Rufat F. KHALILOV

ON THE BEST APPROXIMATION OF COMPLEX VARIABLE FUNCTION IN INFINITE DOMAINS

Abstract

In the present paper the best approximation of the complex variable function f(z) is studied depending on the constructive character of function.

Let $\{\lambda_k\}$ be some increasing sequence of positive numbers, and f(z) be analytic in the half-plane Re z > a.

Assume that f(z) in this half-plane is representable by the Dirichlet series in the form

$$f(z) = \sum_{k=1}^{\infty} a_k e^{-\lambda_k z},$$
(1)

where

$$a_k e^{-\lambda_k x} = \lim_{T \to \infty} \frac{1}{T} \int_{t_0}^T f(x + iy) e^{i\lambda_k y} dy, \quad x > a.$$
 (2)

We'll denote by $H(\lambda_k)$ the class of function f(z) representable by the Dirichlet series in form (1) on some half-plane.

As is well known at $\lim_{k\to\infty} \frac{\ln k}{\lambda_k} = 0$ the abcissa of simple and absolute convergence of series (1) coincide and is calculated by the formula

$$a = \overline{\lim}_{k \to \infty} \frac{\ln|a_k|}{\lambda_k} = 0 \tag{3}$$

(see [1]).

Denote by $Q_n(z)$ a polynomial of the form

$$Q_n(z) = \sum_{k=1}^n c_k e^{-\lambda_k z}.$$
 (4)

Denote by D_n the set of polynomials of form (4) at the fixed n.

Assume that the function f(z) is analytical in half-plane Re z > 0, is continuous and bounded on Re z > 0.

Denote by G_0 the domain $\operatorname{Re} z > 0$, and by \overline{G}_0 the $\operatorname{Re} z \geq 0$.

We'll call the value

$$E_{n}\left(f;\overline{G}_{0}\right) = \inf_{Q_{n} \in D_{n}} \left\{ \max_{z \in \overline{G}_{0}} \left| f\left(z\right) - Q_{n}\left(z\right) \right| \right\}. \tag{5}$$

the best polynomial approximation of the function f(z) on \overline{G}_0 .

Theorem 1. If f(z) is analytical in G_0 , and $f^{p}(z)$ it exists on \overline{G}_0 and bounded then

$$E_n\left(f;\bar{G}_0\right) \leq \frac{M_p}{\lambda_n^p}.$$

[R.F.Khalilov]

Proof.

$$\begin{split} E_n\left(f;\overline{G}_0\right) &\leq \sum_{k=n+1}^{\infty} \left|a_k\right|_{\max} \left|e^{-\lambda_k z}\right| = \sum_{k=n+1}^{\infty} \frac{1}{\lambda_k^p} \left|a_k\right| \lambda_k^p \max_{z \in \overline{G}_0} \left|e^{-\lambda_k z}\right| \leq \\ &\leq \frac{1}{\lambda_n^p} \sum_{k=n+1}^{\infty} \left|a_k\right| \lambda_k^p \max_{z \in \overline{G}_0} \left|e^{-\lambda_k z}\right| = \frac{1}{\lambda_n^p} \sum_{k=n+1}^{\infty} \left|a_k\right| \lambda_k^p \leq \frac{M_p}{\lambda_n^p}. \end{split}$$

The theorem is proved.

Now let's prove the following lemma.

Lemma. If $f(z) \in H(\lambda_k)$ then the function $f_h(z) = \frac{1}{h} \int_{z}^{z+h} f(t) dt$ is also belongs to this class where h > 0.

Proof.

$$f_h(z) = rac{1}{h} \int_{z}^{z+h} f(t) dt = rac{1}{h} \int_{0}^{h} f(z+t) dt.$$

But

$$f(z+t) = \sum_{k=1}^{\infty} e^{-\lambda_k(z+t)}.$$
 (6)

Series (6) converges uniformly in G_0 .

