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ON THE CHARACTERIZATION OF ZEROS AND
FIXED POINT OF MAPPINGS

Abstract

In the paper, using the optimization problems the zeros and fized points of
mappings are investigated.

Let X be a Banach space, M C X, f: X — X and ¢, (z) = ||z — f(z)||*. Tt is
clear that if z( the fixed point of the function f on the set M, then min{¢p, (z) :
x € M} = ¢, (zg) =0, where a > 0, and zg is a global minimum of the function
¢, (x) in the space X and therefore 0 € dp,, (x¢).

In the paper it is studied a problem when the point of the minimum of the
function ¢, on the set M will be a fixed point of the function f on the set M.

Denote B* = {z* € X* : |a* < 1}, g(z) = |z — f@)]|, g1 () = & — F() 2,
B={z€R":|z| <1}.

Lemma 1. If f: R™ — R" satisfies the Lipschitz condition near xg,det (I — A) #
0 for A€ df (zo) and 0 € Og(xo) (or 0 € 0g1(x0)), then f(zo) = xo.

Proof. By theorem 2.6.6 [1] we get

co{z* (1 — 0f(xp)) : o* € B}, for zg — f(xo) =0,
99(@0) C ' o (1 — 0f (o)) : 2 € B™ |a*|| = 1, (&, 20 — f (20)) = ||0 — f (o),
for zo — f(xg) # 0.

Since each element of the set I — Jf (z¢) is a non-degenerate matrix, then
0 ¢ 0g(xg) for zg — f(xg) # 0. Therefore, if 0 € dg(zg), we get f (zg) = xo.

The lemma is proved.

It follows from the lemma 1 that if z € M is a minimum of the function g (or
g1) on the set M, f satisfies the Lipschitz condition near Z, det (I — A) # 0 for
A€ 0f(z) and 0 € 9g (Z) (or 0 € 0g1 (Z)), then f (T) = Z.

Assume (see [1]) Tas (z) ={v € X :Vz; € M, z; = z,Vt; [ 0, Fv; € X, v; > v
that z; + t;jv; € M}, Ny (z) ={z* € X*: (z*,v) <0 Vv € Ty (z)}. Note that, if
M is a convex set, then Ty (z) = ¢l hgo% (M — x))

Theorem 1. Let M C R" be a closed set, f : R* — R™ be a Lipschitz function
with a constant L, where L € (0,1), f(z) € x+ T (z) for any x € M. Then there
exists a point T € M, such that f(z) = z.

Proof. Assume g(z) = ||z — f(z)|| and let y € M. By the condition
1£@) — f@)] < Llw—gl. Therefore, |£(z)ll < IIf @ + L (o]l + 7). Then
g9 () = llzl = IIf @) = @ = L) [lzll = | F(7)| = L7l Tt is easily verified that the
set {x € R" : g(z) < a} is compact. Then, by definition ¢ is lower semi-compact.
Therefore, by theorem 1.1 [2] the function ¢ attains minimum on the set M at some
point Z. Then by the corollary of supposition 2.4.3 and by supposition 2.9.8 [1] we
have

0€0(9(x) + 0m(x)),—z C 99 (Z) + Nas (Z),
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where 0/(z) = { ?i_’:oexj\é’M We get from theorem 2.6.6 [1]

co{z* (1 —0f(z)):z* € B}, ifz — f(z) =0,
WO we a7 @) ot € R ot =145~ £ (@), 2 = & — 1 @]
ifz — f(z) #0.

It is clear that Of(Z) C LB xn, where we denoted by By, a closed unique ball in
R™* ™. Besides, if z — f(z) # 0, then for G € 0f (z) we get (z* (1 - G), f(z) —z) =
— @t f (@) -7 — (@G, f(@) 1) < — |7~ f @] + 1G] 17— F @] < 0, ie.
—z*(I—G) ¢ Nuy(z), for G € Of (z). Therefore, if £ — f(Z) # 0, then
0 ¢ 99 (z) + Nps (7). This means that f (z) = z. The theorem is proved.

emark 1. Usaing the McShane lemma on continuation of Lipschitz functions
in theorem 1 it sufficies to assume f : M — R" and f is a Lipschitz function with
the constant L, where L € (0,1).

