Misreddin A. SADYGOV

ON THE CHARACTERIZATION OF ZEROS AND FIXED POINT OF MAPPINGS

Abstract
In the paper, using the optimization problems the zeros and fixed points of mappings are investigated.

Let X be a Banach space, $M \subset X, f: X \rightarrow X$ and $\varphi_{\alpha}(x)=\|x-f(x)\|^{\alpha}$. It is clear that if x_{0} the fixed point of the function f on the set M, then $\min \left\{\varphi_{\alpha}(x)\right.$: $x \in M\}=\varphi_{\alpha}\left(x_{0}\right)=0$, where $\alpha>0$, and x_{0} is a global minimum of the function $\varphi_{\alpha}(x)$ in the space X and therefore $0 \in \partial \varphi_{\alpha}\left(x_{0}\right)$.

In the paper it is studied a problem when the point of the minimum of the function φ_{α} on the set M will be a fixed point of the function f on the set M.

Denote $B^{*}=\left\{x^{*} \in X^{*}:\left\|x^{*}\right\| \leq 1\right\}, g(x)=\|x-f(x)\|, g_{1}(x)=\|x-f(x)\|^{2}$, $B=\left\{x \in R^{n}:\|x\| \leq 1\right\}$.

Lemma 1. If $f: R^{n} \rightarrow R^{n}$ satisfies the Lipschitz condition near x_{0}, $\operatorname{det}(I-A) \neq$ 0 for $A \in \partial f\left(x_{0}\right)$ and $0 \in \partial g\left(x_{0}\right)$ (or $0 \in \partial g_{1}\left(x_{0}\right)$), then $f\left(x_{0}\right)=x_{0}$.

Proof. By theorem 2.6.6 [1] we get
$\partial g\left(x_{0}\right) \subset\left\{\begin{array}{l}c \bar{o}\left\{x^{*}\left(1-\partial f\left(x_{0}\right)\right): x^{*} \in B\right\}, \text { for } x_{0}-f\left(x_{0}\right)=0, \\ x^{*}\left(I-\partial f\left(x_{0}\right)\right): x^{*} \in R^{n},\left\|x^{*}\right\|=1,\left\langle x^{*}, x_{0}-f\left(x_{0}\right)\right\rangle=\left\|x_{0}-f\left(x_{0}\right)\right\|, \\ \text { for } x_{0}-f\left(x_{0}\right) \neq 0 .\end{array}\right.$
Since each element of the set $I-\partial f\left(x_{0}\right)$ is a non-degenerate matrix, then $0 \notin \partial g\left(x_{0}\right)$ for $x_{0}-f\left(x_{0}\right) \neq 0$. Therefore, if $0 \in \partial g\left(x_{0}\right)$, we get $f\left(x_{0}\right)=x_{0}$.

The lemma is proved.
It follows from the lemma 1 that if $\bar{x} \in M$ is a minimum of the function g (or g_{1}) on the set M, f satisfies the Lipschitz condition near \bar{x}, $\operatorname{det}(I-A) \neq 0$ for $A \in \partial f(\bar{x})$ and $0 \in \partial g(\bar{x})\left(\right.$ or $\left.0 \in \partial g_{1}(\bar{x})\right)$, then $f(\bar{x})=\bar{x}$.

Assume (see [1]) $T_{M}(x)=\left\{v \in X: \forall x_{i} \in M, x_{i} \rightarrow x, \forall t_{i} \downarrow 0, \exists v_{i} \in X, v_{i} \rightarrow v\right.$ that $\left.x_{i}+t_{i} v_{i} \in M\right\}, N_{M}(x)=\left\{x^{*} \in X^{*}:\left\langle x^{*}, v\right\rangle \leq 0 \forall v \in T_{M}(x)\right\}$. Note that, if M is a convex set, then $T_{M}(x)=c l\left(\underset{h>0}{\cup} \frac{1}{h}(M-x)\right)$.

Theorem 1. Let $M \subset R^{n}$ be a closed set, $f: R^{n} \rightarrow R^{n}$ be a Lipschitz function with a constant L, where $L \in(0,1), f(x) \in x+T_{M}(x)$ for any $x \in M$. Then there exists a point $\bar{x} \in M$, such that $f(\bar{x})=\bar{x}$.

Proof. Assume $g(x)=\|x-f(x)\|$ and let $\bar{y} \in M$. By the condition $\|f(x)-f(\bar{y})\| \leq L\|x-\bar{y}\|$. Therefore, $\|f(x)\| \leq\|f(\bar{y})\|+L(\|x\|+\|\bar{y}\|)$. Then $g(x) \geq\|x\|-\|f(x)\| \geq(1-L)\|x\|-\|f(\bar{y})\|-L\|\bar{y}\|$. It is easily verified that the set $\left\{x \in R^{n}: g(x) \leq \alpha\right\}$ is compact. Then, by definition g is lower semi-compact. Therefore, by theorem 1.1 [2] the function g attains minimum on the set M at some point \bar{x}. Then by the corollary of supposition 2.4 .3 and by supposition 2.9.8 [1] we have

$$
0 \in \partial\left(g(x)+\delta_{M}(x)\right)_{x=\bar{x}} \subset \partial g(\bar{x})+N_{M}(\bar{x}),
$$

where $\delta_{M}(x)=\left\{\begin{array}{l}0, x \in M, \\ +\infty, x \notin M .\end{array}\right.$ We get from theorem 2.6.6 [1]

$$
\partial g(\bar{x}) \subset\left\{\begin{array}{l}
c \bar{o}\left\{x^{*}(1-\partial f(\bar{x})): x^{*} \in B\right\}, \text { if } \bar{x}-f(\bar{x})=0, \\
x^{*}(I-\partial f(\bar{x})): x^{*} \in R^{n},\left\|x^{*}\right\|=1,\left\langle\bar{x}-f(\bar{x}), x^{*}\right\rangle=\|\bar{x}-f(\bar{x})\|, \\
\text { if } \bar{x}-f(\bar{x}) \neq 0 .
\end{array}\right.
$$

It is clear that $\partial f(\bar{x}) \subset L B_{n \times n}$, where we denoted by $B_{n \times n}$ a closed unique ball in $R^{n \times n}$. Besides, if $\bar{x}-f(\bar{x}) \neq 0$, then for $G \in \partial f(\bar{x})$ we get $\left\langle x^{*}(1-G), f(\bar{x})-\bar{x}\right\rangle=$ $=\left\langle x^{*}, f(\bar{x})-\bar{x}\right\rangle-\left\langle x^{*} G, f(\bar{x})-\bar{x}\right\rangle \leq-\|\bar{x}-f(\bar{x})\|+\|G\|\|\bar{x}-f(\bar{x})\|<0$, i.e. $-x^{*}(I-G) \notin N_{M}(\bar{x})$, for $G \in \partial f(\bar{x})$. Therefore, if $\bar{x}-f(\bar{x}) \neq 0$, then $0 \notin \partial g(\bar{x})+N_{M}(\bar{x})$. This means that $f(\bar{x})=\bar{x}$. The theorem is proved.
emark 1. Usaing the McShane lemma on continuation of Lipschitz functions in theorem 1 it sufficies to assume $f: M \rightarrow R^{n}$ and f is a Lipschitz function with the constant L, where $L \in(0,1)$.

