Irina V. MAYO OVA

TO ESTIMATES OF L_{q}-TRACES OF FUNCTIONS AND THEIR DERIVATIVES ON BOUNDARY m-DIMENSIONAL SURFACE

Abstract

In this paper we investigate the properties of $L_{q}\left(\Gamma_{m}\right)$ - traces of functions from new spaces $$
W_{p}^{\langle r\rangle}(G ; s)
$$ on boundary m-dimensional surface $\Gamma_{m} \in \Pi^{1}$. The integral inequality of the embedding theorem type $$
D^{\nu}: W_{p}^{\langle r\rangle}(G ; s) \hookrightarrow L_{q}\left(\Gamma_{m}\right)
$$

is proved.
We consider the space

$$
\begin{equation*}
W_{p}^{\langle r\rangle}(G ; s) \tag{0.1}
\end{equation*}
$$

of the functions $f=f(x)$ of the points $x=\left(x_{1} ; \ldots ; x_{s}\right) \in E_{n}(1 \leq s \leq n)$ of many variables $x_{k}=\left(x_{k, 1}, \ldots, x_{k, n_{k}}\right) \in E_{n_{k}}(k=1,2, \ldots, s)$, defined in the domain $G \subset$ $E_{n}=E_{n_{1}} \times \ldots \times E_{n},\left(n=n_{1}+\ldots+n_{s}\right)$ satisfying the condition of " σ - semi-horn"

Space (0.1) is determined as a closure of set of sufficient smooth and finite functions in E_{n} by the norm

$$
\begin{equation*}
\|f\|_{W_{p}^{\langle r\rangle}(G ; s)}=\sum_{i=\left(i_{1}, \ldots, i_{s}\right) \in Q}\left\|D^{r^{i}} f\right\|_{L_{p}(G)}<\infty \tag{0.2}
\end{equation*}
$$

where the sum is taken in all possible vectors $i=\left(i_{1}, \ldots, i_{s}\right) \in Q$ with the coordinates $i_{k} \in\left\{0,1, \ldots, n_{k}\right\} .(k=1,2, \ldots, s)$.

It is assumed that the vector $r=\left(r_{1} ; \ldots ; r_{s}\right)$ with coordinates-vectors $r_{k}=$ $\left(r_{k, 1}, \ldots, r_{k, n_{k}}\right)(k=1,2, \ldots, s)$ is "integer and positive", i.e., $r_{k, j}>0 \quad\left(j=1,2, \ldots, n_{k}\right)$ are integer at all $k=1,2, \ldots, s$, and for each $i=\left(i_{1}, \ldots, i_{s}\right) \in Q$ the vector $r^{i}=$ $\left(r_{1}^{i_{1}} ; \ldots ; r_{s}^{i_{s}}\right)$ has coordinates and vectors

$$
r_{k}^{i_{k}}=\left\{\begin{array}{lr}
\left(0, \ldots, 0, r_{k, i_{k}}, 0, \ldots, 0\right) & \text { at } i_{k} \neq 0 \\
(0, \ldots, 0) & \text { at } i_{k}=0
\end{array}\right.
$$

at all $k=1,2, \ldots s$. .
Space (0.1) in case of $s=1$ coincides with the known S.L.Sobolev space $W_{p}^{\langle r\rangle}(G)$, and the case $s=n$ with the known S.M.Nikolskii space $S_{p}^{\langle r\rangle} W(G)$ of differentiable functions with dominant mixed derivative.

In this paper we define a class of surfaces $\Gamma_{m}(1 \leq m \leq n-1)$ and find the conditions for which there exist L_{q}-traces of functions and their derivatives on Γ_{m}. At that it is proved that

$$
\begin{equation*}
\left.D^{\nu} f\right|_{\Gamma_{m}} \in L_{q}\left(\Gamma_{m}\right), \tag{0.3}
\end{equation*}
$$

and the integral inequalities

$$
\begin{equation*}
\left\|\left.D^{\nu} f\right|_{\Gamma_{m}}\right\|_{L_{q}\left(\Gamma_{m}\right)} \leq\|f\|_{W_{p}^{(\gamma)}(G ; s)} \tag{0.4}
\end{equation*}
$$

are valid, where it is assumed that $1<\leq q<\infty$.

