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A HARNACK INEQUALITY FOR DEGENERATE PARABOLIC
EQUATIONS OF THE SECOND ORDER IN NONDIVERGENCE FORM

Abstract

A class of non-uniformly degenerated parabolic equations of the second order of
nondivergent structure with, generally, speaking, discontinuous coefficients is
considered. For nonnegative solutions of these equations a Harnack inequality has been
proved.

Let R,,, be (n+1)-dimensional Euclidean space of points (x,¢)=(x,,...,x,.?),
D be bounded domain in R,,,, 8D and T'(D) its Euclidean and parabolic boundaries of
Drespectively, (0,0)6 D . Let’s consider in D the following parabolic equation

n 2 n
LuzZaﬁ(x,t)aij: +Zbi(x,t)%+c(x,t _8_14:0 (D)

i,j=1 X igel i ot

n+l »

under assumption that ”ay (x,t)“ is a real symmetric matrix, moreover for all (x,z)e D

and for any »-dimensional vector & .

,Uzn:;ti (xat)giz < Zn:ay (xit)gifj < /U_lzn:/li(xat)éiz' (2)
i=1 i=1

i,j=1

Here ue(0,1] 1is constant, A, (x,t)z Qx|a + \/H)a , |x|a = Zn:|xk|ﬁ, -2<a;<2;
k=1

i=1,..,n.

Relative to the minor coefficients of equation (1) we shall assume that for all

(x,t) eD

b, (x,t) by s i =1,...; — by < c(x,2)<0, (3)
where b, is some constant. The aim of the present paper is proof of a Harnack inequality
for nonnegative solutions of equation (1).

We mean by solution of equation (1) its classical solution, i.e. function
u(x,t)e C*'(D)N C(E) which turns (1) into identity.

Note that for nondivergent equations in the form of (1) principle part of which
satisfy the Cordes condition, the analogous result has been established in
R.Ya.Glagoleva’s paper [1]. In the work of N.V.Krylov and M.V.Safonov [2] it has been
shown that for the validity of a Harnack inequality the Cordes condition is unnecessary
(see also [3-4]). In the case b,=c=0 and ;20 (i = 1,...,n) the above mentioned
inequality has been proved in paper [5]. As to second order parabolic equations of
divergent structure we note in this connection classical papers of J.Nash [6] and J.Moser
[7] (see also [9]). Specially note that the approach being used in the present paper based
on the statement called in E.M.Landis [9] monograph “The lemma on increasing of
positive solutions”.

Let’s agree to some denotations. For 7-dimensional vector x” and positive

n _ .0
numbers R and k we shall denote ellipsoid {x:z(’cl‘R—jl‘L(kR)z} by Ery (xO), ball

i=1
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{x:‘x—x0‘<R} by BR(xO). Further let’s for ¢' <t C}l;’,’: (xo) be cylinder
Era (xo)x (tl,tz). Notation C() means that the positive constant C depends only on

contents of brackets. We shall use the assertion proved in paper [10].
*-3bR? to—K

Let Cl(xo,to)z C}i}?sz"o(xo), Cz(xo,to)zc,t:;l_sz’to (xol C3(x°,t0):CR'9l B (xo)\
)

5bR® , bR?
A

- E 0 2,0
c 2 2 (xo), C“(xo,zo):q,,;ﬁ”’* * (xo), where  exact value of constant
R;8— ’
2

b(a,y,n)e (0,1) be defined in [10]. Here and later on o =(al,...,an). If (xo,to)z(0,0),
then we shall denote the set Ci(0,0) simply by C';i=1,....4.

Let GCR,,, be some bounded domain. Function u(x,z)e C*'(G)N C(@) is
called £ -subparabolic (£ -superparabolic) in G if Zu(x,t)>0 (Lu(x,r)<0)
(x,t)eG.

