Misreddin A. SADYGOV

ON THE CHARACTERIZATION OF ZEROS AND FIXED POINT OF MAPPINGS

Abstract

In the paper, using the optimization problems the zeros and fixed points of mappings are investigated.

Let X be a Banach space, $M \subset X$, $f: X \to X$ and $\varphi_{\alpha}(x) = \|x - f(x)\|^{\alpha}$. It is clear that if x_0 the fixed point of the function f on the set M, then $\min\{\varphi_{\alpha}(x): x \in M\} = \varphi_{\alpha}(x_0) = 0$, where $\alpha > 0$, and x_0 is a global minimum of the function $\varphi_{\alpha}(x)$ in the space X and therefore $0 \in \partial \varphi_{\alpha}(x_0)$.

In the paper it is studied a problem when the point of the minimum of the function φ_{α} on the set M will be a fixed point of the function f on the set M.

Denote $B^* = \{x^* \in X^* : ||x^*|| \le 1\}, \ g(x) = ||x - f(x)||, \ g_1(x) = ||x - f(x)||^2, B = \{x \in \mathbb{R}^n : ||x|| \le 1\}.$

Lemma 1. If $f: \mathbb{R}^n \to \mathbb{R}^n$ satisfies the Lipschitz condition near x_0 , det $(I - A) \neq 0$ for $A \in \partial f(x_0)$ and $0 \in \partial g(x_0)$ (or $0 \in \partial g_1(x_0)$), then $f(x_0) = x_0$.

Proof. By theorem 2.6.6 [1] we get

$$\partial g(x_0) \subset \begin{cases} c\bar{o}\{x^* (1 - \partial f(x_0)) : x^* \in B\}, & \text{for } x_0 - f(x_0) = 0, \\ x^* (I - \partial f(x_0)) : x^* \in R^n, ||x^*|| = 1, \langle x^*, x_0 - f(x_0) \rangle = ||x_0 - f(x_0)||, \\ & \text{for } x_0 - f(x_0) \neq 0. \end{cases}$$

Since each element of the set $I - \partial f(x_0)$ is a non-degenerate matrix, then $0 \notin \partial g(x_0)$ for $x_0 - f(x_0) \neq 0$. Therefore, if $0 \in \partial g(x_0)$, we get $f(x_0) = x_0$. The lemma is proved.

It follows from the lemma 1 that if $\bar{x} \in M$ is a minimum of the function g (or g_1) on the set M, f satisfies the Lipschitz condition near \bar{x} , $\det(I - A) \neq 0$ for $A \in \partial f(\bar{x})$ and $0 \in \partial g(\bar{x})$ (or $0 \in \partial g_1(\bar{x})$), then $f(\bar{x}) = \bar{x}$.

Assume (see [1]) $T_M(x) = \{v \in X : \forall x_i \in M, x_i \to x, \forall t_i \downarrow 0, \exists v_i \in X, v_i \to v \text{ that } x_i + t_i v_i \in M\}, \ N_M(x) = \{x^* \in X^* : \langle x^*, v \rangle \leq 0 \ \forall v \in T_M(x)\}. \text{ Note that, if } M \text{ is a convex set, then } T_M(x) = cl\left(\bigcup_{h>0} \frac{1}{h} (M-x)\right).$ Theorem 1. Let $M \subset R^n$ be a closed set, $f: R^n \to R^n$ be a Lipschitz function

Theorem 1. Let $M \subset \mathbb{R}^n$ be a closed set, $f : \mathbb{R}^n \to \mathbb{R}^n$ be a Lipschitz function with a constant L, where $L \in (0,1)$, $f(x) \in x + T_M(x)$ for any $x \in M$. Then there exists a point $\bar{x} \in M$, such that $f(\bar{x}) = \bar{x}$.

Proof. Assume $g(x) = \|x - f(x)\|$ and let $\bar{y} \in M$. By the condition $\|f(x) - f(\bar{y})\| \le L \|x - \bar{y}\|$. Therefore, $\|f(x)\| \le \|f(\bar{y})\| + L (\|x\| + \|\bar{y}\|)$. Then $g(x) \ge \|x\| - \|f(x)\| \ge (1 - L) \|x\| - \|f(\bar{y})\| - L \|\bar{y}\|$. It is easily verified that the set $\{x \in R^n : g(x) \le \alpha\}$ is compact. Then, by definition g is lower semi-compact. Therefore, by theorem 1.1 [2] the function g attains minimum on the set M at some point \bar{x} . Then by the corollary of supposition 2.4.3 and by supposition 2.9.8 [1] we have

$$0 \in \partial (g(x) + \delta_M(x))_{x = \bar{x}} \subset \partial g(\bar{x}) + N_M(\bar{x}),$$

where
$$\delta_{M}(x)=\left\{ egin{array}{l} 0,x\in M,\\ +\infty,x\notin M. \end{array}
ight.$$
 We get from theorem 2.6.6 [1]
$$\partial g\left(\bar{x}\right)\subset \left\{ \begin{array}{l} c\bar{o}\{x^{*}\left(1-\partial f\left(\bar{x}\right)\right):x^{*}\in B\}, \ \ \text{if} \ \bar{x}-f(\bar{x})=0,\\ x^{*}\left(I-\partial f\left(\bar{x}\right)\right):x^{*}\in R^{n},\|x^{*}\|=1,\left\langle \bar{x}-f\left(\bar{x}\right),x^{*}\right\rangle =\|\bar{x}-f\left(\bar{x}\right)\|,\\ \ \ \text{if} \ \bar{x}-f(\bar{x})\neq 0. \end{array} \right.$$

It is clear that $\partial f(\bar{x}) \subset LB_{n \times n}$, where we denoted by $B_{n \times n}$ a closed unique ball in $R^{n\times n}$. Besides, if $\bar{x}-f(\bar{x})\neq 0$, then for $G\in\partial f(\bar{x})$ we get $\langle x^*(1-G),f(\bar{x})-\bar{x}\rangle=0$ $=\langle x^*,f\left(\bar{x}\right)-\bar{x}\rangle-\langle x^*G,\ f\left(\bar{x}\right)-\bar{x}\rangle\leq -\left\|\bar{x}-f\left(\bar{x}\right)\right\|+\left\|G\right\|\left\|\bar{x}-f\left(\bar{x}\right)\right\|<0,\ \text{i.e.}\\ -x^*\left(I-G\right)\notin N_M\left(\bar{x}\right),\ \text{for }G\in\partial f\left(\bar{x}\right).$ Therefore, if $\bar{x}-f\left(\bar{x}\right)\neq0$, then $0 \notin \partial g(\bar{x}) + N_M(\bar{x})$. This means that $f(\bar{x}) = \bar{x}$. The theorem is proved.

emark 1. Usaing the McShane lemma on continuation of Lipschitz functions in theorem 1 it sufficies to assume $f: M \to \mathbb{R}^n$ and f is a Lipschitz function with the constant L, where $L \in (0, 1)$.