Theorem 2. Let $M \subset R^{n}, f: R^{n} \rightarrow R^{n}$ be a Lipschitz function with the constant $L, \bar{x} \in M$ be a minimum of the function g on the set M and if $x \in M$ and $f(x) \neq x$, then for $G \in \partial f(x)$ there exists $\exists z \in T_{M}(x)$, that satisfies the inequality $\left\langle x^{*}(I-G), z\right\rangle<0$, where $x^{*} \in R^{n},\left\|x^{*}\right\|=1,\left\langle x-f(x), x^{*}\right\rangle=\|x-f(x)\|$
emark 2. In lemma 2 the compactness M may be substituted by the condition: M is closed, $\|f\|$ is lower semi-compact, or X is a reflexive Banach space, M is a closed convex set, $\|f\|$ is a convex function and $\|f(x)\| \rightarrow \infty$ as $\|x\| \rightarrow \infty, x \in M$.

Let Y be the ordered Banach space with monotone norm, $f: X \rightarrow Y$ be a continuous function, and e $f=\{(x, y) \in X \times Y: f(x) \leq y\}$. Then, from theorem 5.3.17 [4] we have

$$
\partial\|f(x)\| \subset \underset{z^{*} \in \partial\|z\|}{\cup}\left\{x^{*} \in X^{*}:\left(x^{*}, z^{*}\right) \in N(e f ;(x, f(x)))\right\}
$$

where $z=f(x), N(e f ;(x, f(x)))=\left\{\left(x^{*}, z^{*}\right) \in X^{*} \times Y^{*}:\left(x^{*}, z^{*}\right)(v) \leq 0\right.$, $v \in T \quad(e f ;(x, f(x)))\}$.

Lemma 3. Let Y be the ordered Banach space with monotone norm, M be a compact subset in $X, \quad f: X \rightarrow Y$ be a Lipschitz function and from $y^{*} \in \partial\|f(x)\|$, where $x \in M, f(x) \neq 0$, it follows that $-y^{*} \notin N_{M}(x)$. Then there exists such a point $\bar{x} \in M$, that $f(\bar{x})=0$.

Lemma 3 is proved similar to lemma 2.
Note that similarly we can get the analogy of theorem 2 in the case, when X is an ordered Banach space with monotone norm and $f: M \rightarrow X$ is a continuous function.

Let's consider a subdifferential of abstractive function. For simplicity let X and Y be Banach spaces. We denote a set of linear continuous operators from X to Y by $L(X, Y)$.

A scalar subdifferential of functions $f: M \rightarrow Y$ at the point x is said to be a closed convex set M from $L(X, Y)$ that satisfies the equality: $\partial\left\langle y^{*}, f(x)\right\rangle=y^{*} \circ M$ for any $y^{*} \in Y^{*}$ and we denote it by $\partial_{c} f(x)$.

The sense of the equality $\partial\left\langle y^{*}, f(x)\right\rangle=y^{*} \circ M$ is in that every element $x^{*} \in \partial\left\langle y^{*}, f(x)\right\rangle$ may be represented in the form $\left\langle x^{*}, v\right\rangle=\left\langle y^{*}, A v\right\rangle$ for any $v \in X$, where $A \in M$.

Note that when X is a Banach space using the notion of scalar subdifferential we can get the analogy of theorem 2 .

Lemma 4. Let $\varphi: X \rightarrow R$ be a continuous function in the vicinity of $x_{0}, q(x)=$ $=|\varphi(x)|$ and $q\left(x_{0}\right)>0$. Then

$$
\partial q\left(x_{0}\right)=\left\{\begin{array}{l}
\partial \varphi\left(x_{0}\right): \varphi\left(x_{0}\right)>0 \\
-\partial \varphi\left(x_{0}\right): \varphi\left(x_{0}\right)<0
\end{array}\right.
$$

Proof. Since φ is continuous at the point x_{0}, then from the definition of generalized derivative with respect to direction we have:

$$
q^{\circ}\left(x_{0} ; v\right)=\lim _{\varepsilon \downarrow 0} \limsup _{\substack{y \downarrow \varphi^{x_{0}} \\
t \downarrow 0}} \inf _{\omega \in v+\varepsilon B} \frac{q(y+t \omega)-q(y)}{t}=\left\{\begin{array}{l}
\varphi^{\circ}\left(x_{0} ; v\right): \varphi\left(x_{0}\right)>0 \\
\varphi^{\circ}\left(x_{0} ;-v\right): \varphi\left(x_{0}\right)<0
\end{array}\right.
$$

where $y \downarrow \varphi^{x_{0}}$ means that y and $\varphi(y)$ converge to x_{0} and $\varphi\left(x_{0}\right)$ respectively. Therefore, if $\varphi\left(x_{0}\right)>0$, then

$$
\begin{aligned}
& \partial q\left(x_{0}\right)=\left\{x^{*} \in X^{*}: q^{\circ}\left(x_{0} ; v\right) \geq\left\langle x^{*}, v\right\rangle, v \in X\right\}= \\
& =\left\{x^{*} \in X^{\circ}: \varphi^{\circ}\left(x_{0} ; v\right) \geq\left\langle x^{*}, v\right\rangle, v \in X\right\}=\partial \varphi\left(x_{0}\right)
\end{aligned}
$$

It is similarly verified that, if $\varphi\left(x_{0}\right)<0$, then $\partial q\left(x_{0}\right)=-\partial \varphi\left(x_{0}\right)$. The lemma is proved.

Note that, if $\varphi: X \rightarrow R$ is lower semi-continuous at the point x_{0} and $\varphi\left(x_{0}\right)>0$, then $\partial q\left(x_{0}\right)=\partial \varphi\left(x_{0}\right)$.

Let $f=\left(f_{1}, \ldots, f_{n}\right): R^{n} \rightarrow R^{n}$. Assume $\bar{g}(x)=\sum_{i=1}^{n}\left|f_{i}(x)-x_{i}\right|, \quad \psi(x)=$ $\sum_{i=1}^{n} f_{i}(x)$.