Theorem 2. Let M C R", f : R® — R" be a Lipschitz function with the
constant L,z € M be a minimum of the function g on the set M and if x € M and
f(x) # x, then for G € Of(z) there exists 3z € Ty (), that satisfies the inequality
(z* (I — G),z) <0, where z* € R™, ||z*|| =1, (x — f(z),z*) = ||z — f ()|



Proceedings of IMM of NAS of Azerbaijan 179
[On the characterization of zeros]

emark 2. In lemma 2 the compactness M may be substituted by the condition:

M is closed, ||f|| is lower semi-compact, or X is a reflexive Banach space, M is a

closed convex set, ||f|| is a convex function and || f (z)|| — oc as ||z|| = oo, z € M.

Let Y be the ordered Banach space with monotone norm, f : X — Y be a

continuous function, and e f = {(z,y) € X xY : f(z) < y}. Then, from theorem
5.3.17 [4] we have

oI @lC Y {a" € X i@ 2 eN(e fi (o] @)}
where z = f(z), N(e f; (z,f(z))) = {(z%, z*) € X* xY*: (z*, z%) (v) <0,
VET (e fi (3, f (@)}

Lemma 3. Let Y be the ordered Banach space with monotone norm, M be a
compact subset in X, f:X —Y be a Lipschitz function and from y* € 9| f (x)|,
where x € M, f(z) # 0, it follows that —y* ¢ Ny (z). Then there exists such a
point T € M, that f(z) = 0.

Lemma 3 is proved similar to lemma 2.

Note that similarly we can get the analogy of theorem 2 in the case, when X
is an ordered Banach space with monotone norm and f : M — X is a continuous
function.

Let’s consider a subdifferential of abstractive function. For simplicity let X and
Y be Banach spaces. We denote a set of linear continuous operators from X to Y
by L(X, Y).

A scalar subdifferential of functions f : M — Y at the point z is said to be a
closed convex set M from L (X, Y) that satisfies the equality: 0 (y*, f (z)) = y*oM
for any y* € Y* and we denote it by 0.f (z).

The sense of the equality 9 (y*, f(z)) = y* o M is in that every element
z* € 0(y*, f(z)) may be represented in the form (z*, v) = (y*, Av) for any v € X,
where A € M.

Note that when X is a Banach space using the notion of scalar subdifferential
we can get the analogy of theorem 2.

Lemma 4. Let ¢ : X — R be a continuous function in the vicinity of xq, q (z) =
= |p (z)| and q(z¢) > 0. Then

_ | 9¢p(z0) : ¢ (20) >0,
9q (wo) = { —0p (z9) : ¢ (x0) < 0.

Proof. Since ¢ is continuous at the point xg, then from the definition of gener-
alized derivative with respect to direction we have:

q° (zo;v) = lim limsup inf 4

(y+tw) —q(y) _ [ ¢°(z050) : 9 (z0) >0,
£l0 ylp®o w€Ev+eB t
tl0

©° (w05 —v) : ¢ (20) <0,

where y | ¢*° means that y and ¢ (y) converge to zg and ¢ (zy) respectively. There-
fore, if ¢ () > 0, then
0q (zo) ={z" € X" : ¢° (zp;v) > (2%, v), vE X} =

={z" € X°:¢° (zo;v) > (z*, v), v € X} = dp (x0).



180 Proceedings of IMM of NAS of Azerbaijan
[M.A.Sadygov]

It is similarly verified that, if ¢ (zg) < 0, then dq (zy) = —0p (z¢). The lemma
is proved.

Note that, if ¢ : X — R is lower semi-continuous at the point z¢ and ¢ (zg) > 0,
then 0q (zo) = 0p (xp).

Let f = (fi,- fu) + R" — R". Assume g(x) = X [fi(z) —zil, ¢ (2) =

n

Z Theorem 4. Let M C R"™ be a compact set, f; : R* — R be a lower
semi-continuous (upper semi-continuous) function, z; < fi(z) (z; > fi(z)), i =
1,n, f(x) € x+Ty (z) for any x € M, Tbe a minimum point of the function g (x)in
the set M, or dom v° (Z;-) Nint Tay (Z) # 0, or dom °(%;-) — T (Z;-) = X; for
x € M and for any z* € 0 (x), where f(x) # x, it is fulfilled the inequality

(2", f(z) —x) <Z (fi (z) — ) <<Z*> ) — ) >Z (fi (z _331)-

Then f(Z) =1Z.