Theorem 2. Let $M \subset \mathbb{R}^n$, $f: \mathbb{R}^n \to \mathbb{R}^n$ be a Lipschitz function with the constant $L, \bar{x} \in M$ be a minimum of the function g on the set M and if $x \in M$ and $f(x) \neq x$, then for $G \in \partial f(x)$ there exists $\exists z \in T_M(x)$, that satisfies the inequality $\langle x^* (I - G), z \rangle < 0$, where $x^* \in \mathbb{R}^n$, $||x^*|| = 1$, $\langle x - f(x), x^* \rangle = ||x - f(x)||$

emark 2. In lemma 2 the compactness M may be substituted by the condition: M is closed, ||f|| is lower semi-compact, or X is a reflexive Banach space, M is a closed convex set, ||f|| is a convex function and $||f(x)|| \to \infty$ as $||x|| \to \infty$, $x \in M$.

Let Y be the ordered Banach space with monotone norm, $f: X \to Y$ be a continuous function, and $e^{-}f = \{(x,y) \in X \times Y : f(x) \leq y\}$. Then, from theorem 5.3.17 [4] we have

$$\partial \left\| f\left(x\right) \right\| \subset \underset{z^{*}\in \partial \left\| z\right\| }{\cup }\{x^{*}\in X^{*}:\left(x^{*},z^{*}\right) \in N\left(e\ f;\ \left(x,f\left(x\right) \right) \right) \},$$

where $z = f(x), N(e f; (x, f(x))) = \{(x^*, z^*) \in X^* \times Y^* : (x^*, z^*) (v) \leq 0,$ $v \in T \ (e \ f; \ (x, \ f(x)))\}.$

Lemma 3. Let Y be the ordered Banach space with monotone norm, M be a $compact\ subset\ in\ X,\ \ f:X\rightarrow Y\quad be\ a\ Lipschitz\ function\ and\ from\ y^{*}\in\partial\left\Vert f\left(x\right) \right\Vert ,$ where $x \in M$, $f(x) \neq 0$, it follows that $-y^* \notin N_M(x)$. Then there exists such a point $\bar{x} \in M$, that $f(\bar{x}) = 0$.

Lemma 3 is proved similar to lemma 2.

Note that similarly we can get the analogy of theorem 2 in the case, when X is an ordered Banach space with monotone norm and $f: M \to X$ is a continuous

Let's consider a subdifferential of abstractive function. For simplicity let X and Y be Banach spaces. We denote a set of linear continuous operators from X to Yby L(X, Y).

A scalar subdifferential of functions $f: M \to Y$ at the point x is said to be a closed convex set M from L(X, Y) that satisfies the equality: $\partial \langle y^*, f(x) \rangle = y^* \circ M$ for any $y^* \in Y^*$ and we denote it by $\partial_c f(x)$.

The sense of the equality $\partial \langle y^*, f(x) \rangle = y^* \circ M$ is in that every element $x^* \in \partial \langle y^*, f(x) \rangle$ may be represented in the form $\langle x^*, v \rangle = \langle y^*, Av \rangle$ for any $v \in X$, where $A \in M$.

Note that when X is a Banach space using the notion of scalar subdifferential we can get the analogy of theorem 2.

Lemma 4. Let $\varphi: X \to R$ be a continuous function in the vicinity of $x_0, q(x) =$ $= |\varphi(x)|$ and $q(x_0) > 0$. Then

$$\partial q(x_0) = \begin{cases} \partial \varphi(x_0) : \varphi(x_0) > 0, \\ -\partial \varphi(x_0) : \varphi(x_0) < 0. \end{cases}$$

Proof. Since φ is continuous at the point x_0 , then from the definition of generalized derivative with respect to direction we have:

$$q^{\circ}\left(x_{0};\upsilon\right)=\lim_{\varepsilon\downarrow0}\limsup_{\substack{y\downarrow\varphi^{x_{0}}\\t\downarrow0}}\inf_{\omega\in\upsilon+\varepsilon B}\frac{q\left(y+t\omega\right)-q\left(y\right)}{t}=\left\{\begin{array}{l}\varphi^{\circ}\left(x_{0};\upsilon\right):\varphi\left(x_{0}\right)>0,\\\varphi^{\circ}\left(x_{0};-\upsilon\right):\varphi\left(x_{0}\right)<0,\end{array}\right.$$

where $y \downarrow \varphi^{x_0}$ means that y and $\varphi(y)$ converge to x_0 and $\varphi(x_0)$ respectively. Therefore, if $\varphi(x_0) > 0$, then

$$\partial q(x_0) = \{x^* \in X^* : q^{\circ}(x_0; v) \ge \langle x^*, v \rangle, v \in X\} =$$

$$= \{x^* \in X^{\circ} : \varphi^{\circ}(x_0; v) > \langle x^*, v \rangle, v \in X\} = \partial \varphi(x_0).$$

It is similarly verified that, if $\varphi(x_0) < 0$, then $\partial q(x_0) = -\partial \varphi(x_0)$. The lemma is proved.

Note that, if $\varphi: X \to R$ is lower semi-continuous at the point x_0 and $\varphi(x_0) > 0$, then $\partial q(x_0) = \partial \varphi(x_0)$.

Let
$$f = (f_1, ..., f_n) : \mathbb{R}^n \to \mathbb{R}^n$$
. Assume $\bar{g}(x) = \sum_{i=1}^n |f_i(x) - x_i|, \ \psi(x) = \sum_{i=1}^n f_i(x)$.