Theorem 4. Let $M \subset R^{n}$ be a compact set, $f_{i}: R^{n} \rightarrow R$ be a lower semi-continuous (upper semi-continuous) function, $x_{i} \leq f_{i}(x)\left(x_{i} \geq f_{i}(x)\right), i=$ $\overline{1, n}, f(x) \in x+T_{M}(x)$ for any $x \in M, \bar{x}$ be a minimum point of the function $\bar{g}(x)$ in the set M, or dom $\psi^{\circ}(\bar{x} ; \cdot) \cap$ int $T_{M}(\bar{x}) \neq \emptyset$, or dom $\psi^{\circ}(\bar{x} ; \cdot)-T_{M}(\bar{x} ; \cdot)=X$; for $x \in M$ and for any $z^{*} \in \partial \psi(x)$, where $f(x) \neq x$, it is fulfilled the inequality

$$
\left\langle z^{*}, f(x)-x\right\rangle<\sum_{i=1}^{n}\left(f_{i}(x)-x_{i}\right) \quad\left(\left\langle z^{*}, f(x)-x\right\rangle>\sum_{i=1}^{n}\left(f_{i}(x)-x_{i}\right)\right)
$$

Then $f(\bar{x})=\bar{x}$.
Proof. By Weierstress theorem the function \bar{g} attains minimum on the set M at some point \bar{x}. Therefore by theorem 2.9.8 [1] and by supposition 7.6 .12 [3] we have

$$
0 \in \partial \bar{g}(\bar{x})+N_{M}(\bar{x})
$$

Since $\bar{g}(x)=\sum_{i=1}^{n}\left(f_{i}(x)-x_{i}\right)=\psi(x)-\sum_{i=1}^{n} x_{i}$, then $\partial \bar{g}(x)=\partial \psi(x)-l$, where $l=(1,1, \ldots, 1)$. Then, for $f(x) \neq x$, by the condition we have

$$
\left\langle z^{*}-l, f(x)-x\right\rangle=\left\langle z^{*}, f(x)-x\right\rangle-\sum_{i=1}^{n}\left(f_{i}(x)-x_{i}\right)<0
$$

for any $z^{*} \in \partial \psi(x)$, i.e. if $x^{*} \in \partial \bar{g}(x)$, then $-x^{*} \notin N_{M}(x)$. Therefore $0 \in \partial \bar{g}(\bar{x})+N_{M}(\bar{x})$ if and only if $f_{i}(\bar{x})=\bar{x}_{i}$.

The second case is similarly proved. The theorem is proved.
It is clear that by changing the condition $f(x) \in x+T_{M}(x)$ by the condition $x \in f(x)+T_{M}(x)$ for any $x \in M$, we can get the analogy of theorem 4 .

Lemma 5. If $\min _{x, y \in M}\|f(x)-y\|=\|f(\bar{x})-\bar{x}\|$ where $\bar{x} \in M \subset X$ and $f(\bar{x}) \in$ $\bar{x}+T_{M}(\bar{x})$, then \bar{x} is a fixed point of the function f on the set M.

Proof. By the condition $\min \{\|f(\bar{x})-y\|: y \in M\}=\|f(\bar{x})-\bar{x}\|$. Therefore, by theorem 2.9.8 [1] we have $0 \in \partial_{y}\|f(\bar{x})-y\|_{y=\bar{x}}+N_{M}(\bar{x})$. Let $f(\bar{x}) \neq \bar{x}$. It is clear that $\partial_{y}\|f(\bar{x})-y\|_{y=\bar{x}}=\left\{-x^{*}: x^{*} \in X^{*},\left\|x^{*}\right\|=1,\left\langle x^{*}, f(\bar{x})-\bar{x}\right\rangle=\|f(\bar{x})-\bar{x}\|\right\}$. Then there exists such $-\bar{x}^{*} \in \partial_{y}\|f(\bar{x})-y\|_{y=\bar{x}}$, that $\bar{x}^{*} \in N_{M}(\bar{x})$. Therefore $\|f(\bar{x})-\bar{x}\|=\left\langle\bar{x}^{*}, f(\bar{x})-\bar{x}\right\rangle \leq 0$, i.e. $f(\bar{x})=\bar{x}$. We get contradiction. The lemma is proved.

Let X be a Banach space, $F: X \rightarrow 2^{X}, M \subset \operatorname{dom} F=\{x \in X: F(x) \neq \varnothing\}$, $W(x)=\inf \{\|x-y\|: y \in F(x)\}, \quad \operatorname{grF}=\{(x, y) \in X \times X: y \in F(x)\}$, $\operatorname{grDF}\left(x_{0}, y_{0}\right)=T_{g r F}\left(x_{0}, y_{0}\right), D F\left(x_{0}, y_{0}\right)^{*}(q)=\left\{:(q,-) \in N_{g r F}\left(x_{0}, y_{0}\right)\right\}$.

Lemma 6. Let M be a closed and convex set in $X, g r F$ be closed and convex, $\bar{x} \in M$ be a minimum of the function $W(x)$ on the set M, such $\bar{y} \in F(\bar{x})$ that
$W(\bar{x})=\|\bar{x}-\bar{y}\|, x_{0} \in M$ and $y_{0} \in F\left(x_{0}\right)$ be such that $W\left(x_{0}\right)>W(\bar{x})$ and $W\left(x_{0}\right)=\left\|x_{0}-y_{0}\right\|$. Then from $\in \operatorname{DF}\left(x_{0}, y_{0}\right)^{*}(q)+r$, where $(r, q) \in \partial\left\|x_{0}-y_{0}\right\|$ it follows that $-\notin N_{M}\left(x_{0}\right)$.

Proof. By theorem 4.5.2 [3] $\in \partial W\left(x_{0}\right)$ if and only if there exists such $(r, q) \in$ $\partial\left\|x_{0}-y_{0}\right\|$ that $\in D\left(x_{0}, y_{0}\right)^{*}(q)+r$. By the condition $W(\bar{x})<W\left(x_{0}\right)$, i.e. $x_{0} \neq y_{0}$. Therefore

$$
\partial\left\|x_{0}-y_{0}\right\|=\left\{\left(x^{*},-x^{*}\right): x^{*} \in X^{*},\left\|x^{*}\right\|=1,\left\langle x^{*}, x_{0}-y_{0}\right\rangle=\left\|x_{0}-y_{0}\right\|\right\} .
$$

Hence, we have $\in D F\left(x_{0}, y_{0}\right)^{*}\left(-x^{*}\right)+x^{*}$ or $\quad-x^{*} \in D F\left(x_{0}, y_{0}\right)^{*}\left(-x^{*}\right)$ for some $\left(x^{*},-x^{*}\right) \in \partial\left\|x_{0}-y_{0}\right\|$. By definition of adjoined mapping we have

$$
\left\langle-x^{*}, x_{0}-x\right\rangle \geq\left\langle-x^{*}, y_{0}-y\right\rangle,(x, y) \in g r F .
$$

Hence it follows that

$$
\begin{equation*}
-\left\langle, x-x_{0}\right\rangle \geq\left\langle x^{*}, x_{0}-y_{0}\right\rangle-\left\langle x^{*}, x-y\right\rangle,(x, y) \in g r F \tag{1}
\end{equation*}
$$

Since $W(\bar{x})=\max \left\{\left\langle z^{*}, \bar{x}-\bar{y}\right\rangle:\left\|z^{*}\right\|=1, z^{*} \in X^{*}\right\}$, then $W(\bar{x}) \geq\left\langle x^{*}, \bar{x}-\bar{y}\right\rangle$. Assuming $x=\bar{x}, y=\bar{y}$ from (1) we get, $-\left\langle, \bar{x}-x_{0}\right\rangle>0$, i.e. $-\notin N_{M}\left(x_{0}\right)$. The lemma is proved.