Lemma 1. ([10]) Let Cl(xo,to)c C* and domain G which intersects Cz(xo,to)
and has limiting points on F(Cl(xo,to)) be situated in Cl(xo,to). Let positive £ -
subparabolic function u(x,t) vanishing in T(G)N Cl(xo,to) be defined in G . Then there
exists such R, (a,/l,n,bo) that if R<R,

mes(C3(x0,l0)\ G)Z a mes(C3 (xo,to)l a>0, 4)
and relative to the coefficients of operator £ conditions (2)-(3) are satisfied, then

sup u(x,t)z (1 + n(a,y,n,a)) sup u(x,t) .
(x.t)eG (x.t)eGNC? xo,to)

for

Lemma 2. Let (xo,to)e C' and relative to domain G and £ -subparabolic
function u(x,t) all the conditions of the previous lemma except of (4) be satisfied. Then
for any K >0 there exists such 5(a,,tt,n,K) thatif R<R, and

mes(G)< 5mes(C1 (xo,to )), 5)
then

sup u(x,t)z K sup u(x,t).
(x.)eG (x,t)eGﬂCz(xo ,t")

. 1
Proof. Let’s constant 7 of the previous lemma corresponds to « ZE and p be

the least natural number for which (1 + 77)" > K . Suppose
4"[s(19) - 4(17)' |
o= .
2(17)2l1+1 pn+l
Divide the difference C' (xo,to )\ C’ (xo,to) by parabolic boundaries I'; of cylinder

C=£ 4" (t‘) —bRZ(HﬁJ,sz; i=0,l,...p—1
R;1+7 p

into p parts. It’s clear that I, coincides with F(Cz(xo,to)). Denote for i=0,1,...,p —1

sup u(x,r) by M, and let u(x,z) reach its value M, at the point (xi,ti)e [. It’s
(2,0 )eGNT;

easy to see that C' (xi,ti )C C*. Let’s consider cylinders
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( ) / 1?;2 24 A () 7%}7}32 '
B, —C g " (xl)’ B ZCR s (xl)
’p 17p
and set
B t"—#bRZ,z’—%sz ) _t"—%sz,t’—%sz )
B/ =C 3 (xl)\c s’ 3 (xl);
R—— R,—
17p P

i=0,l,..,p—1. Assuming C, =C'(x°,¢°) we obtain that BY) =C,,, for i=0,l,..,p~1.

i+1

We have
mes(Bgi) \ G)Z mes(Bgi))— mes(G); i=0,1,...,p—1. (6)
On the other hand for i =0,1,...,p —1
n+l
mes(BY))= 22 bR’”ZHR 2 [5 (19) - 4(7). (7)
(17 p)”+

where ), is volume of 7 -dimensional unit ball. Besides, according to (5)
ak

mes(G)< & mes(C1 (xo 10 )): 54Q, (17)"bR™? ﬁ R2. (8)
k=1
Using (7)-(8) in (6) and taking into account the choice of & we conclude
mes(Bgi) \ G)Z %mes(Bgi)); i=0lL.,p—-1.

Whence according to lemma 1 it follows that

My 2 (405 i=01,..p =1,
where M , = sup u(x,t). Thus,
(x,t)eG

>(1+7) M,
and the lemma is proved.
Let now G be an arbitrary domain situated in C' (xo,to), where (xo,to)e C', and
R<R,. We denote by #(G) the set of all £ -superparabolic in G functions and denote

by # +(G) the set of all nonnegative £ - superparabolic in G functions. Let for S e [0,1]

Ay (xo,to)z A" (Cl (xo,to))ﬂ {u :mes(Cl (xo,to)ﬂ [(x,2): 1e(x,2)> 1])2 ﬂmeS(Cl (xo,to))};

7/,2e (xo,to)zinf{u(x,to):x € 5Rl(x0)u € ﬂg(xo,to)};

2
75 = infors btk 7(8)= limp.
It’s easy to see that 0< }/(ﬂ)<1 and function }/(ﬂ) doesn’t decrease by £ . It can be
shown that the function y(f) is continuous on [O 1]
Lemma 3. Let u(x,t)e% (Cl(x ,t ), (x ,ZO)eCI, R<R,. If there exist
pe [0,1] and & >0 such that

mestC! (.1 )N [(x.0): ) €]} pmes(C (.10
then u(xt ) ¥(B) for xeg ( )

Ry
The statement of lemma is follows from the definition of function 7/(,8 )
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Lemma 4. Let —u(x,t)e %(Cl(xo,to)), (xo,to)e c', R<R,. If there exist
pe [0,1] and v >0 such that u(xo,tO)ZV and

mes{Cl (x",t" )ﬂ {(x,t): u(x,1)< ﬂ} > ﬂm&?(cl (XOJO ))

then
\ 1
su u(x,t)Z—(H—j. )
(x,tkClEco,tO) 2 1- y(ﬁ)
Proof. Suppose that (9) isn’t satisfied. Then there exists & >0 such that if
a)(x,t)zM —1, then

v

su%) a)(x,t) = =a.