1. Basic definitions and necessary notation.

1.1. Let $H=\left(H_{1}, \ldots, H_{s}\right), H_{k}>0 \quad(k=1,2, \ldots, s)$, and the vector

$$
\begin{equation*}
\delta=\left(\delta_{1} ; \ldots ; \delta_{s}\right) \tag{1.1}
\end{equation*}
$$

with the coordinate-vectors $\delta_{k}=\left(\delta_{k, 1}, \ldots, \delta_{k, n_{k}}\right) \quad(k=1,2, \ldots, s)$ be such that

$$
\begin{equation*}
\delta_{k, j}=+1 \text { or } \delta_{k, j}=-1 \quad\left(j=1,2, \ldots, n_{k}\right) \tag{1.2}
\end{equation*}
$$

at all $k=1,2, \ldots, s$.
Let the vector

$$
\begin{equation*}
\sigma=\left(\sigma_{1} ; \ldots ; \sigma_{s}\right) \tag{1.3}
\end{equation*}
$$

with the coordinate-vectors

$$
\begin{equation*}
\sigma_{k}=\left(\sigma_{k, 1}, \ldots, \sigma_{k, n_{k}}\right) \quad(k=1,2, \ldots, s) \tag{1.4}
\end{equation*}
$$

be "positive", i.e.

$$
\begin{equation*}
\sigma_{k, j}>0 \quad\left(j=1,2, \ldots, n_{k}\right) \quad(k=1,2, \ldots, s) . \tag{1.5}
\end{equation*}
$$

Denote by

$$
\begin{gather*}
\mathcal{R}_{\delta}(\sigma ; H)= \\
=\bigcup_{\substack{0<v_{k} \leq H_{k} \\
(k=1,2, \ldots, s)}}\left\{y \in E_{n} ; \quad C_{k} \leq \frac{y_{k, j} \delta_{k, j}}{v_{k}^{\tau_{k}, j}} \leq C_{k}^{*} \quad\left(j=1,2, \ldots, n_{k}\right)\right\}, \tag{1.6}
\end{gather*}
$$

where $C_{k}, C_{k}^{*}(k=1,2, \ldots s)$ are fixed positive constants, it is denoted a " σ-semihorn" with vertex in origin of coordinates. Then

$$
\begin{equation*}
x+\mathcal{R}_{\delta}(\sigma ; H) \tag{1.7}
\end{equation*}
$$

is " σ-semi-horn" with vertex at the point $x \in E_{n}$.
Definition 1. The subdomain $\Omega \subset G$ is called a subdomain satisfying the condition of " σ - semi-horn" if

$$
\begin{equation*}
x+\mathcal{R}_{\delta}(\sigma ; H) \subset G \tag{1.8}
\end{equation*}
$$

at all $x \in \Omega$.
Definition 2. The domain

$$
\begin{equation*}
G \subset E_{n} \tag{1.9}
\end{equation*}
$$

is called a domain satisfying the condition of " σ - semi-horn" if there exists a set of subdomains

$$
\begin{equation*}
G_{1}, G_{2}, \ldots, G_{K} \subset G \tag{1.10}
\end{equation*}
$$

satisfying the condition of " σ - semi-horn" and covering the domain G, i.e. such that

$$
\begin{equation*}
G=\bigcup_{\mu=1}^{K} G_{\mu} \tag{1.11}
\end{equation*}
$$

The class of domains $G \subset E_{n}$ satisfying the condition of " σ - semi-horn" is denoted by

$$
\begin{equation*}
C(\sigma ; H) \tag{1.12}
\end{equation*}
$$

1.2. Let

$$
\begin{equation*}
m=m_{1}+\ldots+m_{\alpha}<n=n_{1}+\ldots+n_{s} \quad(1 \leq \alpha \leq s \leq n) \tag{1.13}
\end{equation*}
$$

at that

$$
\begin{equation*}
m_{k} \leq n_{k} \quad(k=1,2, \ldots, \alpha) \tag{1.14}
\end{equation*}
$$