Theorem 4. Let $M \subset \mathbb{R}^n$ be a compact set, $f_i : \mathbb{R}^n \to \mathbb{R}$ be a lower semi-continuous (upper semi-continuous) function, $x_i \leq f_i(x)$ ($x_i \geq f_i(x)$), i = $\overline{1,n}, f(x) \in x+T_M(x)$ for any $x \in M$, \bar{x} be a minimum point of the function $\bar{g}(x)$ in the set M, or dom $\psi^{\circ}(\bar{x};\cdot) \cap int \ T_{M}(\bar{x}) \neq \emptyset$, or dom $\psi^{\circ}(\bar{x};\cdot) - T_{M}(\bar{x};\cdot) = X$; for $x \in M$ and for any $z^* \in \partial \psi(x)$, where $f(x) \neq x$, it is fulfilled the inequality

$$\langle z^*, f(x) - x \rangle < \sum_{i=1}^n (f_i(x) - x_i) \quad \left(\langle z^*, f(x) - x \rangle > \sum_{i=1}^n (f_i(x) - x_i) \right).$$

Then $f(\bar{x}) = \bar{x}$.

Proof. By Weierstress theorem the function \bar{q} attains minimum on the set M at some point \bar{x} . Therefore by theorem 2.9.8 [1] and by supposition 7.6.12 [3] we

$$0 \in \partial \bar{g}(\bar{x}) + N_M(\bar{x}).$$

Since $\bar{g}(x) = \sum_{i=1}^{n} (f_i(x) - x_i) = \psi(x) - \sum_{i=1}^{n} x_i$, then $\partial \bar{g}(x) = \partial \psi(x) - l$, where l = (1, 1, ..., 1). Then, for $f(x) \neq x$, by the condition we have

$$\langle z^* - l, f(x) - x \rangle = \langle z^*, f(x) - x \rangle - \sum_{i=1}^{n} (f_i(x) - x_i) < 0,$$

for any $z^* \in \partial \psi(x)$, i.e. if $x^* \in \partial \bar{g}(x)$, then $-x^* \notin N_M(x)$. $0 \in \partial \bar{g}(\bar{x}) + N_M(\bar{x})$ if and only if $f_i(\bar{x}) = \bar{x}_i$.

The second case is similarly proved. The theorem is proved.

It is clear that by changing the condition $f(x) \in x + T_M(x)$ by the condition

 $x \in f(x) + T_M(x)$ for any $x \in M$, we can get the analogy of theorem 4. **Lemma 5.** If $\min_{x,y \in M} \|f(x) - y\| = \|f(\bar{x}) - \bar{x}\|$ where $\bar{x} \in M \subset X$ and $f(\bar{x}) \in X$ $\bar{x} + T_M(\bar{x})$, then \bar{x} is a fixed point of the function f on the set M.

Proof. By the condition $\min\{\|f(\bar{x}) - y\| : y \in M\} = \|f(\bar{x}) - \bar{x}\|$. Therefore, by theorem 2.9.8 [1] we have $0 \in \partial_y \| f(\bar{x}) - y \|_{y=\bar{x}} + N_M(\bar{x})$. Let $f(\bar{x}) \neq \bar{x}$. It is clear that $\partial_y \| f(\bar{x}) - y \|_{y=\bar{x}} = \{-x^* : x^* \in X^*, \|x^*\| = 1, \langle x^*, f(\bar{x}) - \bar{x} \rangle = \|f(\bar{x}) - \bar{x}\|\}$. Then there exists such $-\bar{x}^* \in \partial_y \| f(\bar{x}) - y \|_{y=\bar{x}}$, that $\bar{x}^* \in N_M(\bar{x})$. Therefore $\|f(\bar{x}) - \bar{x}\| = \langle \bar{x}^*, f(\bar{x}) - \bar{x} \rangle \leq 0$, i.e. $f(\bar{x}) = \bar{x}$. We get contradiction. The lemma is proved.

Let X be a Banach space, $F: X \to 2^X$, $M \subset dom F = \{x \in X : F(x) \neq \emptyset\}$, $W(x) = \inf\{\|x - y\| : y \in F(x)\}, grF = \{(x, y) \in X \times X : y \in F(x)\},\$ $grDF(x_0, y_0) = T_{grF}(x_0, y_0), DF(x_0, y_0)^*(q) = \{ : (q, -) \in N_{grF}(x_0, y_0) \}.$

Lemma 6. Let M be a closed and convex set in X, grF be closed and convex, $\bar{x} \in M$ be a minimum of the function W(x) on the set M, such $\bar{y} \in F(\bar{x})$ that

[On the characterization of zeros]

 $W(\bar{x}) = \|\bar{x} - \bar{y}\|, x_0 \in M \text{ and } y_0 \in F(x_0) \text{ be such that } W(x_0) > W(\bar{x}) \text{ and } W(x_0) = \|x_0 - y_0\|. \text{ Then from } \in DF(x_0, y_0)^*(q) + r, \text{ where } (r, q) \in \partial \|x_0 - y_0\| \text{ it follows that } - \notin N_M(x_0).$

Proof. By theorem 4.5.2 [3] $\in \partial W(x_0)$ if and only if there exists such $(r,q) \in \partial \|x_0 - y_0\|$ that $\in D(x_0, y_0)^*(q) + r$. By the condition $W(\bar{x}) < W(x_0)$, i.e. $x_0 \neq y_0$. Therefore

$$\partial \|x_0 - y_0\| = \{(x^*, -x^*) : x^* \in X^*, \|x^*\| = 1, \langle x^*, x_0 - y_0 \rangle = \|x_0 - y_0\| \}.$$

Hence, we have $\in DF(x_0, y_0)^*(-x^*) + x^*$ or $-x^* \in DF(x_0, y_0)^*(-x^*)$ for some $(x^*, -x^*) \in \partial ||x_0 - y_0||$. By definition of adjoined mapping we have

$$\langle -x^*, x_0 - x \rangle \ge \langle -x^*, y_0 - y \rangle, (x, y) \in grF.$$

Hence it follows that

$$-\langle , x - x_0 \rangle \ge \langle x^*, x_0 - y_0 \rangle - \langle x^*, x - y \rangle, \ (x, y) \in grF.$$
 (1)

Since $W(\bar{x}) = \max \{\langle z^*, \bar{x} - \bar{y} \rangle : ||z^*|| = 1, z^* \in X^* \}$, then $W(\bar{x}) \geq \langle x^*, \bar{x} - \bar{y} \rangle$. Assuming $x = \bar{x}, \ y = \bar{y}$ from (1) we get, $-\langle \ , \bar{x} - x_0 \rangle > 0$, i.e. $- \notin N_M(x_0)$. The lemma is proved.