(x,t)eCI xo,to) l - y(ﬂ)+ 81 -

Let z(x,z)zl—M. Since ¢(x,£)<0, then z(x,t)e ,4+(C1(x0,to)). Moreover,
@

if u(x,t)ﬁ%, then z(x,t)z 1. Applying lemma 3 for £ =1 we obtain z(xo,to)z y(ﬂ). On

the other hand by the condition a)(xo ,t° )2 1, therefore

0 .0
l_izl_sz(ﬁ)

29

4 4
ie. a = _ which is impossible. The lemma is proved.
1-7(B)
Theorem 1. The following limiting equality holds
Jim y(8)=1.

Proof. At first let’s rephrase the statement of lemma 2. Let u(x,t)e #7(G),
”‘r(c;)ﬂc‘(x",zo) =1. Then for any K >0 there exists 6(05,,u,n,K) such that if
R<R’ (a, u,n K ,bo) and condition (5) is satisfied, then

. 1
(x,t)e(;r?cf;(xoyto)u(x,t)z 1- ra (10)

In fact, let G'={(x.0):u(x,0)<1},v(x.t)=1-u(x,t)— [t~ ¢° + 4bR?), where
positive constant C, will be chosen later. We have

Lv=c(x,t)— Lo(x,t)+ C, + Clc(x,t)(t 1"+ 4bR2)2 o (1 - 4bb0R2)— b, .

1
2,/2bb,
function v(x,t) will be £ -subparabolic in G'. At first suppose that G'[) Cz(xo,lo);t D.

Two cases are possible: 1) sup v(x,t) >0, 1i) sup v(x,t) <0.
(x,t)EG’ﬂCz % ,to) (x,t)eG'ﬂCz (xﬂ,to
Let’s case 1) occurs. Then according to lemma 2 if 6 corresponds to the constant
2K , then

Let’s subordinate R° to the condition R° <

and choose C, =2b,. Then
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1— inf u(x,r)> 2K(l—( inf u(x,t)—4C1bR2),

(x,t)eG’ x,t)eG'ﬂCz(xo,to)
ie.
inf u(x,t)2£—8C1bR2.
(x,t)eG'ﬂCz(xﬂ,to) 2K
Let’s subordinate R’ to the additional condition R < ;
4K \|2bb,
Then
inf u(x,t)zzK_l—Lﬂ—i. (11)
(r0)eGNC(x.0) 2K 2K K
If the alternative ii) occurs, then
inf t)>1-2ChR". 12
(x,,)ec%gcz(xo,,o)u(x, ) 1 (12)
1
Let’s subordinate R’ <————— to the third condition. Then from (12) we again
2K,/2Kbb, :
. L , 0 . 1 1 1
obtain estimation (11). Let’s now fix R =minjR,, , , .
2\2bb, 4K .[2bb, 2.2Kbb,

Then (10) follows from (11) since u(x,z)>1 for (x,t)e G\G'. If G'ﬂCz(xO,t°)=®,
then u(x,t)zl for (x,t)e GN Cz(xo,to). Thus inequality (10) is proved.

Let’s return to proving of the theorem. Suppose that its statement doesn’t occur.
Let’s fix arbitrary &, €(0,1). Then there exists a<(0,1) such that y(8)<l-a for

B e(l—gz,l). Assume in (10) K=i and choose corresponding & and R°. Let
a

& =min{s,,6}. By definition of function y(f) there exists R, <R" such that

yh (ﬂ)<1—% for Be(l—e&;,1). Let’s fix arbitrary S, €(1—&;,1). Then there exists

point (xo,to)e C'(at R= R,), function u(x,t)e ;4;; (xo,to) and point x' € 2R | (xo) such
13
that

u(xl,t0)<1—%. (13)
Let D'= {(x,t): (x,1)e Cl(xo,to),u(x,t)< 1 } According to the definition of class
;4;; (xo,to) we have
mes(D')<(1- , )mes(C1 (xo ,t° ))S 5mes(C1 (xo 10 ))
Then according to (10)

