) in the integral form (3) meets
difficulties connected with extension of a definition of multiplication operation of the
singular generalized function U(t) on the discontinuous function @, (x(t,s)u(t).t,s) [1,

p.214-215].

Definition 2. Let the sequence (u,(t). 9 (s))e AC, (T)x AC,, (S). k=12 in *-
weak topology of the space VB, (T)xVB,, (S) converge to the function (u(t).d(s))e
eVB, (T)xVB,, (S). If the corresponding solution (x,(t,s), y,(s,t)) in *-weak topology
of the space VB(T;Lnl (S))xVB(S; L™ (T)) converges to some function (x(t,s), y(s,t))e
eVB(T;L”l (S))xVB(S; L™ (T)) and limit doesn't depend on the choice of sequence
(uy (t),9,(s)), then the limit is called vibro-solution and problem (1), (2) is called vibro-

correct on input of bounded variation [4, p.36-57].
Investigating the vibro-correctness we’ll assume that besides the above
mentioned the following conditions are fulfilled:
e) functions f; (X, y,u,S,t,S), i=12, ¢, (X,u,t,s), (pz(y, 9, S,t) satisfy the growth
condition on infinity with respectto X, y

[f.(cy.u,8ts)=M +N, (&8)y]+C, (u8L,5),

o, (x.u,t,s)| =M, u,t)||><||+C(pl u,t,s),

o, (y. 8. s.t)=M,, (&5)Y] + C,, (9.5,

for xeR", yeR™, ueR™, $eR™,t,seR, where M ; (ut)t)e L(T),
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N (9(s).s)e L(s). M,, (u(t)t)e L, (T). M, (8(s).5) L.(S).C; (ult). () t.s)e
€L(G). C, (u(tht.s)e L.(T.L(S)). C,,(8(s)s.t)e L, (S:L(T)). ult) e AC (T).
.9( )e AC,,, (S);

f) functions ¢, (X,u,t,s) and (pz(y, 9,s,t) are continuous together with partial
derivatives @,,, @, and @,,,¢,; at xe R", ye R® ueR™, 3eR™ teT,seS.
Besides, the functions (pl(x,u,t,s),(plx(x,u,t,s), Oy (X,u,t,s) and (pz(y,g,s,t),
(pzy(y, S,S,t), (pZS(y,S,S,t) locally satisfy Lipshitz condition with respect to X and
y respectively;

g) systems of the first order partial differential equations

dk
d_p =0 (ka p,7, O-)a k(u)= § 5 (4)
dh
- ¢,(h.a,0,7), h(9)=7, (5)

are locally solvable for £eR", ne R™, p,ueR™ . q,9eR™,reT,0eS, where
7,5 take part of parameters.

Denote local solutions of the systems (4), (5) by k(é, p,u,r,a), h(n, a,9, O',T). By
the theorem on continuous dependence and differentiability on initial conditions and
parameters [4, p.44-45; 5; 6] it follows that the solution k(.f p,u,z, 0') of the problem (4)

is continuous with the partial derivatives K.,k for e R", p,ueR™,7eT,0c€eS,

where ||p— u|| is sufficiently small, besides functions K,k.,k, locally satisfy Lipschitz
condition with respect to &. Analogous statements take place for the function
h(n,q, 9,0‘,2’).
Functions (g, p,u,r,a), h(n,q,&,a,r) have the properties [4, p.43]:

k(& uurz,o)=¢ , hn990,7)=7,

k(& p, + p.u,z o-) k(k(, p,,u,z,0), P, P, + P.7,0),
h(n q, +0,.%0 7.') (h(n,ql,g,a,r),ql,ql + q,a,r),
k(k(g, pu,z.o)u,p.r.0)=¢,

(h(n g,%,0, r), 4,0,0, r) =7.

Solutions X(t s) y( ) of the system (1) responding to absolutely continuous

=0

inputs u(t), %(s); u® =u(t,), 9° = 9(s,) and satisfying the condition (2) we’ll seek in the

following form

x(t,s)= k(z(t,s),u(t),uo,t,s),

y(s.t)=hlo(st).9(s).9°,st)
Then, taking into account the last properties of functions k(f, p,U,T,O‘), h(n,q,&,a,z’),
we have

zt,s)= k(x(t,s),uo,u(t),t, s),

o(st)=h(y(st).9(s).9°.st).