Lemma 7. Let M be a closed convex set in X, int $M \neq \emptyset$, grF be closed and convex, $y_0 \in F(x_0)$ be such that $W(x_0) = ||x_0 - y_0||$, where $x_0 \neq y_0$, and $x^* \in DF(x_0, y_0)^*(x^*)$ for $x^* \in X^*, ||x^*|| = 1$, $\langle x^*, x_0 - y_0 \rangle = ||x_0 - y_0||$ and $0 \neq \partial W(x_0)$. Then $0 \notin \partial W(x_0) + N_M(x_0)$.

Proof. By theorem 4.5.2 [3] $\in \partial W(x_0)$ if and only if there exists such a $(r,q) \in \partial \|x_0 - y_0\|$, that $\in DF(x_0, y_0)^*(q) + r$. Since $x_0 \neq y_0$, then $\partial \|x_0 - y_0\| = \{(x^*, -x^*) : x^* \in X^*, \|x^*\| = 1, \langle x^*, x_0 - y_0 \rangle = \|x_0 - y_0\|\}$. Let $(x^*, -x^*) \in \partial \|x_0 - y_0\|$ be such that $\in DF(x_0, y_0)^*(-x^*) + x^*$ or $-x^* \in DF(x, y_0)^*(-x^*)$. By definition of adjoined mapping we have

$$\langle -x^*, x_0 - x \rangle \ge \langle -x^*, y_0 - y \rangle, (x, y) \in grF.$$

Then it is clear that

$$\langle , x_0 - x \rangle \ge \langle -x^*, y_0 - y \rangle + \langle x^*, x_0 - x \rangle, \quad (x, y) \in grF.$$
 (2)

Since $x^* \in DF(x_0, y_0)^*(x^*)$, then

$$\langle x^*, x_0 - x \rangle \ge \langle x^*, y_0 - y \rangle, \quad (x, y) \in grF. \tag{3}$$

It follows from (2) and (3) that $\langle -, x - x_0 \rangle \geq 0$ for $(x, y) \in grF$, then we have that $(-, z) \geq 0$ for $z \in T_M(x_0)$. Therefore $\langle -, z \rangle > 0$ for $z \in int T_M(x_0)$. Hence we get $0 \notin \partial W(x_0) + N_M(x_0)$. The lemma is proved.

Theorem 5. Let M be a closed convex set in X, grF be closed and convex, $M \neq \emptyset$, or $0 \in int(dom\ F - M)$, $\bar{x} \in M$ be a minimum of the function W(x) on the set M and $\bar{y} \in F(\bar{x})$ be such that $W(\bar{x}) = \|\bar{x} - \bar{y}\|$, let for any $x_0 \in M$, and for $y_0 \in F(x_0)$, where $W(x_0) = \|x_0 - y_0\| > 0$, and $x^* \in N_{F(x_0)}^{(y_0)}$, where $\|x^*\| = 1$, $\langle x^*, x_0 - y_0 \rangle = \|x_0 - y_0\|$ there exist such points $\tilde{x} \in M$ and $\tilde{y} \in F(\tilde{x})$ that $\|x_0 - y_0\| > \langle x^*, \tilde{x} - \tilde{y} \rangle$. Then $\bar{x} = \bar{y}$, i.e. $\bar{x} \in F(\bar{x})$.

[M.A.Sadygov

Proof. Since $\bar{x} \in M$ minimizes the function W on the set M, then $0 \in \partial W(\bar{x}) + N_M(\bar{x})$. By theorem 4.5.2 [3] $\bar{z} \in \partial W(\bar{x})$ if and only if there exists such $(\bar{r}, \bar{q}) \in \partial \|\bar{x} - \bar{y}\|$, that $\bar{z} \in DF(\bar{x}, \bar{y})^*(\bar{q}) + \bar{r}$. If $\bar{x} \neq \bar{y}$, then

$$\partial \|\bar{x} - \bar{y}\| = \{(x^*, -x^*) : x^* \in X^*, \|x^*\| = 1, \langle x^*, \bar{x} - \bar{y} \rangle = \|\bar{x} - \bar{y}\| \}.$$

Let $(\bar{x}^*, -\bar{x})^* \in \partial \|\bar{x} - \bar{y}\|$ be such that $\bar{x} - \bar{x}^* \in DF(\bar{x}, \bar{y})^*(-\bar{x}^*)$. Hence, we have

$$\langle \bar{x}, \bar{x} - \bar{x}, \bar{x} - \bar{x} \rangle \ge \langle \bar{x}, \bar{y} - \bar{y} \rangle, \ x \in M \ \forall y \in F(x).$$

It is clear that $\bar{x}^* \in N_{F(\bar{x})}^{(\bar{y})}$ and

$$\langle -\bar{x}, x - \bar{x} \rangle \geq \langle \bar{x}^*, \bar{x} - \bar{y} \rangle - \langle \bar{x}^*, x - y \rangle, \ x \in M, \ y \in F(x).$$

By the condition there exists such $\tilde{x} \in M$ and $\tilde{y} \in F(\tilde{x})$ that $\langle \bar{x}^*, \bar{x} - \bar{y} \rangle - \langle \bar{x}^*, \tilde{x} - \tilde{y} \rangle > 0$. Therefore, $\langle -\bar{x}, \tilde{x} - \bar{x} \rangle > 0$, i.e. $-\bar{y} \in N_M(\bar{x})$. Then, it is clear that $0 \notin \partial W(\bar{x}) + N_M(\bar{x})$, i.e. we get a contradiction. The theorem is proved.

