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ON THE CHARACTERIZATION OF ZEROS ANDFIXED POINT OF MAPPINGS
AbstractIn the paper, using the optimization problems the zeros and �xed points ofmappings are investigated.

Let X be a Banach space, M � X; f : X ! X and '� (x) = kx� f(x)k�. It isclear that if x0 the �xed point of the function f on the set M , then minf'� (x) :x 2 Mg = '� (x0) = 0; where � > 0; and x0 is a global minimum of the function'� (x) in the space X and therefore 0 2 @'� (x0).In the paper it is studied a problem when the point of the minimum of thefunction '� on the set M will be a �xed point of the function f on the set M .Denote B� = fx� 2 X� : kx�k � 1g; g (x) = kx� f(x)k ; g1 (x) = kx� f(x)k2 ;B = fx 2 Rn : kxk � 1g.Lemma 1. If f : Rn ! Rn satis�es the Lipschitz condition near x0;det (I �A) 6=0 for A 2 @f (x0) and 0 2 @g(x0) (or 0 2 @g1(x0)), then f(x0) = x0.Proof. By theorem 2.6.6 [1] we get
@g(x0) �

8>><
>>:

c�ofx� (1� @f(x0)) : x� 2 Bg; for x0 � f(x0) = 0;
x� (I � @f (x0)) : x� 2 Rn; kx�k = 1; hx�; x0 � f (x0)i = kx0 � f (x0)k ;for x0 � f(x0) 6= 0:

Since each element of the set I � @f (x0) is a non-degenerate matrix, then0 =2 @g(x0) for x0 � f(x0) 6= 0. Therefore, if 0 2 @g(x0), we get f (x0) = x0.The lemma is proved.It follows from the lemma 1 that if �x 2 M is a minimum of the function g (org1) on the set M; f satis�es the Lipschitz condition near �x; det (I �A) 6= 0 forA 2 @f(�x) and 0 2 @g (�x) (or 0 2 @g1 (�x)), then f (�x) = �x.Assume (see [1]) TM (x) = f� 2 X : 8xi 2M; xi ! x;8ti # 0; 9�i 2 X; �i ! �that xi + ti�i 2 Mg; NM (x) = fx� 2 X� : hx�; �i � 0 8� 2 TM (x)g. Note that, ifM is a convex set, then TM (x) = cl� [h>01h (M � x)�.Theorem 1. Let M � Rn be a closed set, f : Rn ! Rn be a Lipschitz functionwith a constant L, where L 2 (0; 1) ; f (x) 2 x+TM (x) for any x 2M . Then thereexists a point �x 2M; such that f (�x) = �x.Proof. Assume g (x) = kx� f (x)k and let �y 2 M . By the conditionkf(x)� f(�y)k � L kx� �yk. Therefore, kf(x)k � kf (�y)k + L (kxk+ k�yk). Theng (x) � kxk � kf (x)k � (1� L) kxk � kf(�y)k � L k�yk. It is easily veri�ed that theset fx 2 Rn : g(x) � �g is compact. Then, by de�nition g is lower semi-compact.Therefore, by theorem 1.1 [2] the function g attains minimum on the set M at somepoint �x. Then by the corollary of supposition 2.4.3 and by supposition 2.9.8 [1] wehave 0 2 @ (g(x) + �M (x))x=�x � @g (�x) +NM (�x) ;
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where �M (x) = � 0; x 2M;+1; x =2M: We get from theorem 2.6.6 [1]
@g (�x) �

8>><
>>:

c�ofx� (1� @f(�x)) : x� 2 Bg; if �x� f(�x) = 0;
x� (I � @f (�x)) : x� 2 Rn; kx�k = 1; h�x� f (�x) ; x�i = k�x� f (�x)k ;if �x� f(�x) 6= 0:It is clear that @f(�x) � LBn�n; where we denoted by Bn�n a closed unique ball inRn�n. Besides, if �x� f(�x) 6= 0, then for G 2 @f (�x) we get hx� (1�G) ; f (�x)� �xi == hx�; f (�x)� �xi � hx�G; f (�x)� �xi � �k�x� f (�x)k + kGk k�x� f (�x)k < 0; i.e.�x� (I �G) =2 NM (�x) ; for G 2 @f (�x). Therefore, if �x � f (�x) 6= 0, then0 =2 @g (�x) +NM (�x). This means that f (�x) = �x. The theorem is proved.Remark 1. Usaing the McShane lemma on continuation of Lipschitz functionsin theorem 1 it su�cies to assume f : M ! Rn and f is a Lipschitz function withthe constant L, where L 2 (0; 1).Theorem 2. Let M � Rn; f : Rn ! Rn be a Lipschitz function with theconstant L; �x 2M be a minimum of the function g on the set M and if x 2M andf(x) 6= x; then for G 2 @f(x) there exists 9z 2 TM (x), that satis�es the inequalityhx� (I �G) ; zi < 0; where x� 2 Rn; kx�k = 1; hx� f (x) ; x�i = kx� f (x)k



Proceedings of IMM of NAS of Azerbaijan [On the characterization of zeros] 179Remark 2. In lemma 2 the compactnessM may be substituted by the condition:M is closed, kfk is lower semi-compact, or X is a re
exive Banach space, M is aclosed convex set, kfk is a convex function and kf (x)k ! 1 as kxk ! 1; x 2M .Let Y be the ordered Banach space with monotone norm, f : X ! Y be acontinuous function, and epf = f(x; y) 2 X � Y : f (x) � yg. Then, from theorem5.3.17 [4] we have
@ kf (x)k � [z�2@kzkfx� 2 X� : (x�; z�) 2 N (epf ; (x; f (x)))g;

where z = f (x) ; N (epf ; (x; f (x))) = f(x�; z�) 2 X� � Y � : (x�; z�) (�) � 0;� 2 T (epf ; (x; f (x)))g:Lemma 3. Let Y be the ordered Banach space with monotone norm, M be acompact subset in X; f : X ! Y be a Lipschitz function and from y� 2 @ kf (x)k ;where x 2 M; f (x) 6= 0; it follows that �y� =2 NM (x). Then there exists such apoint �x 2M; that f (�x) = 0.Lemma 3 is proved similar to lemma 2.Note that similarly we can get the analogy of theorem 2 in the case, when Xis an ordered Banach space with monotone norm and f : M ! X is a continuousfunction.Let's consider a subdi�erential of abstractive function. For simplicity let X andY be Banach spaces. We denote a set of linear continuous operators from X to Yby L (X; Y ).A scalar subdi�erential of functions f : M ! Y at the point x is said to be aclosed convex set M from L (X; Y ) that satis�es the equality: @ hy�; f (x)i = y��Mfor any y� 2 Y � and we denote it by @cf (x).The sense of the equality @ hy�; f (x)i = y� � M is in that every elementx� 2 @ hy�; f (x)i may be represented in the form hx�; �i = hy�; A�i for any � 2 X;where A 2M .Note that when X is a Banach space using the notion of scalar subdi�erentialwe can get the analogy of theorem 2.Lemma 4. Let ' : X ! R be a continuous function in the vicinity of x0; q (x) == j' (x)j and q (x0) > 0. Then
@q (x0) = � @' (x0) : ' (x0) > 0;�@' (x0) : ' (x0) < 0:

Proof. Since ' is continuous at the point x0; then from the de�nition of gener-alized derivative with respect to direction we have:
q� (x0; �) = lim"#0 lim supy#'x0

t#0

inf!2�+"B q (y + t!)� q (y)t = � '� (x0; �) : ' (x0) > 0;'� (x0;��) : ' (x0) < 0;
where y # 'x0 means that y and ' (y) converge to x0 and ' (x0) respectively. There-fore, if ' (x0) > 0, then