Let at each $k \in\{1,2, \ldots, \alpha\}$

$$
\left\{\begin{array}{l}
x_{k, 1}=x_{k, 1} ; \ldots ; x_{k, m_{k}}=x_{k, m_{k}} \tag{1.15}\\
x_{k, \beta}=\varphi_{k, \beta}\left(x_{k, 1}, \ldots, x_{k, m_{k}}\right) \quad\left(\beta=m_{k}+1, \ldots, n_{k}\right)
\end{array}\right.
$$

at that we assume that the functions

$$
\begin{equation*}
\varphi_{k, \beta}=\varphi_{k, \beta}\left(x_{k, 1}, \ldots, x_{k, m_{k}}\right) \quad\left(\beta=m_{k}+1, \ldots, n_{k}\right) \tag{1.16}
\end{equation*}
$$

have continuous partial derivatives in some m_{k}-dimensional domain $\Omega_{m_{k}} \subset E_{m_{k}}$, moreover we assume that

$$
\begin{equation*}
\left|\frac{\partial}{\partial x_{k, j}} \varphi_{k, \beta}\left(x_{k, 1}, \ldots, x_{k, m_{k}}\right)\right| \leq M_{k} \tag{1.17}
\end{equation*}
$$

at all $j=1,2, \ldots, m_{k}$ and $\beta=m_{k}+1, \ldots, n_{k}$.
Let

$$
\begin{equation*}
x_{k}^{*}=\left(x_{k, 1}, \ldots, x_{k, m_{k}}, \varphi_{k, m_{k}+1}\left(x_{k, 1}, \ldots, x_{k, m_{k}}\right), \ldots, \varphi_{k, n_{k}}\left(x_{k, 1}, \ldots, x_{k, m_{k}}\right)\right) \tag{1.18}
\end{equation*}
$$

at all $k=1,2, \ldots, \alpha$.
Let further

$$
\left\{\begin{array}{l}
x_{1}^{*}=x_{1}^{*} \tag{1.19}\\
\ldots \ldots \ldots \\
x_{\alpha}^{*}=x_{\alpha}^{*} \\
x_{\alpha+1}^{*}=\psi_{\alpha+1}\left(x_{1}^{*} ; \ldots ; x_{\alpha}^{*}\right) \\
\ldots \ldots \ldots \ldots \ldots \ldots \\
x_{s}^{*}=\psi_{s}\left(x_{1}^{*} ; \ldots ; x_{\alpha}^{*}\right)
\end{array}\right.
$$

where the vector-functions

$$
\begin{equation*}
\psi_{k}=\psi_{k}\left(x_{1}^{*} ; \ldots ; x_{\alpha}^{*}\right) \quad(k=\alpha+1, \ldots, s) \tag{1.20}
\end{equation*}
$$

with the coordinate functions

$$
\begin{equation*}
\psi_{k, j}=\psi_{k, j}\left(x_{1}^{*} ; \ldots ; x_{\alpha}^{*}\right) \quad\left(j=1,2, \ldots, n_{k}\right) \tag{1.21}
\end{equation*}
$$

and having continuous partial derivatives such that

$$
\begin{equation*}
\left|\frac{\partial}{\partial x_{\gamma, \beta}} \psi_{k, j}\left(x_{1}^{*} ; \ldots ; x_{\alpha}^{*}\right)\right| \leq M_{k, j} \tag{1.22}
\end{equation*}
$$

in some domain

$$
\begin{equation*}
\Omega_{m}=\Omega_{m_{1}} \times \ldots \times \Omega_{m_{\alpha}} \subset E_{m}=E_{m_{1}} \times \ldots \times E_{m_{\alpha}} \tag{1.23}
\end{equation*}
$$

at all $\gamma=1,2, \ldots, \alpha ; \quad \beta=1,2, \ldots, m_{\gamma} ; \quad j=1,2, \ldots, n_{k} ; \quad k=\alpha+1, \ldots, s$.
It follows from the cited reasons that the set of the points

$$
\begin{gathered}
x^{*}=\left(x_{1}^{*}, \ldots, x_{\alpha}^{*}, \psi_{\alpha+1}\left(x_{1}^{*}, \ldots, x_{\alpha}^{*}\right) ; \ldots ; \psi_{s}\left(x_{1}^{*} ; \ldots ; x_{\alpha}^{*}\right)\right)= \\
=P\left(x_{1}^{*}, \ldots, x_{\alpha}^{*}\right)=T\left(x^{\prime}\right)
\end{gathered}
$$