Proof . By Weierstress theorem the function g attains minimum on the set M
at some point Z. Therefore by theorem 2.9.8 [1] and by supposition 7.6.12 [3] we
have

0€97(z) + Nu (7).

Since g (z) = i( fi(x) —x) = ¥ (x) — sz, then 0g (x) = 0y (z) — I, where
I=(1,1,..,1). T ﬁ en, for f (z) # x, by the cond1t10n we have

n

(#" =1, f(2) —a) = (", [(2) —a) =Y (fi(a) —a7) <O,

=1

for any 2* € Oy (x), ie. if z* € 0g(z), then —z* ¢ Ny (x). Therefore
0 € 99 (z) + Ny (z) if and only if f; (Z) = ;.

The second case is similarly proved. The theorem is proved.

It is clear that by changing the condition f(z) € = + Ty (x) by the condition
x € f(z) + Ty (z) for any x € M, we can get the analogy of theorem 4.

Lemma 5. If xlgé%”f () —yll = |f (z) — z|| where z € M C X and f(z) €

T+ T (Z), then T is a fized point of the function [ on the set M.

Proof. By the condition min{||f (z) —y|| : y € M} = ||f () — z||. Therefore, by
theorem 2.9.8 [1] we have 0 € 9y || f (Z) — yl|,—z +NM( ). Let f(Z) # z. It is clear
that 9y |1f (2) — yll,_p = {—2* : 2° € X*, "] = 1, (2", f(z) —3) = |If (2) — &]}.
Then there exists such —z* € 0, Hf(a_:) —y||y:j, that T* € Ny (Z). Therefore
\f (z) —z| = (z*, f(z)—z) <0, ie. f(z) =z . We get contradiction. The
lemma is proved.

Let X be a Banach space, F : X — 2%, M C domF = {z € X : F (z) # o},
W) = wt{ls—yl : y € Fla)l, ¢F = {(5,y) €X x X :y € F(x)},
grDF (z0,Y0) = Tgrr (v0,90) , DF (z0,90)" (@) ={ :(¢:— ) € Ngrr (20,90)}-

Lemma 6. Let M be a closed and convez set in X, grF be closed and convez,
T € M be a minimum of the function W (z) on the set M, such §j € F (Z) that
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W (z) = lz—7ll, xo € M and yo € F (zg) be such that W (xg) > W (%) and
W (z0) = ||zo — yol|. Then from € DF (zg,y0)" (q) +r, where (r,q) € 9 |lzo — yol|
it follows that — ¢ N (z0).

Proof. By theorem 4.5.2 [3] € W (x¢) if and only if there exists such (r,q) €
d||zo — yol| that € D (zg,y0)" (q) + r. By the condition W (z) < W (zo), i.e.
o # yo. Therefore

9 lwo — yoll = {(«", —2%) : ™ € X7, [la™]| = 1, (", 20 — yo) = ||lwo — wol }-

Hence, we have € DF (zg,y0)" (—z*) + 2* or — 2* € DF (x¢,y0)" (—x*) for
some (z*,—z*) € 0||zo — yo||. By definition of adjoined mapping we have

( —a%, 0 —x) > (—2", 90 —y), (z,y) € grF.

Hence it follows that

_< ,Ji—;l}o)Z(.’L‘*,xg—y())—(.’ll‘*,w—y), (x,y)Eng. (1)

Since W (Z) = max {(z*,Z — ) : ||2*|| = 1,2* € X*}, then W (z) > (z*,Z — 7).
Assuming z =z, y = g from (1) we get, — ( ,Z — ) > 0, i.e. — & Nps(zg). The
lemma is proved.

Lemma 7. Let M be a closed convex set in X, int M # &, grF be closed
and convez, yo € F (xg) be such that W (xo) = ||xo —woll, where oy # yo, and
z* € DF (z9,90)" (z*) for z* € X*,|lz*|| = 1, (z*,20 — yo) = [lzo — Yol and 0 #
OW (zg). Then 0 ¢ OW (x0) + Nas (z0).