From here it particularly follows, that

(57

(6)
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2t,,s)= k(x(to,s),uo,uo,to,s): X(ty,S)=w,(s),
ofs1)=hly(s,1)8°.9°.5.t)= y(s,.0)=v:0).

Further, taking into account properties of functions k and h subject to (1), we
obtain that functions 2(t,s), @(s,t) are solutions of the system

z = ‘I’l(z,w,u,s,uo,so,t,s),

o, =Y, (z,a),u,S,uo,So,t,s)

(7)

and satisfy the conditions
2t,.8)=w,(s), se S, w(s),t)=w,(t), teT, %)
where ¥, (z,a),u,19,u°,l9°,t,s)= k. (k(z,u,u°,t,s),uo,u,t,s)fl(k(z,u,uo,t,s), h(w,S,HO,s,t),

u,9,t,8)+ k. (k(z,u,uo,t,s)uo,u,t,s), ¥, (z,w,u,&,uO,SO,t,S)z h, (h(w,&,&o,s,tlgo,g,
st ), (k(zuu'.t.s)he. 9.9 st)u.gt.s)+ h (hw.9.9°.st)9°.9.5t).

Theorem 2. Under conditions a)-g) for arbitrary function (u(t). 9(s))e VB, (T)x
X VB, (S) such that [u(t)-u’|<r, vteT,

.9(5)—190“3 r,vseS there exists a unique

solution (z(t,s),w(s,t))e C(T'; L" (S'))x C(S’; L" (T')) of the problem (7), (2), where
s—s, I, t'—t, aresufficiently small, T'=(t,.t'), S'=(s,,5).

Proof of the theorem is led by the generalized principle of contracted mappings
1, p.82-83].
- Th]eorem 3. Let conditions a)-g) be fulfilled. Then there exists local vibro-
solution of problem (1), (2) on inputs of bounded variation.

Proof. Consider a sequence of absolutely continuous functions (uy(t),3,(s)),
k=12,.., approximating the function (u(t),9(s)) of bounded variation, i.e. *-

&imuk(t)zu(t), t <t<t’, *- lim 9 (s)=9(s), 5, <s<s', where |u(t)-u(t, ]| <r, teT’,

||8(S)—8(SO)||<r, seS', r is sufficiently small. By theorem 2 for each absolutely
continuous  function (uk(t),gk (S)), k=12,. there exists a unique solution
(% (t.5). yi(s.t)) e C(T", LY ()} C[S, L™ (")) of problem (1), (2):

% (8.9)= 19+ 1,04 (7. byl Pt (e) 8, (S . 5)+

to

+¢, (% (z,8)uy (z). 7,8 (7)]d 7, (3)

V(s )=pa0)+ [[1.(x (L0} vy (0,000, (). 9,0 hto) +
+0,(Vi(0.0). 9 (0).o.t)9 (0)ldo ., k=12.... (.5)eG'.
Suppose

s t
X, (t.9)= [|x(t.o)do. Yi(st)=[|yi(s.7)dz.
S o
From (8) we obtain
t

X,(1.9)= o (X, 5kt + [ A0, 1.0+ o) ©)
ty S
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t 5
Y, (st) J.akz X, (7, Sdr+Iﬁéz)(G)Yk(t,O')dO'-ka)i(f), (10)

where a&()— (U () o (Ut D)o ()II () M (u(tht). £(s)=
Ny, (9(s)s). AL

2(s)=N;(5(s)s) ).s)|4 (s)t,wE):nwln_ ol
¥ ”[ (0).9,(s)t.9)+C, (ugt ,t,s)||uk t)||]dsdt o =l ir

+ jj[cfz (u ¢ Sk(s),t,s)+C (3 (sht. 5|4 (o) Jasct .