at

$$
\begin{equation*}
\left(x_{1,1}, \ldots, x_{1, m_{1}} ; \ldots ; x_{\alpha, 1}, \ldots, x_{\alpha, m_{\alpha}}\right)=\left(x_{1}^{\prime}, \ldots, x_{\alpha}^{\prime}\right)=x^{\prime} \in \Omega_{m} \subset E_{m} \tag{1.24}
\end{equation*}
$$

it is defined the surface

$$
\begin{equation*}
\Gamma_{m} \subset \bar{G} \tag{1.25}
\end{equation*}
$$

The class of surfaces Γ_{m} from (1.13)-(1.26) is denoted by Π^{1}.

2. Basic result.

The basic result is given in the form of the following theorem.
Theorem. 1) Let $f \in W_{p}^{\langle r\rangle}(G ; s)$, where $1<\leq q<\infty$..
2) Let the domain $G \in C(\sigma ; H)$.
3) Let $\Gamma_{m} \in \Pi^{1}$ at $\Gamma_{m} \subset \bar{G}$.
4) Let the "positive nonnegative" vector $\nu=\left(\nu_{1} ; \ldots ; \nu_{s}\right)$ with the coordinatesvectors $\nu_{k}=\left(\nu_{k, 1}, \ldots, \nu_{k, n_{k}}\right)(k=1,2, \ldots, s)$ be such that

$$
\varkappa_{k, i_{k}}=r_{k, i_{k}} \sigma_{k, i_{k}}-\left(\nu_{k}, \sigma_{k}\right)-\frac{1}{-}\left|\sigma_{k}\right|+\frac{1}{q}\left|\sigma_{k}^{\prime}\right| \geq 0
$$

$\left(i_{k}=1,2, \ldots, n_{k}\right)$ at all $k=1,2, \ldots, \alpha ;$

$$
\varkappa_{k, i_{k}}=r_{k, i_{k}} \sigma_{k, i_{k}}-\left(\nu_{k}, \sigma_{k}\right)-\frac{1}{-}\left|\sigma_{k}\right|>0 \quad\left(i_{k}=1,2, \ldots, n_{k}\right)
$$

at all $k=\alpha+1, \ldots$, s, where $\left|\sigma_{k}\right|=\sigma_{k, 1}+\ldots+\sigma_{k, n_{k}} ;\left|\sigma_{k}^{\prime}\right|=\sigma_{k, 1}+\ldots+\sigma_{k, m_{k}}$; $\left(\nu_{k}, \sigma_{k}\right)=\sum_{j=1}^{n_{k}} \nu_{k, j} \sigma_{k, j}$.

Then the function $D^{\nu} f(x)$ on the surface Γ_{m} has L_{q}-traces

$$
\left.D^{\nu} f\right|_{\Gamma_{m}} \in L_{q}\left(\Gamma_{m}\right),
$$

at that the inequalities

$$
\left\|\left.D^{\nu} f\right|_{\Gamma_{m}}\right\|_{L_{q}\left(\Gamma_{m}\right)} \leq C\|f\|_{W_{p}^{\langle r\rangle}(G ; s)}
$$

are valid, the constant C is independent of the function $f=f(x)$.

3. Scheme of proof of the theorem.

The proof of the theorem is conducted by the method of integral representations on the basis of a new integral representation of functions led in [1].
3.1. We can take the function

$$
\begin{equation*}
f \in W_{p}^{\langle r\rangle}(G ; s) \tag{3.1}
\end{equation*}
$$

sufficiently smooth in E_{n}, consequently at each point $x \in E_{n}$ the identity

$$
\begin{equation*}
D^{\nu} f(x)=\sum_{i=\left(i_{1}, \ldots i_{s}\right) \in Q} A_{i, \delta} f(x) \tag{3.2}
\end{equation*}
$$

holds.
Here the integral operators

$$
\begin{align*}
A_{i, \delta} f(x)= & c_{i}\left(\prod_{k \in e_{s} \backslash e^{i}} H_{k}^{-\beta_{k, 0}}\right) \int_{\overrightarrow{0}}^{\vec{H}} \prod_{k \in e^{i}} \frac{d v_{k}}{v_{k}^{1+\beta_{k, i_{k}}}} \times \tag{3.3}\\
& \times \int_{E_{n}} D^{r^{i}} f(x+y) \Phi_{i, \delta}(\ldots) d y
\end{align*}
$$