Proof. By theorem 4.5.2 [3] € OW (z¢) if and only if there exists such a
(r,q) € 0||zo — yol| , that € DF (z0,y0)" (q) +r. Since zy # yo, then 9 ||zg — yo|| =
{(z",—z") : 2" € X*, [lz*]| = 1, (2", 20 —yo) = llwo —woll}. Let (z*,—2") €
d||wo — yo|| be such that € DF (zg,yo)* (—z*) + 2* or —z* € DF (z,y0)" (—z*).
By definition of adjoined mapping we have

( —2% 20 —2) > (=2, 90 —y), (z,y) € grF.
Then it is clear that
< ,$0—I>Z<—$*,y0—y>+ <.CE*,.’E()—£E>, ($7y)EgTF' (2)

Since z* € DF (zo,y0)" (z*), then

(% 20 —x) > (2", 90 — ), (z,y) € grF. (3)

It follows from (2) and (3) that (— ,x — ) > 0 for (x,y) € grF, then we have
that (— ,z) > 0 for z € T (zg). Therefore (— ,z) >0 for z € int Ty (z0). Hence
we get 0 ¢ OW (z9) + Nz (z0). The lemma is proved.

Theorem 5. Let M be a closed conver set in X, grF be closed and convex,
M # @, or 0 € int(dom F—M), £ € M be a minimum of the function W (x)
on the set M and i € F(Z) be such that W (Z) = ||z — gl|, let for any xy € M,
and for yo € F(zg), where W (z9) = ||lzo —wol > 0, and z* € N}yo)), where

(zo

lz*]| = 1, (z*, 2o — yo) = ||zo — yol|| there exist such points T € M and § € F (Z)
that ||zo — yol|l > (z*, & — §). Then T =7, i.e. T € F ().
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Proof. Since Z € M minimizes the function W on the set M, then 0 € OW (Z)+
Ny (7). By theorem 4.5.2 [3] ~ € OW (z) if and only if there exists such (7,q) €
||z —yl|l, that ~€ DF (z,%)" (q) + 7. If T # 7, then

oz —gll ={(«", —2") : 2" € X7, |z =1, (" 2—-9) =z -7}

Let (z*,—Z)* € d||z — ¢|| be such that ~— z* € DF (z,%)" (—z*). Hence, we
have

< —.C_C*,i‘—.T)Z(—i‘*,g—y), zeM VyEF(.CC)

It is clear that ¥ € N @()) and
<_77$_j)2<i*ai_’g>_ <§:*7$_y>7 -,EEMa yEF(m)

By the condition there exists such Z € M and ¢ € F (z) that (z*,7 —y) —
(z*, & —y) > 0. Therefore, (—~, 2 —Z) > 0, i.e. —~ ¢ Njs(Z). Then, it is clear that
0¢ OW (z) + Ny (7), i.e. we get a contradiction. The theorem is proved.

Corollary 2. If M is a closed convex set in X, int M is non-empty, grF is
closed and convez, the point © € M is a minimum of the function W (z) in the set
M and gy € F(Z) are such that W (z) = ||Z — g|| and for any z* € X*, ||z*|| =1
there exist such points & € M and § € F (Z) that (x*,Z —7y) <0, then T =1y.

emark 3. If X is a Hilbert space, then the condition ||Z — g|| > (Z*, % — 7),
where ¥ € X*, ||z*]| = 1, (Z*,Z—9) = ||z — || is equivalent to the condition:
Iz —glI* > (z -y, &— 7).

emark 4. Let § € F (z) be such that W (zZ) = ||z —¢|| > 0 and for any
xz € M the set F'(z) be convex, bounded and closed. Show that if the inequal-
ity p, (F(Z),F (g)) < ||z —g| is fulfilled, then there exists such § € F (g) that
(z%,2 — ) <[z —yl| for z* EN( Azl =1, @2 —g) =z -yl

From z* € NI(:()@) it follows that ( * y) = max{(z*,y) 1y € F ()}
Let g € F (y) be such that (z*,7) = max{(z*,z) : z € F (y)}. Using the formula

ps (A, B) = sup{|Sa (¢7) = Sp («7)] : & € X7, ||l27|| <1},

where A and B are closed bounded sets in X, we get

(z%,y = 9)| = | max (7%, y) — max (z%,2)| < p, (F(7),F (y)) <[z -yl

yer (@) yer(y)
Lemma 8. If min 1nf ||z—y|| mln 1z =yl = llz—yll, where y €
z,zeM yeF yeF(z

F(z), 2 € M, F(z) is a closed convex set and F(z)N(Z+ Ty (Z)) # 9, then
y==z,ie z€F(T).