Lemma 7. Let M be a closed convex set in X, int $M \neq \varnothing$, grF be closed and convex, $y_{0} \in F\left(x_{0}\right)$ be such that $W\left(x_{0}\right)=\left\|x_{0}-y_{0}\right\|$, where $x_{0} \neq y_{0}$, and $x^{*} \in D F\left(x_{0}, y_{0}\right)^{*}\left(x^{*}\right)$ for $x^{*} \in X^{*},\left\|x^{*}\right\|=1,\left\langle x^{*}, x_{0}-y_{0}\right\rangle=\left\|x_{0}-y_{0}\right\|$ and $0 \neq$ $\partial W\left(x_{0}\right)$. Then $0 \notin \partial W\left(x_{0}\right)+N_{M}\left(x_{0}\right)$.

Proof. By theorem 4.5.2 [3] $\in \partial W\left(x_{0}\right)$ if and only if there exists such a $(r, q) \in \partial\left\|x_{0}-y_{0}\right\|$, that $\in D F\left(x_{0}, y_{0}\right)^{*}(q)+r$. Since $x_{0} \neq y_{0}$, then $\partial\left\|x_{0}-y_{0}\right\|=$ $\left\{\left(x^{*},-x^{*}\right): x^{*} \in X^{*}, \quad\left\|x^{*}\right\|=1, \quad\left\langle x^{*}, x_{0}-y_{0}\right\rangle=\left\|x_{0}-y_{0}\right\|\right\}$. Let $\left(x^{*},-x^{*}\right) \in$ $\partial\left\|x_{0}-y_{0}\right\|$ be such that $\in D F\left(x_{0}, y_{0}\right)^{*}\left(-x^{*}\right)+x^{*}$ or $-x^{*} \in D F\left(x, y_{0}\right)^{*}\left(-x^{*}\right)$. By definition of adjoined mapping we have

$$
\left\langle-x^{*}, x_{0}-x\right\rangle \geq\left\langle-x^{*}, y_{0}-y\right\rangle,(x, y) \in g r F .
$$

Then it is clear that

$$
\begin{equation*}
\left\langle, x_{0}-x\right\rangle \geq\left\langle-x^{*}, y_{0}-y\right\rangle+\left\langle x^{*}, x_{0}-x\right\rangle, \quad(x, y) \in g r F . \tag{2}
\end{equation*}
$$

Since $x^{*} \in D F\left(x_{0}, y_{0}\right)^{*}\left(x^{*}\right)$, then

$$
\begin{equation*}
\left\langle x^{*}, x_{0}-x\right\rangle \geq\left\langle x^{*}, y_{0}-y\right\rangle, \quad(x, y) \in g r F . \tag{3}
\end{equation*}
$$

It follows from (2) and (3) that $\left\langle-, x-x_{0}\right\rangle \geq 0$ for $(x, y) \in g r F$, then we have that $(-, z) \geq 0$ for $z \in T_{M}\left(x_{0}\right)$. Therefore $\langle-, z\rangle>0$ for $z \in \operatorname{int} T_{M}\left(x_{0}\right)$. Hence we get $0 \notin \partial W\left(x_{0}\right)+N_{M}\left(x_{0}\right)$. The lemma is proved.

Theorem 5. Let M be a closed convex set in X, grF be closed and convex, $M \neq \varnothing$, or $0 \in \operatorname{int}(\operatorname{dom} F-M), \bar{x} \in M$ be a minimum of the function $W(x)$ on the set M and $\bar{y} \in F(\bar{x})$ be such that $W(\bar{x})=\|\bar{x}-\bar{y}\|$, let for any $x_{0} \in M$, and for $y_{0} \in F\left(x_{0}\right)$, where $W\left(x_{0}\right)=\left\|x_{0}-y_{0}\right\|>0$, and $x^{*} \in N_{F\left(x_{0}\right)}^{\left(y_{0}\right)}$, where $\left\|x^{*}\right\|=1,\left\langle x^{*}, x_{0}-y_{0}\right\rangle=\left\|x_{0}-y_{0}\right\|$ there exist such points $\tilde{x} \in M$ and $\tilde{y} \in F(\tilde{x})$ that $\left\|x_{0}-y_{0}\right\|>\left\langle x^{*}, \tilde{x}-\tilde{y}\right\rangle$. Then $\bar{x}=\bar{y}$, i.e. $\bar{x} \in F(\bar{x})$.

Proof. Since $\bar{x} \in M$ minimizes the function W on the set M, then $0 \in \partial W(\bar{x})+$ $N_{M}(\bar{x})$. By theorem 4.5.2 [3] ${ }^{-} \in \partial W(\bar{x})$ if and only if there exists such $(\bar{r}, \bar{q}) \in$ $\partial\|\bar{x}-\bar{y}\|$, that ${ }^{-} \in D F(\bar{x}, \bar{y})^{*}(\bar{q})+\bar{r}$. If $\bar{x} \neq \bar{y}$, then

$$
\partial\|\bar{x}-\bar{y}\|=\left\{\left(x^{*},-x^{*}\right): x^{*} \in X^{*},\left\|x^{*}\right\|=1, \quad\left\langle x^{*}, \bar{x}-\bar{y}\right\rangle=\|\bar{x}-\bar{y}\|\right\}
$$

Let $\left(\bar{x}^{*},-\bar{x}\right)^{*} \in \partial\|\bar{x}-\bar{y}\|$ be such that ${ }^{-}-\bar{x}^{*} \in D F(\bar{x}, \bar{y})^{*}\left(-\bar{x}^{*}\right)$. Hence, we have

$$
\left\langle^{-}-\bar{x}^{*}, \bar{x}-x\right\rangle \geq\left\langle-\bar{x}^{*}, \bar{y}-y\right\rangle, x \in M \quad \forall y \in F(x) .
$$

It is clear that $\bar{x}^{*} \in N_{F(\bar{x})}^{(\bar{y})}$ and

$$
\left\langle-^{-}, x-\bar{x}\right\rangle \geq\left\langle\bar{x}^{*}, \bar{x}-\bar{y}\right\rangle-\left\langle\bar{x}^{*}, x-y\right\rangle, x \in M, \quad y \in F(x)
$$

By the condition there exists such $\tilde{x} \in M$ and $\tilde{y} \in F(\tilde{x})$ that $\left\langle\bar{x}^{*}, \bar{x}-\bar{y}\right\rangle-$ $\left\langle\bar{x}^{*}, \tilde{x}-\tilde{y}\right\rangle>0$. Therefore, $\left\langle-^{-}, \tilde{x}-\bar{x}\right\rangle>0$, i.e. $-^{-} \notin N_{M}(\bar{x})$. Then, it is clear that $0 \notin \partial W(\bar{x})+N_{M}(\bar{x})$, i.e. we get a contradiction. The theorem is proved.