Corollary 2. If M is a closed convex set in X, int M is non-empty, grF is closed and convex, the point $\bar{x} \in M$ is a minimum of the function W(x) in the set M and $\bar{y} \in F(\bar{x})$ are such that $W(\bar{x}) = \|\bar{x} - \bar{y}\|$ and for any $x^* \in X^*$, $\|x^*\| = 1$ there exist such points $\tilde{x} \in M$ and $\tilde{y} \in F(\tilde{x})$ that $\langle x^*, \tilde{x} - \tilde{y} \rangle \leq 0$, then $\bar{x} = \bar{y}$.

emark 3. If X is a Hilbert space, then the condition $\|\bar{x} - \bar{y}\| > \langle \bar{x}^*, \tilde{x} - \tilde{y} \rangle$, where $\bar{x}^* \in X^*$, $\|\bar{x}^*\| = 1$, $\langle \bar{x}^*, \bar{x} - \bar{y} \rangle = \|\bar{x} - \bar{y}\|$ is equivalent to the condition: $\|\bar{x} - \bar{y}\|^2 > \langle \bar{x} - \bar{y}, \tilde{x} - \tilde{y} \rangle$.

emark 4. Let $\bar{y} \in F(\bar{x})$ be such that $W(\bar{x}) = \|\bar{x} - \bar{y}\| > 0$ and for any $x \in M$ the set F(x) be convex, bounded and closed. Show that if the inequality $\rho_x(F(\bar{x}), F(\bar{y})) < \|\bar{x} - \bar{y}\|$ is fulfilled, then there exists such $\tilde{y} \in F(\bar{y})$ that $\langle \bar{x}^*, \bar{x} - \tilde{y} \rangle < \|\bar{x} - \bar{y}\|$ for $\bar{x}^* \in N_{F(\bar{x})}^{(\bar{y})}$, $\|\bar{x}^*\| = 1$, $\langle \bar{x}^*, \bar{x} - \bar{y} \rangle = \|\bar{x} - \bar{y}\|$.

From $\bar{x}^* \in N_{F(\bar{x})}^{(\bar{y})}$ it follows that $\langle \bar{x}^*, \bar{y} \rangle = \max\{\langle \bar{x}^*, y \rangle : y \in F(\bar{x})\}.$

Let $\tilde{y} \in F(\bar{y})$ be such that $\langle \bar{x}^*, \tilde{y} \rangle = \max\{\langle \bar{x}^*, z \rangle : z \in F(\bar{y})\}$. Using the formula

$$\rho_x(A, B) = \sup\{|S_A(x^*) - S_B(x^*)| : x \in X^*, ||x^*|| \le 1\},$$

where A and B are closed bounded sets in X, we get

$$\left|\left\langle \bar{x}^{*}, \bar{y} - \tilde{y} \right\rangle\right| = \left|\max_{y \in F(\bar{x})} \left\langle \bar{x}^{*}, y \right\rangle - \max_{y \in F(\bar{y})} \left\langle \bar{x}^{*}, z \right\rangle\right| \leq \rho_{x} \left(F\left(\bar{x}\right), F\left(\bar{y}\right)\right) < \|\bar{x} - \bar{y}\|.$$

Lemma 8. If $\min_{x,z\in M}\inf_{y\in F(x)}\|z-y\|=\min_{y\in F(\bar{x})}\|\bar{x}-y\|=\|\bar{x}-\bar{y}\|$, where $\bar{y}\in F(\bar{x})$, $\bar{x}\in M$, $F(\bar{x})$ is a closed convex set and $F(\bar{x})\cap(\bar{x}+T_M(\bar{x}))\neq\varnothing$, then $\bar{y}=\bar{x},\ i.e.\ \bar{x}\in F(\bar{x})$.

Proof. Assume $\Phi(z,x) = \inf\{\|z-y\| : y \in F(x)\}$. Since $\min_{z \in M} \Phi(z,\bar{x}) = \Phi(\bar{x},\bar{x}) = \|\bar{x}-\bar{y}\|$, then $0 \in \partial_z \Phi(z,\bar{x})_{z=\bar{x}} + N_M(\bar{x})$. Using the supposition 4.5.1 [3] we get that, if $\bar{y} \neq \bar{x}$, then $x^* \in \partial_z \Phi(z,\bar{x})_{z=\bar{x}}$ if and only if, then $x^* \in N_{F(\bar{x})}^{(\bar{y})}$, $\|x^*\| = 1$, $\langle x^*, \bar{x} - \bar{y} \rangle = \|\bar{x} - \bar{y}\|$. Let $\bar{x}^* \in \partial_z \Phi(z,\bar{x})_{z=\bar{x}}$ be such that $-\bar{x}^* \in N_M(\bar{x})$. Then by the condition, we get

$$\max \{ \langle y - \bar{x}, \ \bar{x}^* \rangle : y \in F(\bar{x}) \} = -\|\bar{x} - \bar{y}\| > 0.$$

Hence it follows $\bar{y} = \bar{x}$. The lemma is proved.

Let X and Y be Banach spaces, $F_1: X \to 2^Y$, $W_0(x) = \inf\{\|y\|: y \in F_1(x)\}$, $\overline{W}(x, y^*) = \inf\{\langle y, y^* \rangle: y \in F_1(x)\}$. If $F_1(x)$ is convex and closed, then (see [6]) $W_0(x) = \sup\{\overline{W}(x, y^*): \|y^*\| \le 1\}$. Therefore, if grF_1 is convex and closed, then $x \to W_0(x)$ is a convex function. It is clear $dom\ F_1^{-1} = F_1(X)$.

Lemma 9. Let grF_1 be convex and closed, $\bar{y} \in F_1(\bar{x})$ where $\bar{y} \in int\ dom F_1^{-1}$, such that $W_0(\bar{x}) = ||\bar{y}||$ and $0 \in \partial W_0(\bar{x})$. Then $\bar{y} = 0$, i.e. $0 \in F_1(\bar{x})$.

Proof. By theorem 4.5.2 [3] $\bar{q} \in \partial W_0(\bar{x})$ if and only if there exists such $\bar{q} \in \partial \|\bar{y}\|$, that $\bar{q} \in DF_1(\bar{x}, \bar{y})^*(\bar{q})$. Since $\bar{y} \in int\ dom\ F_1^{-1}$, then $dom\ D(F_1^{-1})(\bar{y}, \bar{x}) = Y$. Then by lemma 2.1.2 [7], we get that $D(F_1^{-1})(\bar{y}, \bar{x})^* = D(F_1)((\bar{x}, \bar{y})^*)^{-1}$ is bounded.

By lemma 2.1.1 [7] adjoined mapping $D(F_1^{-1})(\bar{y}, \bar{x})^*$ is bounded, if and only if, then $D(F_1^{-1})(\bar{y}, \bar{x})^*(0) = \{0\}$. Since $\bar{z} = 0$, we get that $\bar{q} = 0$, i.e. $0 \in \partial ||\bar{y}||$. Hence, it follows that $\bar{y} = 0$. The lemma is proved.