@q (x0) = fx� 2 X� : q� (x0; �) � hx�; �i ; � 2 Xg =
= fx� 2 X� : '� (x0; �) � hx�; �i ; � 2 Xg = @' (x0) :
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It is similarly veri�ed that, if ' (x0) < 0; then @q (x0) = �@' (x0). The lemmais proved.Note that, if ' : X ! R is lower semi-continuous at the point x0 and ' (x0) > 0,then @q (x0) = @' (x0).Let f = (f1; :::; fn) : Rn ! Rn. Assume �g (x) = nPi=1 jfi (x)� xij ;  (x) =nPi=1fi (x).Theorem 4. Let M � Rn be a compact set, fi : Rn ! R be a lowersemi-continuous (upper semi-continuous) function, xi � fi (x) (xi � fi (x)) ; i =1; n; f (x) 2 x+TM (x) for any x 2M; �xbe a minimum point of the function �g (x)inthe set M; or dom  � (�x; �) \ int TM (�x) 6= ;; or dom  � (�x; �)� TM (�x; �) = X; forx 2M and for any z� 2 @ (x) ; where f (x) 6= x, it is ful�lled the inequality
hz�; f (x)� xi < nX

i=1 (fi (x)� xi)  hz�; f (x)� xi > nX
i=1 (fi (x)� xi)! :

Then f (�x) = �x.Proof . By Weierstress theorem the function �g attains minimum on the set Mat some point �x. Therefore by theorem 2.9.8 [1] and by supposition 7.6.12 [3] wehave 0 2 @�g (�x) +NM (�x) :
Since �g (x) = nPi=1 (fi (x)� xi) =  (x) � nPi=1xi; then @�g (x) = @ (x) � l, wherel = (1; 1; :::; 1). Then, for f (x) 6= x; by the condition we have

hz� � l; f (x)� xi = hz�; f (x)� xi � nX
i=1 (fi (x)� xi) < 0;

for any z� 2 @ (x), i.e. if x� 2 @�g (x), then �x� =2 NM (x). Therefore0 2 @�g (�x) +NM (�x) if and only if fi (�x) = �xi.The second case is similarly proved. The theorem is proved.It is clear that by changing the condition f(x) 2 x + TM (x) by the conditionx 2 f (x) + TM (x) for any x 2M , we can get the analogy of theorem 4.Lemma 5. If minx;y2M kf (x)� yk = kf (�x)� �xk where �x 2 M � X and f (�x) 2�x+ TM (�x) ; then �x is a �xed point of the function f on the set M .Proof. By the condition minfkf (�x)� yk : y 2Mg = kf (�x)� �xk. Therefore, bytheorem 2.9.8 [1] we have 0 2 @y kf (�x)� yky=�x +NM (�x). Let f (�x) 6= �x. It is clearthat @y kf (�x)� yky=�x = f�x� : x� 2 X�; kx�k = 1; hx�; f (�x)� �xi = kf (�x)� �xkg.Then there exists such ��x� 2 @y kf (�x)� yky=�x ; that �x� 2 NM (�x). Thereforekf (�x)� �xk = h�x�; f (�x)� �xi � 0; i.e. f (�x) = �x . We get contradiction. Thelemma is proved.Let X be a Banach space, F : X ! 2X ; M � domF = fx 2 X : F (x) 6= ?g;W (x) = inffkx� yk : y 2 F (x)g; grF = f(x; y) 2 X �X : y 2 F (x)g ;grDF (x0; y0) = TgrF (x0; y0) ; DF (x0; y0)� (q) = fp : (q;�p) 2 NgrF (x0; y0)g.Lemma 6. Let M be a closed and convex set in X; grF be closed and convex,�x 2 M be a minimum of the function W (x) on the set M; such �y 2 F (�x) that
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W (�x) = k�x� �yk ; x0 2 M and y0 2 F (x0) be such that W (x0) > W (�x) andW (x0) = kx0 � y0k. Then from p 2 DF (x0; y0)� (q) + r; where (r; q) 2 @ kx0 � y0kit follows that �p =2 NM (x0).Proof. By theorem 4.5.2 [3] p 2 @W (x0) if and only if there exists such (r; q) 2@ kx0 � y0k that p 2 D (x0; y0)� (q) + r. By the condition W (�x) < W (x0) ; i.e.x0 6= y0. Therefore