Corollary 2. If M is a closed convex set in X, int M is non-empty, grF is closed and convex, the point $\bar{x} \in M$ is a minimum of the function $W(x)$ in the set M and $\bar{y} \in F(\bar{x})$ are such that $W(\bar{x})=\|\bar{x}-\bar{y}\|$ and for any $x^{*} \in X^{*},\left\|x^{*}\right\|=1$ there exist such points $\tilde{x} \in M$ and $\tilde{y} \in F(\tilde{x})$ that $\left\langle x^{*}, \tilde{x}-\tilde{y}\right\rangle \leq 0$, then $\bar{x}=\bar{y}$.
emark 3. If X is a Hilbert space, then the condition $\|\bar{x}-\bar{y}\|>\left\langle\bar{x}^{*}, \tilde{x}-\tilde{y}\right\rangle$, where $\bar{x}^{*} \in X^{*},\left\|\bar{x}^{*}\right\|=1,\left\langle\bar{x}^{*}, \bar{x}-\bar{y}\right\rangle=\|\bar{x}-\bar{y}\|$ is equivalent to the condition: $\|\bar{x}-\bar{y}\|^{2}>\langle\bar{x}-\bar{y}, \tilde{x}-\tilde{y}\rangle$.
emark 4. Let $\bar{y} \in F(\bar{x})$ be such that $W(\bar{x})=\|\bar{x}-\bar{y}\|>0$ and for any $x \in M$ the set $F(x)$ be convex, bounded and closed. Show that if the inequality $\rho_{x}(F(\bar{x}), F(\bar{y}))<\|\bar{x}-\bar{y}\|$ is fulfilled, then there exists such $\tilde{y} \in F(\bar{y})$ that $\left\langle\bar{x}^{*}, \bar{x}-\tilde{y}\right\rangle<\|\bar{x}-\bar{y}\|$ for $\bar{x}^{*} \in N_{F(\bar{x})}^{(\bar{y})},\left\|\bar{x}^{*}\right\|=1, \quad\left\langle\bar{x}^{*}, \bar{x}-\bar{y}\right\rangle=\|\bar{x}-\bar{y}\|$.

From $\bar{x}^{*} \in N_{F(\bar{x})}^{(\bar{y})}$ it follows that $\left\langle\bar{x}^{*}, \bar{y}\right\rangle=\max \left\{\left\langle\bar{x}^{*}, y\right\rangle: y \in F(\bar{x})\right\}$.
Let $\tilde{y} \in F(\bar{y})$ be such that $\left\langle\bar{x}^{*}, \tilde{y}\right\rangle=\max \left\{\left\langle\bar{x}^{*}, z\right\rangle: z \in F(\bar{y})\right\}$. Using the formula

$$
\rho_{x}(A, B)=\sup \left\{\left|S_{A}\left(x^{*}\right)-S_{B}\left(x^{*}\right)\right|: x \in X^{*},\left\|x^{*}\right\| \leq 1\right\}
$$

where A and B are closed bounded sets in X, we get

$$
\left|\left\langle\bar{x}^{*}, \bar{y}-\tilde{y}\right\rangle\right|=\left|\max _{y \in F(\bar{x})}\left\langle\bar{x}^{*}, y\right\rangle-\max _{y \in F(\bar{y})}\left\langle\bar{x}^{*}, z\right\rangle\right| \leq \rho_{x}(F(\bar{x}), F(\bar{y}))<\|\bar{x}-\bar{y}\| .
$$

Lemma 8. If $\min _{x, z \in M} \inf _{y \in F(x)}\|z-y\|=\min _{y \in F(\bar{x})}\|\bar{x}-y\|=\|\bar{x}-\bar{y}\|$, where $\bar{y} \in$ $F(\bar{x}), \bar{x} \in M, F(\bar{x})$ is a closed convex set and $F(\bar{x}) \cap\left(\bar{x}+T_{M}(\bar{x})\right) \neq \varnothing$, then $\bar{y}=\bar{x}$, i.e. $\bar{x} \in F(\bar{x})$.

Proof. Assume $\Phi(z, x)=\inf \{\|z-y\|: y \in F(x)\}$. Since $\min _{z \in M} \Phi(z, \bar{x})=$ $\Phi(\bar{x}, \bar{x})=\|\bar{x}-\bar{y}\|$, then $0 \in \partial_{z} \Phi(z, \bar{x})_{z=\bar{x}}+N_{M}(\bar{x})$. Using the supposition 4.5.1 [3] we get that, if $\bar{y} \neq \bar{x}$, then $x^{*} \in \partial_{z} \Phi(z, \bar{x})_{z=\bar{x}}$ if and only if, then $x^{*} \in N_{F(\bar{x})}^{(\bar{y})}$, $\left\|x^{*}\right\|=1,\left\langle x^{*}, \bar{x}-\bar{y}\right\rangle=\|\bar{x}-\bar{y}\|$. Let $\bar{x}^{*} \in \partial_{z} \Phi(z, \bar{x})_{z=\bar{x}}$ be such that $-\bar{x}^{*} \in N_{M}(\bar{x})$. Then by the condition, we get

$$
\max \left\{\left\langle y-\bar{x}, \bar{x}^{*}\right\rangle: y \in F(\bar{x})\right\}=-\|\bar{x}-\bar{y}\| \geq 0
$$

Hence it follows $\bar{y}=\bar{x}$. The lemma is proved.
Let X and Y be Banach spaces, $F_{1}: X \rightarrow 2^{Y}, W_{0}(x)=\inf \left\{\|y\|: y \in F_{1}(x)\right\}$, $\bar{W}\left(x, y^{*}\right)=\inf \left\{\left\langle y, y^{*}\right\rangle: y \in F_{1}(x)\right\}$. If $F_{1}(x)$ is convex and closed, then (see [6]) $W_{0}(x)=\sup \left\{\bar{W}\left(x, y^{*}\right):\left\|y^{*}\right\| \leq 1\right\}$. Therefore, if $g r F_{1}$ is convex and closed, then $x \rightarrow W_{0}(x)$ is a convex function. It is clear dom $F_{1}^{-1}=F_{1}(X)$.

Lemma 9. Let gr F_{1} be convex and closed, $\bar{y} \in F_{1}(\bar{x})$ where $\bar{y} \in$ int dom F_{1}^{-1}, such that $W_{0}(\bar{x})=\|\bar{y}\|$ and $0 \in \partial W_{0}(\bar{x})$. Then $\bar{y}=0$, i.e. $0 \in F_{1}(\bar{x})$.

Proof. By theorem 4.5.2 [3] ${ }^{-} \in \partial W_{0}(\bar{x})$ if and only if there exists such $\bar{q} \in$ $\partial\|\bar{y}\|$, that ${ }^{-} \in D F_{1}(\bar{x}, \bar{y})^{*}(\bar{q})$. Since $\bar{y} \in \operatorname{int} \operatorname{dom} F_{1}^{-1}$, then $\operatorname{domD}\left(F_{1}^{-1}\right)(\bar{y}, \bar{x})=$ Y. Then by lemma 2.1.2 [7], we get that $D\left(F_{1}^{-1}\right)(\bar{y}, \bar{x})^{*}=D\left(F_{1}\right)\left((\bar{x}, \bar{y})^{*}\right)^{-1}$ is bounded.

By lemma 2.1.1 [7] adjoined mapping $D\left(F_{1}^{-1}\right)(\bar{y}, \bar{x})^{*}$ is bounded, if and only if, then $D\left(F_{1}^{-1}\right)(\bar{y}, \bar{x})^{*}(0)=\{0\}$. Since ${ }^{-}=0$, we get that $\bar{q}=0$, i.e. $0 \in \partial\|\bar{y}\|$. Hence, it follows that $\bar{y}=0$. The lemma is proved.