Theorem 6. Let $M \subset dom F_1$ be a closed convex set, grF_1 be closed and convex, $\bar{x} \in M$ be a minimum of the function $W_0(x)$ on the set M and $\bar{y} \in F_1(\bar{x})$ be such that $W_0(\bar{x}) = \|\bar{y}\|$. Besides, let either int $M \neq \emptyset$ or $W_0(x)$ be continuous at some point $x_1 \in M$. Then, if for any $x_0 \in M$ and $y_0 \in F_1(x_0)$, where $W_0(x_0) = \|y_0\| > 0$, and for $-y^* \in N_{F(x_0)}^{(y_0)}$, where $\|y^*\| = 1$, $\langle y^*, y_0 \rangle = \|y_0\|$, there exist such points $\tilde{x} \in M$ and $\tilde{y} \in F_1(\tilde{x})$, that $\|y_0\| > \langle y^*, \tilde{y} \rangle$ then $\bar{y} = 0$, i.e. $0 \in F_1(\bar{x})$.

Proof. Since $\bar{x} \in M$ minimizes the function W_0 on the set M, then by theorem 4.4 [2] $0 \in \partial W_0(\bar{x}) + N_M(\bar{x})$. By theorem 5.4.2 [3] $\bar{x} \in \partial W_0(\bar{x})$ if and only if there exists such $\bar{q} \in \partial ||\bar{y}||$, that $\bar{x} \in \partial F_1(\bar{x}, \bar{y})^*(\bar{q})$. If $\bar{y} \neq 0$, then

$$\partial \|\bar{y}\| = \{\bar{y}^* \in Y^* : \|\bar{y}^*\| = 1, \ \langle \bar{y}^*, \bar{y} \rangle = \|\bar{y}\| \}.$$

Let $\bar{y}^* \in \partial \|\bar{y}\|$ be such that $\bar{y}^* \in DF_1(\bar{x}, \bar{y})^*(\bar{y}^*)$. Then, it is clear that

$$\langle \bar{x}, \bar{x} - x \rangle > \langle \bar{y}^*, \bar{y} - y \rangle, x \in M, y \in F_1(x).$$

By the condition there exists $\tilde{x} \in M$ and $\tilde{y} \in F_1(\tilde{x})$, that $\|\bar{y}\| = \langle \bar{y}^*, \bar{y} \rangle > \langle \bar{y}^*, \tilde{y} \rangle$. Then it is clear that $\langle \bar{x}, \bar{x} - \tilde{x} \rangle > 0$, i.e. $-\bar{x} \notin N_M(\bar{x})$. Hence, we have $0 \notin \partial W_0(\bar{x}) + N_M(\bar{x})$. The obtained contradiction means that $\bar{y} = 0 \in F_1(\bar{x})$. The theorem is proved.

Let $a: X \to 2^Y$, $W_1(x) = \inf\{\|x - y\|^2 : y \in a(x)\}$, $Da(x_0, y_0) x = \{y \in X : (x, y) \in T_{gra}(x_0, y_0)\}$, $M \subset dom\ a$. It there exists such a vicinity U of the point x_0 and a compact $V \subset X$, that $a(U) \subset V$ and a(x) is non-empty and compact for all $x \in U$, then a is said to be uniformly compact at the point x_0 .

Lemma 10. Let X be a Hilbert space, many-valued mapping a be closed, $x_0 \in M$ and $y_0 \in a(x_0)$ be such that $W_1(x_0) = \|x_0 - y_0\|^2$, the set $a(x_0)$ be convex, many valued mapping a be uniformly compact at the point x_0 , $intT_M(x_0) \neq \emptyset$, $T_M(x_0) \subset dom\ Da(x_0, y_0)$ and $(x_0 - y_0) \in Da(x_0, y_0)^* (x_0 - y_0)$. Then, if $x_0 \neq y_0$ and $0 \notin \partial W_1(x_0)$, then $0 \notin \partial W_1(x_0) + N_M(x_0)$.

and $0 \notin \partial W_1(x_0)$, then $0 \notin \partial W_1(x_0) + N_M(x_0)$. **Proof.** By theorem 2.11 [6] $\overline{} \in \partial W_1(x_0)$, then $(\overline{},0) \in (2(x_0-y_0), -2(x_0-y_0)) + N_{gr}(x_0,y_0)$ or $\overline{} - 2(x_0-y_0)^* \in Da(x_0,y_0)^* (2(y_0-x_0))$. Therefore, $(\overline{} - 2(x_0-y_0), x) + 2(x_0-y_0, y) \leq 0$ for $(x,y) \in T_{gra}(x_0,y_0)$. Then $(\overline{} - \overline{}, x) \geq 2(y_0-x_0, x) + 2(x_0-y_0, y)$ for $(x,y) \in T_{gra}(x_0,y_0)$. By the condition $(x_0-y_0) \in T_{gra}(x_0,y_0)$. M.A.Sadygov

 $Da\left(x_{0},y_{0}\right)^{*}\left(x_{0}-y_{0}\right)$, i.e. $-\langle x_{0}-y_{0},x\rangle+\langle x_{0}-y_{0},y\rangle\geq0$ for $(x,y)\in T_{gra}\left(x_{0},y_{0}\right)$. Since $T_{M}\left(x_{0}\right)\subset dom\ Da\left(x_{0},y_{0}\right)$, then $\langle-\bar{},x\rangle\geq0$ for $x\in T_{M}\left(x_{0}\right)$. It is clear that $\bar{}\neq0$, therefore for $z\in int\ T_{M}\left(x_{0}\right)$ the inequality $\langle-\bar{},z\rangle\geq0$ is fulfilled, i.e. $-\bar{}\notin N_{M}\left(x_{0}\right)$. Hence, we have $0\notin\partial W_{1}\left(x_{0}\right)+N_{M}\left(x_{0}\right)$. The lemma is proved.