Proof. Assume ®(z,z) = inf{|lz—y| : v € F(x)}. Since mij\r/}q) (z,2) =

zE

¢ (z,z) = ||Z — 7|, then 0 € 0,® (2,%),_. + Nar (). Using the supposition 4.5.1
(3] we get that, if y # Z, then 2* € 0,9 (2,7),_, if and only if, then z* € N (ZE)
|z*|| = 1, (z*,2 — y) = ||z — y||. Let z* € 9,® (2, 7),_, be such that —z* € Ny (z).
Then by the condition, we get

max {{y — 7, 3*) 1y € F(3)} = — |7 — gl > 0.
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Hence it follows § = Z. The lemma is proved.

Let X and Y be Banach spaces, Fy : X — 2Y, Wy (z) = inf{||y|| : y € F1 (z)},
W (z,y*) = inf{{y,y*) : y € Fy (x)}. If Fy (z) is convex and closed, then (see [6])
Wo (z) = sup{W (z,y*) : |ly*|]| < 1}. Therefore, if grF; is convex and closed, then
x — Wy (z) is a convex function. Tt is clear dom Fy' = F; (X).

Lemma 9. Let grF) be convex and closed, y € Fy (z) where y € int domel,
such that Wy () = ||g|| and 0 € OWy (z). Then § =0, i.e. 0 € Fy(T).

Proof. By theorem 4.5.2 [3] ~ € 0Wj (z) if and only if there exists such g €
9|7l , that ~ € DFy (Z,9)" (). Since § € int dom F; ', then domD (F; ') (§,%) =
Y. Then by lemma 2.1.2 [7], we get that D (F;') (y,2)* = D (Fy) ((z,9)*)~" is
bounded.

By lemma 2.1.1 [7] adjoined mapping D (Fl_l) (4,z)" is bounded, if and only
if, then D (F; ') (g,7)* (0) = {0}. Since ~ = 0, we get that ¢ = 0, i.e. 0 € O||y|.
Hence, it follows that ¥ = 0. The lemma is proved.

Theorem 6. Let M C domFy be a closed convexr set, grFy be closed and
convex, T € M be a minimum of the function Wy () on the set M and § € Fy ()
be such that Wy (z) = ||y||. Besides, let either int M # @ or Wy (x) be continuous
at some point 1 € M. Then, if for any xy € M and yy € Fy(xg), where

Wo (w0) = llgoll > 0, and for —y* € N where |ly*| =1, (y*,90) = llyoll, there
exist such points T € M and § € Fy (%), that ||yl > (y*,9) then y =0, i.e.
0eF; (.f)

Proof. Since £ € M minimizes the function Wy on the set M, then by theorem
4.4 2] 0 € OWy () + Nps (7). By theorem 5.4.2 [3] ~ € Wy (z) if and only if there

exists such g € 9||y||, that ~ € OFy (z,4)* (q). If § # 0, then
gl =Ly* e Y™ lg*ll = 1, (7" 7) = ll7ll}-
Let 4* € 9||7|| be such that ~ € DFy (Z,%)* (§*). Then, it is clear that
(ZZ—2) 2 (70 —y), veM, yeF(z).

By the condition there exists # € M and ¢ € Fy (%), that |g| = (v*,y) >
(g*,9). Then it is clear that (7, Z — %) > 0, i.e. —~ ¢ N/ (Z). Hence, we have
0 ¢ OWy (Z) + Nas (%). The obtained contradiction means that § =0 € Fy (z). The
theorem is proved.