Theorem 6. Let $M \subset \operatorname{dom}_{1}$ be a closed convex set, $g r F_{1}$ be closed and convex, $\bar{x} \in M$ be a minimum of the function $W_{0}(x)$ on the set M and $\bar{y} \in F_{1}(\bar{x})$ be such that $W_{0}(\bar{x})=\|\bar{y}\|$. Besides, let either int $M \neq \varnothing$ or $W_{0}(x)$ be continuous at some point $x_{1} \in M$. Then, if for any $x_{0} \in M$ and $y_{0} \in F_{1}\left(x_{0}\right)$, where $W_{0}\left(x_{0}\right)=\left\|y_{0}\right\|>0$, and for $-y^{*} \in N_{F\left(x_{0}\right)}^{\left(y_{0}\right)}$, where $\left\|y^{*}\right\|=1,\left\langle y^{*}, y_{0}\right\rangle=\left\|y_{0}\right\|$, there exist such points $\tilde{x} \in M$ and $\tilde{y} \in F_{1}(\tilde{x})$, that $\left\|y_{0}\right\|>\left\langle y^{*}, \tilde{y}\right\rangle$ then $\bar{y}=0$, i.e. $0 \in F_{1}(\bar{x})$.

Proof. Since $\bar{x} \in M$ minimizes the function W_{0} on the set M, then by theorem $4.4[2] 0 \in \partial W_{0}(\bar{x})+N_{M}(\bar{x})$. By theorem 5.4.2 [3] ${ }^{-} \in \partial W_{0}(\bar{x})$ if and only if there exists such $\bar{q} \in \partial\|\bar{y}\|$, that ${ }^{-} \in \partial F_{1}(\bar{x}, \bar{y})^{*}(\bar{q})$. If $\bar{y} \neq 0$, then

$$
\partial\|\bar{y}\|=\left\{\bar{y}^{*} \in Y^{*}:\left\|\bar{y}^{*}\right\|=1,\left\langle\bar{y}^{*}, \bar{y}\right\rangle=\|\bar{y}\|\right\} .
$$

Let $\bar{y}^{*} \in \partial\|\bar{y}\|$ be such that ${ }^{-} \in D F_{1}(\bar{x}, \bar{y})^{*}\left(\bar{y}^{*}\right)$. Then, it is clear that

$$
\left\langle^{-}, \bar{x}-x\right\rangle \geq\left\langle\bar{y}^{*}, \bar{y}-y\right\rangle, x \in M, \quad y \in F_{1}(x) .
$$

By the condition there exists $\tilde{x} \in M$ and $\tilde{y} \in F_{1}(\tilde{x})$, that $\left.\|\bar{y}\|=\left\langle\bar{y}^{*}, \bar{y}\right\rangle\right\rangle$ $\left\langle\bar{y}^{*}, \tilde{y}\right\rangle$. Then it is clear that $\left\langle^{-}, \bar{x}-\tilde{x}\right\rangle>0$, i.e. $-^{-} \notin N_{M}(\bar{x})$. Hence, we have $0 \notin \partial W_{0}(\bar{x})+N_{M}(\bar{x})$. The obtained contradiction means that $\bar{y}=0 \in F_{1}(\bar{x})$. The theorem is proved.

Let $a: X \rightarrow 2^{Y}, W_{1}(x)=\inf \left\{\|x-y\|^{2}: y \in a(x)\right\}, D a\left(x_{0}, y_{0}\right) x=\{y \in X:$ $\left.(x, y) \in T_{\text {gra }}\left(x_{0}, y_{0}\right)\right\}, M \subset$ dom a. It there exists such a vicinity U of the point x_{0} and a compact $V \subset X$, that $a(U) \subset V$ and $a(x)$ is non-empty and compact for all $x \in U$, then a is said to be uniformly compact at the point x_{0}.

Lemma 10. Let X be a Hilbert space, many-valued mapping a be closed, $x_{0} \in M$ and $y_{0} \in a\left(x_{0}\right)$ be such that $W_{1}\left(x_{0}\right)=\left\|x_{0}-y_{0}\right\|^{2}$, the set a $\left(x_{0}\right)$ be convex, many valued mapping a be uniformly compact at the point $x_{0}, \operatorname{int} T_{M}\left(x_{0}\right) \neq \varnothing$, $T_{M}\left(x_{0}\right) \subset \operatorname{dom} D a\left(x_{0}, y_{0}\right)$ and $\left(x_{0}-y_{0}\right) \in D a\left(x_{0}, y_{0}\right)^{*}\left(x_{0}-y_{0}\right)$. Then, if $x_{0} \neq y_{0}$ and $0 \notin \partial W_{1}\left(x_{0}\right)$, then $0 \notin \partial W_{1}\left(x_{0}\right)+N_{M}\left(x_{0}\right)$.

Proof. By theorem $2.11[6]{ }^{-} \in \partial W_{1}\left(x_{0}\right)$, then $\left({ }^{-}, 0\right) \in\left(2\left(x_{0}-y_{0}\right)\right.$, $\left.-2\left(x_{0}-y_{0}\right)\right)+N_{g r}\left(x_{0}, y_{0}\right)$ or ${ }^{-}-2\left(x_{0}-y_{0}\right)^{*} \in D a\left(x_{0}, y_{0}\right)^{*}\left(2\left(y_{0}-x_{0}\right)\right)$. Therefore, $\left\langle^{-}-2\left(x_{0}-y_{0}\right), x\right\rangle+2\left\langle x_{0}-y_{0}, y\right\rangle \leq 0$ for $(x, y) \in T_{\text {gra }}\left(x_{0}, y_{0}\right)$. Then $\left\langle-^{-}, x\right\rangle \geq$ $2\left\langle y_{0}-x_{0}, x\right\rangle+2\left\langle x_{0}-y_{0}, y\right\rangle$ for $(x, y) \in T_{\text {gra }}\left(x_{0}, y_{0}\right)$. By the condition $\left(x_{0}-y_{0}\right) \in$
$D a\left(x_{0}, y_{0}\right)^{*}\left(x_{0}-y_{0}\right)$, i.e. $-\left\langle x_{0}-y_{0}, x\right\rangle+\left\langle x_{0}-y_{0}, y\right\rangle \geq 0$ for $(x, y) \in T_{g r a}\left(x_{0}, y_{0}\right)$. Since $T_{M}\left(x_{0}\right) \subset \operatorname{dom} D a\left(x_{0}, y_{0}\right)$, then $\left\langle-^{-}, x\right\rangle \geq 0$ for $x \in T_{M}\left(x_{0}\right)$. It is clear that ${ }^{-} \neq 0$, therefore for $z \in \operatorname{int} T_{M}\left(x_{0}\right)$ the inequality $\left\langle-^{-}, z\right\rangle \geq 0$ is fulfilled, i.e. ${ }^{-}{ }^{-} \notin N_{M}\left(x_{0}\right)$. Hence, we have $0 \notin \partial W_{1}\left(x_{0}\right)+N_{M}\left(x_{0}\right)$. The lemma is proved.

