Aslan D. GULIYEV, Farman I. MAMEDOV

ON EXAMPLES OF NONEQUIVALENCE OF WEIGHT ESTIMATES FOR RIESZ POTENTIALS AND EMBEDDING THEOREMS

Abstract

In this paper the problems on equivalence of Sobolev type inequality

$$||u||_{L_{-t_{n}}^{q}(\mathbb{R}^{n})} \le C ||\nabla u||_{L_{-t_{n}}^{p}(\mathbb{R}^{n})}, \forall u \in C_{0}^{\infty}(\mathbb{R}^{n})$$
 (1)

to the estimate

$$||I_1(f)||_{L^p_{r,t_r}(\mathbb{R}^n)} \le C ||f||_{L^p_{r,t_r}(\mathbb{R}^n)}$$
 (2)

 $\forall f \in L^p_{\omega dx}(\mathbb{R}^n)$ for the Riesz potentials

$$I_{\alpha}(f) = \int_{\mathbb{R}^n} |x - y|^{\alpha - n} f(y) dy \quad (\alpha = 1)$$

are studied.

It is shown that if $v \in RD$ (is inverse doubling), $\omega \in A_p$ (is a Makkenkhaupt class) and $q > p \ge 1$ or $v \in A_{\infty}$ is a Makkenkhaupt class and q = p, $\omega \in A_p$, then these two estimations are equivalent to the A_{pq} -Sawyer condition.

The examples on weight v, ω for which estimate (1) holds, but estimate (2) is broken for some function $f \in L^p_{\omega dx}(\mathbb{R}^n)$ are also cited.