Let a: X — 2, Wi(z) = inf{||z —y|* : y € a(2)}, Da(zo,y0)z = {y € X :
(x,y) € Tgra (z0,Y0)}, M C dom a. It there exists such a vicinity U of the point z
and a compact V C X, that a (U) CV and a(z) is non-empty and compact for all
x € U, then a is said to be uniformly compact at the point zg.

Lemma 10. Let X be a Hilbert space, many-valued mapping a be closed,
2o € M and yo € a (x0) be such that Wy (x0) = |0 — yol|®, the set a (xo) be conver,
many valued mapping a be uniformly compact at the point xo, intTyr (zo) # D,
Ty (g) C dom Da (zo,v0) and (zo — yo) € Da(zg,y0)" (xo — yo). Then, if zo # yo
and 0 ¢ OW1q (), then 0 ¢ OW1 (z) + N ().

Proof. By theorem 2.11 [6] =~ € 0W; (zg), then (7,0) € (2(zo—wo),
—2(z0 — y0)) + Ngr (20,90) or ~—2(z0 —y0)" € Da(z0,90)" (2 (yo — 70)). There-
fore, (" —2 (o — yo), 2)+2 (x0 — yo,y) < 0for (z,y) € Tyra (0, y0). Then (=", z) >
2 (yo — xo, z) + 2 (xo — yo,y) for (z,y) € Tgrq (x0,yo). By the condition (zg — yo) €
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Da (z0,10)" (o — y0) , i-e. —{zo — o, z) + (xo — Yo, ) > 0 for (z,y) € Tyra (x0,0)-
Since Ty (x9) C dom Da(zg,yo), then (—",z) > 0 for z € Ty (zg). It is clear
that ~# 0, therefore for z € int Ty (x¢) the inequality (—7, z) > 0 is fulfilled, i.e.
— ¢ N (z0). Hence, we have 0 ¢ OW; (z9) + Ny (29). The lemma is proved.

Theorem 7. Let X be a Hilbert space, a multi-value mapping a be closed, the
set a (z) be non-empty and convez for x € M, £ € M be a minimum of the function
Wi (z) on the set M and §j € a (%) be such that Wi (Z) = ||z — ||* there exist a
hypertanget to M at the point z, dom Da(z,y) Nint Ty (Z) # &, the mapping
a uniformly compact at the point T, for any xog € M and for yo € a(xzo), where
Wi (z0) = ||o — yol[* > 0 there exist such points & € Tas (z0) and §j € Da (9, 1y0) &
that (xo — yo,Z —y) < 0. Then T =17, i.e T € a(T).

Proof. By theorem 11.2 [6] = € 0W; (z), then (7,0) € 2(z —y,y—1T) +
Ngra (Z,7). Since

WP (7;0) = sup{( ,v): € W, (7)} <

<sup{( ,0):(,0)€2(F 4,5 —7) + Nyra (%,5)} =
=sup{2(Z — §,v) + (z%,v) : (2%, 2(Z = J)) € Ngr (2,9)},

then dom WY (z;:) D dom Da(Z,y). By the condition # € M minimizes the
function Wi on the set M, then by theorem 2.9.8 [1] we get 0 € OW; (Z) + N (Z).
Let Z =17. Since (T—2(Z — 7)., 2(Z —Y)) € Ngro (Z,7), then

<7—2(i—g),$>+2<§7—g,y> Soa (:an) ETgra(fiag)-

7
24—z, —9y)>0,ie. (—7,2) >0and & € Ty (Z). Therefore — ¢ Nj; (Z). Then
it is clear that 0 ¢ OW; () + Njs (%), i.e. we get a contradiction. The theorem is
proved.
emark 5. If X is a reflexive Banach space and the square of the norm is

everywhere strictly differentiable, then theorem 7 is also true. Besides, we can
substitute the convexity of the set a(x) by the condition: the set {y € a(z) :
W, (z) = ||z — y||*} consists of a unique point.

By Ky (X) we denote a totality of all non-empty convex compact subsets, and
let a: X — Ky (X). Assume S, (z,2*) = sup {{z*,y) : y € a(x)}, where z* € X*.