Theorem 7. Let X be a Hilbert space, a multi-value mapping a be closed, the set $a(x)$ be non-empty and convex for $x \in M, \bar{x} \in M$ be a minimum of the function $W_{1}(x)$ on the set M and $\bar{y} \in a(\bar{x})$ be such that $W_{1}(\bar{x})=\|\bar{x}-\bar{y}\|^{2}$ there exist a hypertanget to M at the point \bar{x}, dom $\operatorname{Da}(\bar{x}, \bar{y}) \cap \operatorname{int} T_{M}(\bar{x}) \neq \varnothing$, the mapping a uniformly compact at the point \bar{x}, for any $x_{0} \in M$ and for $y_{0} \in a\left(x_{0}\right)$, where $W_{1}\left(x_{0}\right)=\left\|x_{0}-y_{0}\right\|^{2}>0$ there exist such points $\tilde{x} \in T_{M}\left(x_{0}\right)$ and $\tilde{y} \in D a\left(x_{0}, y_{0}\right) \tilde{x}$ that $\left\langle x_{0}-y_{0}, \tilde{x}-\tilde{y}\right\rangle<0$. Then $\bar{x}=\bar{y}$, i.e. $\bar{x} \in a(\bar{x})$.

Proof. By theorem $11.2[6]{ }^{-} \in \partial W_{1}(\bar{x})$, then $\left({ }^{-}, 0\right) \in 2(\bar{x}-\bar{y}, \bar{y}-\bar{x})+$ $N_{g r a}(\bar{x}, \bar{y})$. Since

$$
\begin{gathered}
W_{1}^{0}(\bar{x} ; v)=\sup \left\{\langle, v\rangle: \in \partial W_{1}(\bar{x})\right\} \leq \\
\leq \sup \left\{\langle, v\rangle:(, 0) \in 2(\bar{x}-\bar{y}, \bar{y}-\bar{x})+N_{g r a}(\bar{x}, \bar{y})\right\}= \\
=\sup \left\{2\langle\bar{x}-\bar{y}, v\rangle+\left\langle x^{*}, v\right\rangle:\left(x^{*}, 2(\bar{x}-\bar{y})\right) \in N_{g r}(\bar{x}, \bar{y})\right\},
\end{gathered}
$$

then $\operatorname{dom} W_{1}^{0}(\bar{x} ; \cdot) \supset \operatorname{dom} D a(\bar{x}, \bar{y})$. By the condition $\bar{x} \in M$ minimizes the function W_{1} on the set M, then by theorem 2.9.8 [1] we get $0 \in \partial W_{1}(\bar{x})+N_{M}(\bar{x})$. Let $\bar{x}=\bar{y}$. Since $\left({ }^{-}-2(\bar{x}-\bar{y}), 2(\bar{x}-\bar{y})\right) \in N_{g r a}(\bar{x}, \bar{y})$, then

$$
\left\langle^{-}-2(\bar{x}-\bar{y}), x\right\rangle+2\langle\bar{x}-\bar{y}, y\rangle \leq 0, \quad(x, y) \in T_{g r a}(\bar{x}, \bar{y})
$$

Then $\left\langle-^{-}, x\right\rangle \geq 2\langle\bar{y}-\bar{x}, x\rangle+2\langle\bar{x}-\bar{y}, y\rangle$ for $(x, y) \in T_{g r a}(\bar{x}, \bar{y})$. By the condition there exists $\operatorname{such}(\tilde{x}, \tilde{y}) \in T_{\text {gra }}(\bar{x}, \bar{y})$ that $\left\langle-^{-}, \tilde{x}\right\rangle \geq 2\langle\bar{y}-\bar{x}, \tilde{x}\rangle+2\langle\bar{x}-\bar{y}, \tilde{y}\rangle=$ $2\langle\bar{y}-\bar{x}, \tilde{x}-\tilde{y}\rangle>0$, i.e. $\left\langle-^{-}, \tilde{x}\right\rangle>0$ and $\tilde{x} \in T_{M}(\bar{x})$. Therefore $-\notin N_{M}(\bar{x})$. Then it is clear that $0 \notin \partial W_{1}(\bar{x})+N_{M}(\bar{x})$, i.e. we get a contradiction. The theorem is proved.
emark 5. If X is a reflexive Banach space and the square of the norm is everywhere strictly differentiable, then theorem 7 is also true. Besides, we can substitute the convexity of the set $a(x)$ by the condition: the set $\{y \in a(x)$: $\left.W_{1}(x)=\|x-y\|^{2}\right\}$ consists of a unique point.

By $K_{V}(X)$ we denote a totality of all non-empty convex compact subsets, and let $a: X \rightarrow K_{V}(X)$. Assume $S_{a}\left(x, x^{*}\right)=\sup \left\{\left\langle x^{*}, y\right\rangle: y \in a(x)\right\}$, where $x^{*} \in X^{*}$.

The mapping a is said to be weakly uniformly differentiable (w.u.d.) at the point x_{0} the direction of \bar{x} if S_{a} is lower w.u.d. at the points $\left(x_{0}, x^{*}\right), x^{*} \in X^{*}$, in the direction of \bar{x}, i.e. there exists $S_{a}^{\prime}\left(x_{0}, x^{*} ; \bar{x}\right)$ and

$$
\varlimsup_{t \downarrow 0, z^{*} \rightarrow x^{*}} \frac{1}{t}\left(S_{a}\left(x_{0}+t \bar{x}, z^{*}\right)-S_{a}\left(x_{0}, z^{*}\right)\right) \geq S_{a}^{\prime}\left(x_{0}, x^{*} ; \bar{x}\right)
$$

Let $z_{0}=\left(x_{0}, y_{0}\right) \in g r a, \hat{T}_{g r a}^{H}\left(z_{0}\right)=\left\{\bar{z} \in X \times X: \varlimsup_{t \downarrow 0} \frac{d_{a}\left(z_{0}+t \bar{z}\right)}{t}=0\right\}$, where $d_{a}(z)=\inf \{\|y-v\|: v \in a(x)\}, z=(x, y)$ and $\hat{D}_{H} a\left(z_{0} ; \bar{x}\right)=\{\bar{y} \in X:(\bar{x}, \bar{y}) \in$ $\left.\hat{T}_{g r a}^{H}(z)\right\}$. It is clear that $\hat{D}_{H} a\left(z_{0} ; \bar{x}\right)=\underline{\lim } \frac{1}{t \downarrow 0}\left(a\left(x_{0}+t \bar{x}\right)-y_{0}\right)$.

We'll say that many valued mapping a admits the first order approximation on the point $z_{0}=\left(x_{0}, y_{0}\right) \in g r a$ in the direction of $\bar{x} \in X$, if for any sequence $\left\{y_{k}\right\}$ is such that as $y_{k} \in a\left(x_{0}+\varepsilon_{k} \bar{x}\right), k=1,2, \ldots, \varepsilon_{k} \downarrow 0, y_{k} \rightarrow y_{0} \in a\left(x_{0}\right)$ as $k \rightarrow \infty$ it is valid $y_{k}=y_{0}+\varepsilon_{k} z_{k}+0\left(\varepsilon_{k}\right)$, where $z_{k} \in \hat{D}_{H} a\left(z_{0} ; \bar{x}\right), \varepsilon_{k} z_{k} \rightarrow 0$ as $k \rightarrow \infty$.