Theorem 7. Let X be a Hilbert space, a multi-value mapping a be closed, the set a(x) be non-empty and convex for $x \in M$, $\bar{x} \in M$ be a minimum of the function $W_1(x)$ on the set M and $\bar{y} \in a(\bar{x})$ be such that $W_1(\bar{x}) = ||\bar{x} - \bar{y}||^2$ there exist a hypertanget to M at the point \bar{x} , dom $Da(\bar{x}, \bar{y}) \cap int T_M(\bar{x}) \neq \emptyset$, the mapping a uniformly compact at the point \bar{x} , for any $x_0 \in M$ and for $y_0 \in a(x_0)$, where $W_1(x_0) = ||x_0 - y_0||^2 > 0$ there exist such points $\tilde{x} \in T_M(x_0)$ and $\tilde{y} \in Da(x_0, y_0)\tilde{x}$ that $\langle x_0 - y_0, \tilde{x} - \tilde{y} \rangle < 0$. Then $\bar{x} = \bar{y}$, i.e. $\bar{x} \in a(\bar{x})$.

Proof. By theorem 11.2 [6] $\bar{} \in \partial W_1(\bar{x})$, then $(\bar{},0) \in 2(\bar{x}-\bar{y},\bar{y}-\bar{x}) + N_{qra}(\bar{x},\bar{y})$. Since

$$\begin{split} W_1^0\left(\bar{x};\upsilon\right) &= \sup\left\{\left\langle \;\;,\upsilon\right\rangle: \;\; \in \partial W_1\left(\bar{x}\right)\right\} \leq \\ &\leq \sup\left\{\left\langle \;\;,\upsilon\right\rangle: \left(\;\;,0\right) \in 2\left(\bar{x}-\bar{y},\bar{y}-\bar{x}\right) + N_{gra}\left(\bar{x},\bar{y}\right)\right\} = \\ &= \sup\left\{2\left\langle\bar{x}-\bar{y},\upsilon\right\rangle + \left\langle x^*,\upsilon\right\rangle: \left(x^*,2\left(\bar{x}-\bar{y}\right)\right) \in N_{gr}\left(\bar{x},\bar{y}\right)\right\}, \end{split}$$

then $dom\ W_1^0(\bar x;\cdot)\supset dom\ Da(\bar x,\bar y)$. By the condition $\bar x\in M$ minimizes the function W_1 on the set M, then by theorem 2.9.8 [1] we get $0\in \partial W_1(\bar x)+N_M(\bar x)$. Let $\bar x=\bar y$. Since $(\bar x-\bar y)$, $(\bar x-\bar y)\in N_{qra}(\bar x,\bar y)$, then

$$\left\langle ^{-}-2\left(\bar{x}-\bar{y}\right) ,x\right\rangle +2\left\langle \bar{x}-\bar{y},y\right\rangle \leq 0,\ \left(x,y\right) \in T_{gra}\left(\bar{x},\bar{y}\right) .$$

Then $\langle -\bar{}, x \rangle \geq 2 \langle \bar{y} - \bar{x}, x \rangle + 2 \langle \bar{x} - \bar{y}, y \rangle$ for $(x, y) \in T_{gra}(\bar{x}, \bar{y})$. By the condition there exists such $(\tilde{x}, \tilde{y}) \in T_{gra}(\bar{x}, \bar{y})$ that $\langle -\bar{}, \tilde{x} \rangle \geq 2 \langle \bar{y} - \bar{x}, \tilde{x} \rangle + 2 \langle \bar{x} - \bar{y}, \tilde{y} \rangle = 2 \langle \bar{y} - \bar{x}, \tilde{x} - \tilde{y} \rangle > 0$, i.e. $\langle -\bar{}, \tilde{x} \rangle > 0$ and $\tilde{x} \in T_M(\bar{x})$. Therefore $- \notin N_M(\bar{x})$. Then it is clear that $0 \notin \partial W_1(\bar{x}) + N_M(\bar{x})$, i.e. we get a contradiction. The theorem is proved.

emark 5. If X is a reflexive Banach space and the square of the norm is everywhere strictly differentiable, then theorem 7 is also true. Besides, we can substitute the convexity of the set a(x) by the condition: the set $\{y \in a(x) : W_1(x) = \|x - y\|^2\}$ consists of a unique point.

By $K_V(X)$ we denote a totality of all non-empty convex compact subsets, and let $a: X \to K_V(X)$. Assume $S_a(x, x^*) = \sup \{\langle x^*, y \rangle : y \in a(x)\}$, where $x^* \in X^*$.

The mapping a is said to be weakly uniformly differentiable (w.u.d.) at the point x_0 the direction of \bar{x} if S_a is lower w.u.d. at the points (x_0, x^*) , $x^* \in X^*$, in the direction of \bar{x} , i.e. there exists $S'_a(x_0, x^*; \bar{x})$ and

$$\overline{\lim_{t\downarrow 0,z^*\to x^*}}\frac{1}{t}\left(S_a\left(x_0+t\bar{x},z^*\right)-S_a\left(x_0,z^*\right)\right)\geq S_a'\left(x_0,x^*;\bar{x}\right).$$

$$\text{Let } z_0 = (x_0, y_0) \in gra, \ \hat{T}^H_{gra} \left(z_0 \right) = \left\{ \bar{z} \in X \times X : \overline{\lim}_{t \downarrow 0} \frac{d_a \left(z_0 + t \bar{z} \right)}{t} = 0 \right\}, \text{ where } \\ d_a \left(z \right) = \inf \{ \| y - v \| : v \in a \left(x \right) \}, \ z = (x, y) \text{ and } \hat{D}_H a \left(z_0; \bar{x} \right) = \{ \bar{y} \in X : (\bar{x}, \bar{y}) \in \hat{T}^H_{gra} \left(z \right) \}. \text{ It is clear that } \hat{D}_H a \left(z_0; \bar{x} \right) = \underline{\lim}_{t \downarrow 0} \frac{1}{t} \left(a \left(x_0 + t \bar{x} \right) - y_0 \right).$$

We'll say that many valued mapping a admits the first order approximation on the point $z_0 = (x_0, y_0) \in gra$ in the direction of $\bar{x} \in X$, if for any sequence $\{y_k\}$ is such that as $y_k \in a(x_0 + \varepsilon_k \bar{x})$, $k = 1, 2, ..., \varepsilon_k \downarrow 0$, $y_k \to y_0 \in a(x_0)$ as $k \to \infty$ it is valid $y_k = y_0 + \varepsilon_k z_k + 0 (\varepsilon_k)$, where $z_k \in \hat{D}_H a(z_0; \bar{x}), \ \varepsilon_k z_k \to 0 \text{ as } k \to \infty$.