Therefore we can integrate it term by term:

$$f_h(z) = \frac{1}{h} \int_0^h f(z+t) dt = \frac{1}{h} \sum_{k=1}^\infty a_k \int_0^h e^{-\lambda_k(z+t)} dt =$$

$$= -\frac{1}{h} \sum_{k=1}^\infty \frac{a_k}{\lambda_k} \left(e^{-\lambda_k(z+t)} - e^{-\lambda_k z} \right) = -\frac{1}{h} \sum_{k=1}^\infty \frac{a_k}{\lambda_k} e^{-\lambda_k z} \left(e^{-\lambda_k t} - 1 \right). \tag{7}$$

The last series is convergent since

$$\left| \frac{a_k}{\lambda_k} e^{-\lambda_k z} \left(e^{-\lambda_k t} - 1 \right) \right| \le \frac{2}{\lambda_1} \left| a_k e^{-\lambda_k z} \right|. \tag{8}$$

Proceeding from inequality (8) series (7) is convergent in G_0 , and this means that $f_h(z) \in H(\lambda_k)$.

Consider the difference $f(z) - f_h(z)$:

$$f(z) - f_h(z) = \frac{1}{h} \int_0^h f(z) dt - \frac{1}{h} \int_0^h f(z+t) dt = \frac{1}{h} \int_0^h [f(z) dt - f(z+t)] dt.$$

Then

$$\max_{z \in G_0} |f(z) - f_h(z)| \le \max_{0 \le z \le h} |f(z) - f(z+t)| = \omega(f;h), \tag{9}$$

where $\omega(f; h)$ is module of continuity of the function f(z).

[On the best approximation]

Prove the following theorem.

Theorem 2. If f(z) is continuous and bounded on \overline{G}_0 then

$$E_n(f; \overline{G}_0) \leq C\omega(f; 1/\lambda_n).$$

Proof. By the lemma $f_h(z) \in H(\lambda_k)$. For given h > 0 we take such a polynomial $Q_n(z)$ that at sufficiently large n the

$$\max_{z \in \overline{G}_0} |f_h(z) - Q_n(z)| \le M\omega(f; h).$$

be fulfilled.

For this as $Q_n(z)$ we can take n-th partial sum of the Dirichlet series corresponding to the function $f_h(z)$. Then

$$\max_{z \in \overline{G}_0} \left| f\left(z\right) - Q_n\left(z\right) \right| \leq \max_{z \in \overline{G}_0} \left| f\left(z\right) - f_h\left(z\right) \right| + \max_{z \in \overline{G}_0} \left| f_h\left(z\right) - Q_n\left(z\right) \right| \leq C\omega\left(f;h\right).$$

Taking $h = \lambda_n^{-1}$ we'll obtain

$$\max_{z \in \overline{G}_{0}} |f(z) - Q_{n}(z)| \leq C\omega(f; 1/\lambda_{n})$$

or

$$E_n(f; \overline{G}_0) \leq C\omega(f; 1/\lambda_n).$$

Theorem 3. If f(z) is analytical in G_0 and there exists the continuous and bounded on \overline{G}_0 derivative $f^{(p)}(z)$ then

$$E_n\left(f;\overline{G}_0\right) \leq C \cdot \frac{1}{\lambda_n^p} \omega\left(f^{(p)};1/\lambda_n\right).$$

where C is a constant.

In particular, the next theorem will be obtained from this theorem.

Theorem 4. If f(z) is analytical in G_0 and there exists continuous and bounded on \overline{G}_0 derivative $f^{(p)}(z)$ belonging to the Lipschitz class α , $0 < \alpha \le 1$ then

$$E_n(f;G_0) \le \frac{C}{\lambda_n^{p+\alpha}}.$$

References

- [1]. Ibragimov I.I. Theory of approximation by entire functions. Baku, "Elm", 1979. (Russian)
- [2]. Privalov I.I. Introduction to theory of complex variable functions. M.-L., 1935. (Russian)
- [3]. Muradov V.M. Approximations of analytical functions by the polynomials in given domain. Thesis Ph.d., Baku, 1992, 132p. (Russian)

Rufat F. Khalilov

Azerbaijan Technical University. 25, H.Javid av., AZ1073, Baku, Azerbaijan. $Tel.:\ (99412)\ 391\ 372\ (off.)$

Received February 16, 2004; Revised July 06, 2004. Transladed by Mamedova V.A.