Assume $\gamma\left(x_{0}, M\right)=\left\{\bar{x} \in X: \exists \varepsilon_{0}>0, x_{0}+\varepsilon \bar{x} \in M, \varepsilon \in\left[0, \varepsilon_{0}\right]\right\}$.
Theorem 8. Let a compact set $M \subset X$ be such that for any $x_{0} \in M$ the set $\gamma\left(x_{0}, M\right)$ is non-empty, $a: X \rightarrow K_{V}(X)$, for $x_{0} \in M$ and $y_{0} \in a\left(x_{0}\right)$, where $W_{1}\left(x_{0}\right)=\left\|x_{0}-y_{0}\right\|^{2}>0$, there exists such $\tilde{u} \in \gamma\left(x_{0}, M\right)$ that $\inf \left\{\left\langle x_{0}-y_{0}, \tilde{u}-\tilde{v}\right\rangle:\right.$ $\left.\tilde{v} \in \hat{D}_{H} a\left(z_{0} ; \tilde{u}\right)\right\}<0$ and one of the conditions be fulfilled:

1) X is finite-dimensional, mapping a is continuous by Housdorff and w.u.d. for all points $x_{0} \in M$ in all directions of u;
2) X is a Hilbert space, the mapping a is upper semi-continuous and at each point $\left(x_{0}, y_{0}\right)$ (where $x_{0} \in M, y_{0} \in a\left(x_{0}\right)$ and $\left.W_{1}\left(x_{0}\right)=\left\|x_{0}-y_{0}\right\|^{2}\right)$ it admits the first order approximation in all directions of u.

Then there exist such a point $\bar{x} \in M$ that $\bar{x} \in a(\bar{x})$.
Proof. Having assumed $\Phi(x)=-\varphi(x)=\sup \left\{-\|x-y\|^{2}: y \in a(x)\right\}$ under conditions 1) of theorem 5.3, under condition 2) from corollary 1 of theorem 7.1 [6] we get

$$
\Phi^{\prime}\left(x_{0} ; u\right)=\sup _{v \in \hat{D}_{H} a\left(z_{0} ; u\right)}\left\langle\left(-2\left(x_{0}-y_{0}\right), 2\left(x_{0}-y_{0}\right)\right),(u, v)\right\rangle .
$$

Hence, we have

$$
\varphi^{\prime}\left(x_{0} ; u\right)=\inf _{v \in \hat{D}_{H} a\left(z_{0} ; u\right)}\left\langle\left(x_{0}-y_{0}, y_{0}-x_{0}\right),(u, v)\right\rangle={\hat{v \in \hat{D}_{H} a\left(z_{0} ; u\right)}}_{2 \inf }\left\langle x_{0}-y_{0}, u-v\right\rangle .
$$

If the point $\bar{x} \in M$ minimizes the function $\varphi(x)$ on the set M, then $\varphi^{\prime}(\bar{x} ; u) \geq 0$ for $u \in \gamma(\bar{x} ; M)$. Since a is upper semi-continuous, then the function φ is lower semi-continuous (see [8]). Therefore, there exist a point $\bar{x} \in M$ which minimizes the function φ on the set M. Let $\bar{y} \in a(\bar{x})$ be such that $W_{1}(\bar{x})=\|\bar{x}-\bar{y}\|^{2}$. If $\bar{x} \neq \bar{y}$, then by the condition there exist such $\bar{u} \in \gamma(\bar{x} ; M)$ that $\inf \{\langle\bar{x}-\bar{y}, \bar{u}-\bar{v}\rangle$: $\left.\bar{v} \in \hat{D}_{H} a(\bar{z} ; \bar{u})\right\}<0$, where $z=(\bar{x}, \bar{y})$, i.e. there exit such $\bar{u} \in \gamma(\bar{x} ; M)$, that $\varphi^{\prime}(\bar{x}, \bar{y})<0$. We get a contradiction. We have $\bar{x}=\bar{y}$. The theorem is proved.

Note that under condition 1) of theorem 8 the condition $\inf \left\{\left\langle x_{0}-y_{0}, \tilde{u}-\tilde{v}\right\rangle: \tilde{v} \in\right.$ $\left.\hat{D}_{H} a\left(z_{0} ; \tilde{u}\right)\right\}<0$ is equivalent to the condition $\left\langle x .-y_{0}, \tilde{u}\right\rangle+W_{a}^{\prime}\left(x_{0}, y_{0}-x_{0}, \tilde{u}\right)<0$, where $W_{a}\left(x, x^{*}\right)=\inf \left\{\left\langle x^{*}, y\right\rangle: y \in a(x)\right\}$.
emark 6. The corresponding results are true for the zeros of many-valued mapping and the obtained results may be generalized for separable local convex spaces. Let $a: M \rightarrow 2^{Y}$, where $M \subset X, a(x)$ is non-empty and convex, X and Y be separable local convex spaces. Besides, let V be a convex balanced vicinity of zero in Y^{*}, and ∂V be a set boundary points of the set V. Denote $K_{a}\left(x, y^{*}\right)=$ $\inf \left\{\left|\left\langle y^{*}, y\right\rangle\right|: y \in a(x)\right\}$ and $\Phi(x)=\sup \left\{K_{a}\left(x, y^{*}\right): y^{*} \in \partial V\right\}$. It is clear that $\Phi(x)=\sup _{y^{*} \in V} \inf _{y \in a(x)}\left\langle y^{*}, y\right\rangle$ and zeros of mapping is a minimum of the function Φ and we can similarly show that under same conditions the point of minimum of the function Φ on the set M is the zero of the mapping a.
\qquad

eferences

[1]. Clark F. Optimization and non-smooth analysis. M.: "Nauka", 1988, 280 p. (Russian)
[2]. Oben J.P. Nonlinear analysis and its economic applications. M.: "Mir", 1988, 264 p. (Russian)
[3]. Oben J.P., Ekland I. Applied non-linear analysis. M.: "Mir", 1988, 510 p.
[4]. Kusrayev A.G. Vector duality and its applications. Novosibirsk: "Nauka", 1985, 256 p. (Russian)
[5]. Ekland I., Temam R. Convex analysis and variational problems. M.: "Mir", 1979, 400 p. (Russian)
[6]. Minchenko L.I., Borisenko O.F. Differenatial properties of marginal functions and their applications to optimization problems. Minsk: "Nauka i technika", 1992, 142 p. (Russian)
[7]. Sadygov M.A. Properties of optimal trajectories of differential inclusions. Thesis of Ph.D. Baku, 1983, 116 p. (Russian)
[8]. Borisovich Yu.G., Helman B.D. and others. Introduction to the theory of many valued mappings. Voronezh, 1986, 103 p. (Russian)

Misreddin A. Sadygov

Institute of Mathematics and Mechanics of NAS of Azerbaijan.
9, F.Agayev str., AZ1141, Baku, Azerbaijan.
Tel.: (99412) 4394720 (off.).
Received March 12, 2003; Revised February 16, 2004.
Translated by Nazirova S.H.