a
inf t)21-—
(x,t)eDl'rr]lCZ (xo z° )u (x’ ) 4

Taking into account that u(x,z)>1 for (x,¢)e C? (xo,to )\ D' we conclude

i a
(x,t)elngxo 0 )“(x,t) >1— Z ’

and, particularly,
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1,0 a
ulx' ,t" 121——.
()1
The last inequality contradicts (13). The theorem is proved.
Lemma 5. Let R<R,, ce(0l], H, e [%,b} J=12x" €&,,(0), - H'R* <7<

a, a; a;
i 1+4 1+4

2 I+ SRty 0.2 .
<—H,R*,2H,R 2 <4H;'R 2,x} +H,R 2 <x"<x?-H,R 2;i=1..,m%={(x1):
x| <x,<x’;i=l,...n;t—2H,R* <t<r}.

If u(x,t)e #" (%), u(x,r—2H1R2)21 for xegR;a(xO), then there exists such

a:
I+

m(a,y,n,b,Hl,Hz) that u(x,z')z o™ for xi1 +H0Rl+% <x; Sxiz -H\R %;i=1..m
H,=min{H,,H,}.

Proof. Without loss of generality we’ll assume that x° =0 and 20 < H, g . Let’s
fix point (x*, z’)e # such that

[24
1+

1+
1 2 * 2 2.5
x; + HyR <x; <x; —HR *;i=1..n.

2 *
Let’s denote £ =—2-, y= ol > - We consider set
4H, 2H\R
N [xi—(t—r+2H1R2)yi]z 2 252 2
S=1(x,0):> T <§(t—r+2H1R )+a R*; t-2H,R*<t<rt}.
i=1

It’s easy to see that set S is entirely situated in oblique cylinder

n N Vs 2
Slz{('x’t):z[Xi (t T+2H1R )yz.|2 <2§H1R2+O'2R2; T—2H1R2<Z<T},

i=1 Ra’

On the other hand on the lower base of S,, i.e. at =17 —-2H,R*,
2 2 2
"X H H
Y« 09 R + 6 R =R + 07 R < HIR.
o R%  4H, 2

Thus, for point (x,r—2H1R2) of the lower base of S, the inequalities

o G 1%

1+ I+
|xi| <H,R ?;i=l,.,n occur. Taking into account that x! <—-H,R 2, x’>H,R 2,
we conclude x! <x, <x’; i=1n. By that we have shown that the lower base S, is

situated in % .
Further for the points of upper base of S,,1.e.if t=7

N (xi_zH Rzyi)_ N (xi_x:)z
3l 2R) gt

o
i1 R™ i1

<HZR*.

o
1+

Q,
. * . * I+
Thus, for the noted points ‘xi —xi‘<H0R 2 ie x,<x, +H,R 2 <x! and

* l+ﬂ . . . =
x,>x, —HyR ? >x}; i=1,..,n. Thus, upper base of S, is also situated in #. It
follows from convexity of % that both the oblique cylinder and set S, are situated in % .

Note that parabolic boundary S is the sum of sets T(S) and T,(S), where
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rl(S)z{(x,t): 1 . _T;jHle)y"]Z —&le—7+2H,R? )+ 0*R?; 1~ 2H,R? szsf},

no42
FZ(S)z{(x,t): Z%: G Rt=1— 2H1R2} .

=] I
Let’s introduce functions for (x,t)e S

2(x1)= x—(t—r+2H1R2)y ;r(x,t)=zn:[i_(t_TJrZHlRZ)yi]z/

Jelt -z +22H,R?)+ 7R ,,:1 2

/[é‘t—r+2HR2)+o-2R2] o(x1)= (1= ()]

[5(t—r+2HR )+a R ]d
where the positive constant d will be chosen later. It’s easy to see that 0 < r(x t)Sl for

(x,t)eS , at that ”‘rl(s) =1.