at each $i=\left(i_{1}, \ldots, i_{s}\right) \in Q$, at that $e^{i}=s u \quad i, e_{s}=\{1,2, \ldots, s\} .$.
In integral operators (3.3) the numbers

$$
\begin{gather*}
\beta_{k, 0}=\left|\sigma_{k}\right|+\left(\nu_{k}, \sigma_{k}\right) \quad k \in e_{s} \backslash e^{i}, \tag{3.4}\\
\beta_{k, i_{k}}=\left|\sigma_{k}\right|+\left(\nu_{k}, \sigma_{k}\right)-r_{k, i_{k}} \sigma_{k, i_{k}} \tag{3.5}
\end{gather*}
$$

at each $k \in e^{i}$, and at $i=\left(i_{1}, \ldots, i_{s}\right) \in Q$.
The kernels in integral operators (3.3) are sufficiently smooth and finite functions, and are defined by the equalities

$$
\begin{equation*}
\Phi_{i, \delta}(\ldots)=\prod_{k \in e^{i}} \Phi_{k, \delta_{k}, i_{k}}\left(\frac{y_{k}}{v_{k}^{\sigma_{k}}}\right) \prod_{k \in e_{s} / e^{i}} \Phi_{k, \delta_{k}, 0}\left(\frac{y_{k}}{H_{k}^{\sigma_{k}}}\right), \tag{3.6}
\end{equation*}
$$

and the vectors

$$
\left\{\begin{array}{l}
\frac{y_{k}}{v_{k}^{\sigma_{k}}}=\left(\frac{y_{k, 1}}{v_{k}^{\sigma_{k}, 1}}, \ldots, \frac{y_{k, n_{k}}^{\sigma_{k}, n_{k}}}{v_{k}^{k_{k}}}\right), \tag{3.7}\\
\frac{y_{k}}{H_{k}^{\sigma_{k}}}=\left(\frac{y_{k, 1}}{H_{k}^{\sigma_{k}, 1}}, \ldots, \frac{y_{k, n_{k}}^{H_{k} \sigma_{k}, n_{k}}}{}\right)
\end{array}\right.
$$

for corresponding $k \in e_{s}$, at that the support

$$
\begin{equation*}
\text { su } \quad \Phi_{k, i_{k}, \delta_{k}}\left(y_{k}\right) \tag{3.8}
\end{equation*}
$$

belongs to the set

$$
\begin{equation*}
\left\{y_{k} \in E_{n_{k}} ; 0<y_{k, j} \delta_{k, j} \leq 1 \quad\left(j=1,2, \ldots, n_{k}\right)\right\} \tag{3.9}
\end{equation*}
$$

for corresponding $k \in e_{s}$.
3.2. Let "nonnegative vector"

$$
\begin{equation*}
h=\left(h_{1} ; \ldots ; h_{s}\right) \tag{3.10}
\end{equation*}
$$

with the coordinates-vectors $h_{k}=\left(h_{k, 1}, \ldots, h_{k, n_{k}}\right)(k=1,2, \ldots, s)$ define the surface

$$
\begin{equation*}
\Gamma_{m}+h=\left\{x^{*}+h ; x^{*} \in \Gamma_{m}\right\}, \tag{3.11}
\end{equation*}
$$

i.e., this set of the points

$$
x^{*}+h=T\left(x^{\prime}\right)+h
$$

at all $x^{\prime}=\left(x_{1}^{\prime} ; \ldots ; x_{\alpha}^{\prime}\right) \in \Omega_{m} \subset E_{m}$, at that we choose a system of coordinates and vector (3.10) such that

$$
\begin{equation*}
\Gamma_{m}+h \subset G \tag{3.13}
\end{equation*}
$$

Note that

$$
\begin{equation*}
\left\|\left.D^{\nu} f\right|_{\Gamma_{m}+h}\right\|_{L_{q}\left(\Gamma_{m}+h\right)} \leq C\left\{\int_{\Omega_{m}}\left|D^{\nu} f\left(T\left(x^{\prime}\right)+h\right)\right|^{q} d x^{\prime}\right\}^{\frac{1}{q}} \tag{3.14}
\end{equation*}
$$

at $1<q<\infty$.