The mapping a is said to be weakly uniformly differentiable (w.u.d.) at the point
xo the direction of z if S, is lower w.u.d. at the points (zg,z*), z* € X*, in the
direction of Z, i.e. there exists S/, (xg,2*;Z) and

1
B S (Sa (w0 + £, 27) — Sa (30,27)) > S, (50,55 7).
t]0,2%—a*

. —d, tz
Let zg = (z9,y0) € gra, Tﬁa (20) = {E €X xX: lgg]lw

dy (2) = f{lly — o] : v € a(2)}, z = (z,y) and Dya(20;7) = {y € X : (z,9) €
- - 1
TH (2)}. Tt is clear that Dga (29; %) = himg (a(zo +tZT) — yo)-

10

= 0} , where

gra
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We’ll say that many valued mapping a admits the first order approximation on
the point zp = (29, %0) € gra in the direction of z € X, if for any sequence {y;} is
such that as yx € a(xg+exZ), k=1,2,..., e L 0, yp = yo € a(xp) as k — oo it is
valid yx = yo + €r2x + 0 (ex) , where z; € Dya (z0;%), exzr — 0 as k — oc.

Assume v (zo, M) ={Z € X : g9 > 0, o +eZ € M, € € [0,¢0]}.

Theorem 8. Let a compact set M C X be such that for any zo € M the
set 7y (xo, M) is non-empty, a : X — Ky (X), for xg € M and yo € a(xy), where
Wi (zo) = ||zo — yol> > 0, there exists such @ € v (zo, M) that inf{(xq — yo, % — D) :
0 € Dya(z0;%)} < 0 and one of the conditions be fulfilled:

1) X is finite-dimensional, mapping a is continuous by Housdorff and w.u.d. for
all points xg € M in all directions of u;

2) X is a Hilbert space, the mapping a is upper semi-continuous and at each
point (zo,y0) (where zo € M, yo € a(zo) and Wy (x0) = ||lzo — yol|*) it admits the
first order approzimation in all directions of wu.

Then there exist such a point & € M that T € a ().

Proof. Having assumed ® (z) = —¢ (z) = sup{— ||z —y||* : ¥ € a(2)} under
conditions 1) of theorem 5.3, under condition 2) from corollary 1 of theorem 7.1 [6]
we get

o' (zoju) = sup ((=2(z0 — o) 2 (0 — ¥0)) , (u,v)) .

veDga(zow)

Hence, we have

¢ (zo;u) = 2inf  ((zo —yo,y0 —=0), (w,v)) = 2inf (20 —yo, u—v).

v€Dga(zosu) v€Dga(zosu)

If the point Z € M minimizes the function ¢ () on the set M, then ¢' (Z;u) >0
for u € v(Z; M). Since a is upper semi-continuous, then the function ¢ is lower
semi-continuous (see [8]). Therefore, there exist a point £ € M which minimizes
the function ¢ on the set M. Let § € a(z) be such that Wy (z) = ||z — 7||*. If
Z # y, then by the condition there exist such u € v (z; M) that inf{(z — y,u — v) :
o € Dypa(z;4)} < 0, where z = (Z,7), i.e. there exit such @ € ~ (Z; M), that
¢ (z,9) < 0. We get a contradiction. We have T = §. The theorem is proved.

Note that under condition 1) of theorem 8 the condition inf{(z¢ — yo, 4 —0) : 0 €
Dra(z0;4)} < 0 is equivalent to the condition (z, — yo, @)+ W (29, yo — x0, %) < 0,
where W, (z,z*) = inf{(z*,y) 1 y € a (x)}.

emark 6. The corresponding results are true for the zeros of many-valued
mapping and the obtained results may be generalized for separable local convex
spaces. Let a: M — 2Y, where M C X, a(z) is non-empty and convex, X and Y
be separable local convex spaces. Besides, let V' be a convex balanced vicinity of
zero in Y*, and 0V be a set boundary points of the set V. Denote K, (z,y*) =
inf{|(y*,y)| : v € a(z)} and @ (z) = sup{K, (z,y*) : y* € OV}. It is clear that
®(z) = sup inf (y*,y) and zeros of mapping is a minimum of the function ®

y*€V yea(x)

and we can similarly show that under same conditions the point of minimum of the

function ® on the set M is the zero of the mapping a.
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