We have
Lo=[gl -7 +20,R?)+ R [ {SZayxt (- +
+2(r - ){22 a,(x,t )+2Zb( ( (Z_TRZ?HIRZ))}"L

+FT_lc(x,t)(é‘(t—2'+2H1R2)+02R2) 22)/,(,—( ;J’rzHR ) )} } (14)

From condition (2) we obtain

s x,t) na(x,t) o L&A x,t)
[\ i . il < i ) 15
l]zlalj ()C J a+a lui:l Ra ; Ra 'u = Ra ( )
On the other hand for (x,l) esS
|, <Cylar,pn,Hy, Hy)R, Cyla, uon, Hy Hy )R <|t|< C, (@, pt,n, Hy , Hy )R
Thus,

Cs(a, o, Hy, Hy )R < 2, (x,8) < Cy (o, ptn, Hy Hy )R 5 i =1,.0m (16)
Using (16) in (15) we conclude

Zay(xt) 5 > Cy (o, Hy H s Zn:a”(x’t)SCS(O:,,u,n,Hl,HZ). (17)

a
i,j=1 i=1 R™

We have subject to condltion 3)

S

o; o;
R™ i=1 R™ P

sb{g(t—r+2H1R2)+ o-2Rzzn:R—a,12 sbocg(a,,u,n,Hl,Hz)iRz_ai <

i=1 i=1
SbOClo(a,,u,n,Hl,Hz), (18)
and analogously
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‘r;c(x,z)(e;(t —r+2HR?)+ 02R21 <b,C, (a, un, H,, H,). (19)

Finally,

1
‘iyi(xi —(t—r+2H1R2)yl.)|S(Z”:(xl. —(t—1'+2H1R2)yl.)2 iy_f}z <

o o P
i=1 R™ i=1 R™ 1 R

1
2 |
S[(f(t—r+2H1R2)+0'2R2) ¢ l) T <Cp(apnH,H,).  (20)

4H!R* = R“
Using (18)-(20) in (14) we obtain
202 |eler+ 20, R? )+ 2R [
x {8C7r +(1=ry&d -2(1-r)(2C; +2b,Cyy + b,Cy, +2C, )}.
Whence there exist 7, (a, u,n,by, H ,H 2)< 1 sufficiently closed to unit such that
8C,r>2(1-r)2C, +2b,Cyy + b,Cy, +2C,, ),

provided if x<r<1. If O0<r<r, then there exists sufficiently large
d(a,,u,n,bO,Hl,Hz) such that

(1—=r)&d > 2(1-r)2C, +2b,C,y +b,C,, +2C,, ).
Let’s fix this d . Then function ¢(x,¢) is £ -subparabolic in S. Let now u(x,t)e #*(%#).
Consider auxiliary function @(x,?)=u(x,)— o> R* ¢(x,t). It’s clear that w(x,z)e 4(S).
Besides a)‘ r(s)2 0, since (p‘ r,(s)=0 . On the other hand

) FZ(S)Z 1- szde(P‘l"z(S): 1- (1 - }")2 >0.

By the maximum principle a)(x,t)z 0 for (x,t)e S . In particular, at point (x*,r), where
r=0 we obtain

524 p2d o2 p2d
(20,8 +o?R?)  (H2R?)
Now it’s sufficient to choose m =2d , and the lemma is proved.

Remark. It’s clear from proof that the largest value of m is reached at

b
Hl :ZiHZZb'

>g2,

u(x*,r)z

Let’s denote by A(D) set 6D \T'(D).

Theorem 2. Let u(x,t) is nonnegative solution of equation (1) in domain D,
moreover, relative to the coefficients of the operator £ conditions (2)-(3) be satisfied.
Then if €'« DUA(D) and R<R,, then

2
u(O,sz)g Ci(e, st,n,b,) inf )u[x,—b%} (21)

XESR;l (0
4

Proof. Let number m from the previous lemma corresponds to H, = %,H ,=b.

Let’s fix this m and according to theorem 1 we’ll find such £ €(0,1) that
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1 1 m
Suppose for r e (0,1)
v(r) = u(O,—sz Xl — r)fm ; Q(r) = {(x,t): Xe gR;r (O),sz (1 +7? )S t <—bR? },g(r) = max u(x,t)

(x.1)e0(r)

Further let 7, be the greatest root of equation g(r)=v(r). It’s easy to see that
2(0)=v(0), lirlnov(r):oo and function g(r) is continuous and bounded for re[0,1].
r—l-

Therefore number # exists and 7 <1. Let (x*,t*)e 0(n).g(rn)=v(n)= u(x*,t*)

2
F :{(x,t):xegR.”] (x*)t* - b(l ;ro )R2 <t<t*} .For (x,z)e F we have
T2

(;Ra] [Zﬁ—lJ (zﬁf Jipenr=1t.