3.3.

coincides with surface (3.11).
We define a set of auxiliary functions coincident on corresponding parts of the surface $\Gamma_{m}+h$, with contraction $\left.D^{\nu} f\right|_{\Gamma_{m}+h}$ on this part of surface.

This set of auxiliary functions is defined by the equalities

$$
\begin{equation*}
f_{\nu ; \Gamma_{m}+h}\left(T\left(x^{\prime}\right)+h\right)=\sum_{i=\left(i_{1}, \ldots i_{s}\right) \in Q} A_{i, \delta^{\mu}}^{*} f\left(T\left(x^{\prime}\right)+h\right) \tag{3.18}
\end{equation*}
$$

at all $\mu=1,2, \ldots, K$.
Here

$$
\begin{align*}
& A_{i, \delta^{\mu}}^{*} f\left(T\left(x^{\prime}\right)+h\right)=c_{i}\left(\prod_{k \in e_{s} \backslash e^{i}} H_{k}^{-\beta_{k, 0}}\right) \int_{\overrightarrow{0}}^{\vec{H}} \prod_{k \in e^{i}} \frac{d v_{k}}{v_{k}^{1+\beta_{k, i} i_{k}}} \times \tag{3.19}\\
& \quad \times \int_{E_{n}} \chi\left(G_{\mu}+R_{\delta^{\mu}}\right) D^{r^{i}} f\left(T\left(x^{\prime}\right)+h\right) \Phi_{i, \delta^{\mu}}(\ldots) d y,
\end{align*}
$$

at that all the notation from (3.3) are remained, and the function

$$
\begin{equation*}
\chi=\chi\left(G_{\mu}+R_{\delta^{\mu}}\right) \tag{3.20}
\end{equation*}
$$

is a characteristic function of the set $G_{\mu}+R_{\delta^{\mu}}$ for corresponding $\mu=1,2, \ldots, K$.
It follows from inequality (3.14) and equality (3.18) that

$$
\begin{gather*}
\left\|\left.D^{\nu} f\right|_{\Gamma_{m}+h}\right\|_{L_{q}\left(\Gamma_{m}+h\right)} \leq \\
\leq C \sum_{\mu=1}^{K} \sum_{i=\left(i_{1}, \ldots i_{s}\right) \in Q}\left\|A_{i, \delta^{\mu}}^{*} f(T(\cdot)+h)\right\|_{L_{q}\left(E_{m}\right)} \tag{3.21}
\end{gather*}
$$

consequently, the proof of the theorem is led to the estimations

$$
\begin{equation*}
\left\|A_{i, \delta^{\mu}}^{*} f(T(\cdot)+h)\right\|_{L_{q}\left(E_{m}\right)} \leq C\left(\prod_{k=1}^{s} H_{k}^{\varkappa_{k, i_{k}}}\right)\left\|D^{r^{i}} f\right\|_{L_{q}\left(G_{\mu}+R_{\delta} \mu\right)} \tag{3.22}
\end{equation*}
$$

of integral operators (3.3) uniformly with respect to vector (3.10).

eferences

[1]. Maksudov F.G., Jabrayilov A.J. Method of integral representations in theory of spaces. Baki, "Elm", 2000, I v., 200p. (Russian)
[2]. Besov O.V., Il'in V.P., Nikolskii S.M. Integral representations of functions and embedding theorems. Moscow, "Nauka", 1975, 480p. (Russian)
[3]. Sobolev S.L. Some applications of functional analysis in mathematical physics. L. Pub. House LSU, 1950., 255p. (Russian)
[4]. Nikolskii S.M. Approxiamtion of multi-variable functions and embedding theorems. Moscow, "Nauka", 1977, 455p. (Russian)
[5]. Jabrayilov A.J. To theory of "Embedding theorem". Trudy MIAN SSSR, 1967, v.89, pp. 80-118. (Russian)

Irina V. Mayorova
Azerbaijan University of Architecture and Construction
5, A.Sultanova str., AZ1073, Baku, Azerbaijan.
Tel.: (99412) 431-97-67 (apt.)

Received February 16, 2004; Revised July 12, 2004.
Translated by Mirzoyeva K.S.