Assume $\gamma(x_0, M) = \{\bar{x} \in X : \exists \varepsilon_0 > 0, \ x_0 + \varepsilon \bar{x} \in M, \ \varepsilon \in [0, \varepsilon_0] \}.$

Theorem 8. Let a compact set $M \subset X$ be such that for any $x_0 \in M$ the set $\gamma(x_0, M)$ is non-empty, $a: X \to K_V(X)$, for $x_0 \in M$ and $y_0 \in a(x_0)$, where $W_1(x_0) = ||x_0 - y_0||^2 > 0$, there exists such $\tilde{u} \in \gamma(x_0, M)$ that $\inf\{\langle x_0 - y_0, \tilde{u} - \tilde{v} \rangle :$ $\tilde{v} \in \hat{D}_H a(z_0; \tilde{u}) \} < 0$ and one of the conditions be fulfilled:

- 1) X is finite-dimensional, mapping a is continuous by Housdorff and w.u.d. for all points $x_0 \in M$ in all directions of u;
- 2) X is a Hilbert space, the mapping a is upper semi-continuous and at each point (x_0, y_0) (where $x_0 \in M$, $y_0 \in a(x_0)$ and $W_1(x_0) = ||x_0 - y_0||^2$) it admits the first order approximation in all directions of u.

Then there exist such a point $\bar{x} \in M$ that $\bar{x} \in a(\bar{x})$.

Proof. Having assumed $\Phi(x) = -\varphi(x) = \sup\{-\|x - y\|^2 : y \in a(x)\}$ under conditions 1) of theorem 5.3, under condition 2) from corollary 1 of theorem 7.1 [6] we get

$$\Phi'(x_0; u) = \sup_{v \in \hat{D}_H a(z_0; u)} \left\langle (-2(x_0 - y_0), 2(x_0 - y_0)), (u, v) \right\rangle.$$

Hence, we have

$$\varphi'(x_0; u) = 2\inf_{v \in \hat{D}_H a(z_0; u)} \left\langle (x_0 - y_0, y_0 - x_0), (u, v) \right\rangle = 2\inf_{v \in \hat{D}_H a(z_0; u)} \left\langle x_0 - y_0, u - v \right\rangle.$$

If the point $\bar{x} \in M$ minimizes the function $\varphi(x)$ on the set M, then $\varphi'(\bar{x}; u) \geq 0$ for $u \in \gamma(\bar{x}; M)$. Since a is upper semi-continuous, then the function φ is lower semi-continuous (see [8]). Therefore, there exist a point $\bar{x} \in M$ which minimizes the function φ on the set M. Let $\bar{y} \in a(\bar{x})$ be such that $W_1(\bar{x}) = \|\bar{x} - \bar{y}\|^2$. If $\bar{x} \neq \bar{y}$, then by the condition there exist such $\bar{u} \in \gamma(\bar{x}; M)$ that $\inf\{\langle \bar{x} - \bar{y}, \bar{u} - \bar{v} \rangle :$ $\bar{v} \in \hat{D}_H a(\bar{z}; \bar{u})$ < 0, where $z = (\bar{x}, \bar{y})$, i.e. there exit such $\bar{u} \in \gamma(\bar{x}; M)$, that $\varphi'(\bar{x},\bar{y}) < 0$. We get a contradiction. We have $\bar{x} = \bar{y}$. The theorem is proved.

Note that under condition 1) of theorem 8 the condition $\inf\{\langle x_0-y_0, \tilde{u}-\tilde{v}\rangle : \tilde{v} \in$ $\hat{D}_H a(z_0; \tilde{u})$ < 0 is equivalent to the condition $\langle x_1 - y_0, \tilde{u} \rangle + W'_a(x_0, y_0 - x_0, \tilde{u}) < 0$, where $W_a(x, x^*) = \inf\{\langle x^*, y \rangle : y \in a(x)\}.$

emark 6. The corresponding results are true for the zeros of many-valued mapping and the obtained results may be generalized for separable local convex spaces. Let $a: M \to 2^Y$, where $M \subset X$, a(x) is non-empty and convex, X and Y be separable local convex spaces. Besides, let V be a convex balanced vicinity of zero in Y^* , and ∂V be a set boundary points of the set V. Denote $K_a(x, y^*) =$ $\inf\{|\langle y^*,y\rangle|:y\in a(x)\}\ \text{and}\ \Phi(x)=\sup\{K_a(x,y^*):y^*\in\partial V\}.$ It is clear that $\Phi\left(x\right)=\sup_{y^{*}\in V}\inf_{y\in a\left(x\right)}\left\langle y^{*},y\right\rangle \text{ and zeros of mapping is a minimum of the function }\Phi\left(x\right)$ and we can similarly show that under same conditions the point of minimum of the function Φ on the set M is the zero of the mapping a.

[M.A.Sadygov]

eferences

- [1]. Clark F. Optimization and non-smooth analysis. M.: "Nauka", 1988, 280 p. (Russian)
- [2]. Oben J.P. Nonlinear analysis and its economic applications. M.: "Mir", 1988, 264 p. (Russian)
 - [3]. Oben J.P., Ekland I. Applied non-linear analysis. M.: "Mir", 1988, 510 p.
- [4]. Kusrayev A.G. Vector duality and its applications. Novosibirsk: "Nauka", 1985, 256 p. (Russian)
- [5]. Ekland I., Temam R. Convex analysis and variational problems. M.: "Mir", 1979, 400 p. (Russian)
- [6]. Minchenko L.I., Borisenko O.F. Differenatial properties of marginal functions and their applications to optimization problems. Minsk: "Nauka i technika", 1992, 142 p. (Russian)
- [7]. Sadygov M.A. Properties of optimal trajectories of differential inclusions. Thesis of Ph.D. Baku, 1983, 116 p. (Russian)
- [8]. Borisovich Yu.G., Helman B.D. and others. *Introduction to the theory of many valued mappings*. Voronezh, 1986, 103 p. (Russian)

Misreddin A. Sadygov

Institute of Mathematics and Mechanics of NAS of Azerbaijan.

9, F.Agayev str., AZ1141, Baku, Azerbaijan.

Tel.: (99412) 439 47 20 (off.).

Received March 12, 2003; Revised February 16, 2004.

Translated by Nazirova S.H.