tha

On the other hand

1=ty +n)
4 4

1+r2 +

b

therefore F c Q(l J;rl j and for (x,t) e F by virtue of (22)

ulx,0)< u(O,—sz(l —”Trljm = 2"y(r; )< V(zrl)(l — ﬂ))' 23)
If we’ll suppose now tat
mes{F N {(x,t): u(x,t)< v(2r1 )}} >(1- B)mes(F),

then from equality u(x*,t* )z v(r1 ) and lemma 4 the following inequality follows

supu(x,t)zv(”l)(ul_l J

(ckr 2 ()
The last inequality is impossible by virtue of (23). We used the fact that u(x,t) is solution
of equation (1), i.e. —u(x,t)e #(F). Thus,

mes{F N {(x,t); u(er) <20 )}} (- Fymes(F).

2
Le.
mes{F N {(x,t): u(x,r)< v(; )}} > fBmes(F). (24)
. 1 1
Now we use lemma 5. Two cases are possible: 7 >§ and 1 € (O,E} Let the first case
take place.
Suppose
1. 2 2
wo il PR BRT R =i, =p2it
8n 2 2
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It’s easy to see that %SHI <b,§§H2 <b. Now if o
Ero(X)CE |, (x*). In fact, let x e SR.U(xO), then
5 R;—' B

4
< (xi —x?)2 Rz(l—r)2
Z Ra,- < 64 1

i=1

b

therefore
1 1 1
«\2 \o 5 )2 \o
(i(xi _xi) JZ S[i(xi —x?) Jz +[i(x;) _xi) Jz _R(l_”l)+
o R% - R% o R% 8
1
)2
+1—r][i<x,-) J RO=r) 1= o RO-1)
8r, | o R™ 8 8ry 4
Suppose x} = —2H2R1+7I,xi2 = 2H2R1+7; i=1,...,n. Then from lemmas 3 and 5 subject to

(24) it follows that for xe € , (0)

4

M(L_bRZ}Z[l—njmVM)7Uﬂ:(l§ﬁJm%u®;bR2XL_ﬁymyuﬂ:

2 s ) 2
=27y (B ul0.-bR?).

Now let 7, € [0,1—} and 7,0 and H, have the same meaning as above. We suppose

(25)

. 1& 1ﬂ
x0=7”1+1x ,szb,xilz— 81"1 +1R+2,Xi2= 87] +1R+2;i=1a""n'
81, Tr +1

Then taking into account lemmas 3, 5, inequality (24) and the fact that H, > 7 we obtain

23m+1

estimation (25). Hence required inequality (21) is proved with C}; = m .
4

Corollary. If conditions of theorem 2 are fulfilled then the following estimate

occurs
2
“(0=_bR2 )S Ciyla, pt,n,by) inf( )U(X,—b%} :

xe€ (0
Ri—
4

Lemma 6. Let conditions of theorem 2 are satisfied. Then if X € 0E (0) then
R—
4

6<(0,1

2 2
u[f,—%} < Cysa, p1,m,b,) inf) [)?,—(1 - H)b%j _

Proof. Let’s fix arbitrary point ¥ € € ,(0). It’s easy to see that if¥ € 9€ ,(0),
R— R~
4 4

xe& (x),, then xg& ,(0). Consider cylinder C°> =& l()?)x (— Zsz,O). Let’s make
Ri;— Ri— R—
8 8 8

%

transformation ~ of  variables y,=R Zx;i=l...m7= R7?t. Then cylinder
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c’ :Bl ()7)>< (— 2b,0) will be image of €, where ¥ is the image of point X . It’s clear

8
that y € 8B, (0).
4
Let i1,(y,7) be image of function u(x,z). Then equation (1) in variables (y,z)
will take on the form

where

a+a))

1+4 1+ 1= 1+4 1450
alf(y,r)zR 2 ay[R 2¥,uR 2yn},biR( ,T)=R 2I){R 2y, R Zy,l],

-4 4 142 il 1%
bR (y,r)=R 2b, (R 2 ¥R "2 ynJ,cR(y,r):ch(R 2 Visees R "2 yn}i,j =1..,n