Applylng to (9), (10) Cronwall lemma [7, p.10], we obtain

Xk(t,S)S ﬁﬂ&l)(a)ﬁ (O',t)dO' + a),(f)]exp J.ai(f)(t)dr , (11)
5

S

{J.ak rsdr+a) ]expjﬂ s, (t,5)eG. (12)

Substituting (12) into inequality (11) and again applying Cronwall lemma [7,
p.68], we obtain

X, (t.5)<n expM, [[a? ()8 (s)dsutt . (13)
/)

Analogously we have

Y@J<%edepk )BY (s)dsdt . (14)
where m(( ) = a)k exp jﬂ dS+ a)k Iak

(1)

M —a)k expfak dt+a)k kjﬂk S,

M, =exp Ja dt+jﬂ

From definition of *—Weak convergence of the sequence (U, (t),9,(s)), k=1,2,... it
follows that

sup j||uk (t)" dt = supVar, lu (tm < 400,
k T K
sup i“gk (S)ﬂ ds= Slipvar; |9 (s) < +e0 .

From properties of functions k and h it follows that z(t,s)=k(x(t,s),u,(t, hu, (t)t,s),
o, (st)=h(y,(st).9 (s, ). %(s)st), k=1.2,... are uniformly bounded in C(T', L" (S’))x

X C(S’, L™ (T’)). Functions (z(t,s),®,(s,t)) almost everywhere in G’ satisfy the integral
equations
t

z(t,8)=w(s ILP 7 (v, 8) o (5,7 (7). S (8 Ui (to ) & (s ) 7. 8)dl7

)

< (15)
o (st)=w, )+ ijz (z(t.0)o(o.t)ut). 8 (o) u (t) (s ) t.o)do,

S
k=12,.,(t,;s)eG".
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We’ll show that sequences (z(t,s)w,(s,t)), k=12,... converge to function
(zt.s)o(st) in CT,L"(S))xC(S;L™(T")), where (z(t.s)@(st)) is a solution of
problem (7), (2°) at (u(t), 8(8)) :

2.5)= 1, () + | %, (e Shols.chu(e) Ashult, . (s, . s

t

t)+ T‘Pz(Z(t,a),a)(a,t),u(t),&(a),u(to )1 %(s)ht,o)do.

For this we estimate the quantity &z (t,s)= z(t,s)- z(t,s),00,(s,t)= o, (s,t)-
— w(s,t). We introduce functions

(16)

5Z,(t,s)= j||5zkta)||da 5Q,(st)= j||5a;k (s7)dr.

Analogously to obtalnmg estimates (13), (14) from (15), (16) the following

57,(t.5)- [nnw 20,0, (0). 9, (Shuy ). (5,11,
—W(zoult)S(shul, L8l )t sosct j
59, (s1)- [IIII‘P 2.0, (0190 1. 5 (5 .9)-

a7
—W(z.o.ult) () ult, hI(s, Lt ctds J

where ¥ =(¥,,¥,), lirr(} Ole) =| are derived.
>0 g

From (17) by virtue of Lebesgue theorem on bounded convergence it follows that
Ilim 5Z,(t,s)=0, Ilim 5Q,(st)=0, (t,5)eG'. Consequently, sequences (z(t,s)
w, (st)), k=12,... converge to function (z(t,s)w(st)) in C(T’; L" (S’))x C(S'; L™ (T')).
Then subject to transformations (5’) we have
ulto bt.s),

X (t,5) = k(z(t. ) ui (t). U 1o )1, 9) X(t, ) = k((t, ) uft)
Y(st)=hle(st) 8 (s) (s ks t)vst)=hla(st) ds) s )st),  (8)
k=12,....
Using boundedness of sequences (U, (t),9(s)) and (x(t,s),y,(St)), k=12,... in
VB, (T")x VB, (S) and VB(T",L"(S))x VB(S’;L™ (T")) we obtain, that

supvartg”xk(t, < 400, supVar;”yk )||Lz <400,
k k

L"(s)
From (18) we obtain that sequences {X,(t,S),y,(s,t)} *-weak converge to the

function (x(t,s), y(s,t)) in VB(T’; L™ (S’))x VB(S" L™ (T’)). The theorem is proved.
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