For (y,7)e C° (ie. for (x,)e€’) and arbitrary n-dimensional vector & according to
condition (2) we have

uy s ( )f P<Yaf(neke, <u‘12 ( ) (26)

i=1 i,j=1

n L2 2
But for x ¢ 2R ,(0), Z;ﬁx ->— s satisfied. Hence, the existence of such i;,1<i, <n
s i=] N
RHO%
that ‘xio‘z —m follows. Thus, it’s shown that |x|a > C,s(e,n)R . On the other hand
n
9R? 3R
since xegR}(O) then Z—‘SE Thus, |xi|< e for i=1,..,n. Whence
,g i
|x|a < C,, (@, n)R . If we’ll take into account that |t| <2bR*, then
Cpg(a, p,n)R < A.(x,1) < Cpo (@, s, n)R ;i = 1,...,1m. (27)

Using (27) in (26) we obtain
/11|§| Zalj T 5": S

i,j=1
where constant g, 6(0,1] depends only on a,u,n. Besides modules of coefficients

biR (y,z'); i=1,..,n and cR( ,2') are bounded module by constant dependent only on «

and b, and also c¢®(y,7)<0. Then by N.V.Krylov-M.V.Safonov [2] theorem for
uniformly parabolic equations we conclude
~ b o~ b
Rl = R| —
u —— | S Cola, pt,n,b, ) inf u —1-8)— .
[y 2) 20( H 0)55(0,1) (y ( )4j
Now it’s sufficient to return to the variables (x,z), and the lemma is proved.
2
Let C°=€ , (o)x(—bi 0}
R,Z 4
Corollary. Let conditions of theorem 2 be satisfied. Then
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u(O,—sz )S C,, (a, ,m,b, )(x%{l)fcé ul(x,z).

In fact, let S(Cé) be the lateral surface of cylinder C° and (%,7) be point of
S(06 ), where u(x,7)= (X’ti)g;f(c6 )u (x,).

According to theorem 2
2 2
u0.-bR?)<Cpy inf ol v PR <] 7o 2R
erR;l(O) 2 2

Applying lemma 6 we obtain

ul0-bR*)< C 10, Wi)gsf(cﬁ)u(x,t), (28)

On the other hand according to corollary to theorem 2
ul0,~bR* )< C,, inf u(x,t 29
( ) 14 (x,t)eP(cﬁ) ( ) ( )

holds, where P(C6) is lower base of cylinder C°.
It follows from (28)-(29) that
A0t} Con ).

Jer'(

where C,, = maX{C1 3C5,.C, 4}. Now it’s sufficient to apply the maximum principle, and
the corollary is proved.

2
Let ¢’ =& ,(0)x _opr? PR
R\ 4

4
Theorem 3. Let u(x,t) be non-negative solution of equation (1) in D, moreover,
relative to the coefficients of operator £ conditions (2)-(3) be satisfied. At that time if
C' c DUA(D) and R<R,, then
sup u(x,t)S C,; (a,y,n,bo) inf u(x,t). (30)
(x)eC’ (x,t)eC®
Proof. Let’s consider cylinders C*=& Rl (0)x (— 3bR* ,~bR* ) and

R’ , . :
Cc’=¢ l(0)><[— 5b4 ,—bRZJ. Let’s make the same coordinate transformation as in
R;—
4

4

proof of lemma 6. Then cylinders C’ =B,(0)x [— 2b,—77rbj, (o =B,(0)x (- 3b,-b) and

C’= B, (0)>< (— %,—bj will be images of C’,C*and C° respectively. Operating by the

4
same way as in proof of lemma 6 we can show that image #*(y,z) of function u(x,¢)
satisfies in C* uniformly parabolic equation of the form (1), moreover, its parabolicity
constant depends only on a,u and n, minor coefficients are bounded on modulus by
constant dependent only on «,u,n and b,. Besides image of coefficient c(x,t) is non-

positive. According to Harnack inequality for the second order uniformly parabolic
equations of nondivergent structure (see, e.g. [4]) we have
sup @ " (y, 7)< Coyla, rn,by) inf 7" (y, 7)< Cpuii *(0,-).
(y,r)eé (}’J)'EC()
Returning to variables (x,7) we obtain
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sup u(x,1)< C24u(0,—bR2 )

(y,r)eC

Now in order to complete the proof of (30) it’s sufficient to apply the corollary to lemma
6. The theorem is proved.
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