@ kx0 � y0k = f(x�;�x�) : x� 2 X�; kx�k = 1; hx�; x0 � y0i = kx0 � y0kg:
Hence, we have p 2 DF (x0; y0)� (�x�) + x� or p � x� 2 DF (x0; y0)� (�x�) forsome (x�;�x�) 2 @ kx0 � y0k. By de�nition of adjoined mapping we have

hp� x�; x0 � xi � h�x�; y0 � yi ; (x; y) 2 grF:
Hence it follows that

�hp; x� x0i � hx�; x0 � y0i � hx�; x� yi ; (x; y) 2 grF: (1)
Since W (�x) = max fhz�; �x� �yi : kz�k = 1; z� 2 X�g, then W (�x) � hx�; �x� �yi.Assuming x = �x; y = �y from (1) we get, �hp; �x� x0i > 0; i.e. �p =2 NM (x0). Thelemma is proved.Lemma 7. Let M be a closed convex set in X; int M 6= ?; grF be closedand convex, y0 2 F (x0) be such that W (x0) = kx0 � y0k ; where x0 6= y0; andx� 2 DF (x0; y0)� (x�) for x� 2 X�; kx�k = 1; hx�; x0 � y0i = kx0 � y0k and 0 6=@W (x0). Then 0 =2 @W (x0) +NM (x0).Proof. By theorem 4.5.2 [3] p 2 @W (x0) if and only if there exists such a(r; q) 2 @ kx0 � y0k ; that p 2 DF (x0; y0)� (q)+r. Since x0 6= y0, then @ kx0 � y0k =f(x�;�x�) : x� 2 X�; kx�k = 1; hx�; x0 � y0i = kx0 � y0kg. Let (x�;�x�) 2@ kx0 � y0k be such that p 2 DF (x0; y0)� (�x�) + x� or p� x� 2 DF (x; y0)� (�x�).By de�nition of adjoined mapping we have

hp� x�; x0 � xi � h�x�; y0 � yi ; (x; y) 2 grF:
Then it is clear that

hp; x0 � xi � h�x�; y0 � yi+ hx�; x0 � xi ; (x; y) 2 grF: (2)
Since x� 2 DF (x0; y0)� (x�), then

hx�; x0 � xi � hx�; y0 � yi ; (x; y) 2 grF: (3)
It follows from (2) and (3) that h�p; x� x0i � 0 for (x; y) 2 grF; then we havethat (�p; z) � 0 for z 2 TM (x0). Therefore h�p; zi > 0 for z 2 int TM (x0). Hencewe get 0 =2 @W (x0) +NM (x0). The lemma is proved.Theorem 5. Let M be a closed convex set in X; grF be closed and convex,M 6= ?; or 0 2 int (dom F �M) ; �x 2 M be a minimum of the function W (x)on the set M and �y 2 F (�x) be such that W (�x) = k�x� �yk ; let for any x0 2 M;and for y0 2 F (x0) ; where W (x0) = kx0 � y0k > 0; and x� 2 N (y0)F (x0); wherekx�k = 1; hx�; x0 � y0i = kx0 � y0k there exist such points ~x 2 M and ~y 2 F (~x)that kx0 � y0k > hx�; ~x� ~yi. Then �x = �y, i.e. �x 2 F (�x).
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Proof. Since �x 2M minimizes the functionW on the setM; then 0 2 @W (�x)+NM (�x). By theorem 4.5.2 [3] �p 2 @W (�x) if and only if there exists such (�r; �q) 2@ k�x� �yk ; that �p 2 DF (�x; �y)� (�q) + �r. If �x 6= �y, then

@ k�x� �yk = f(x�;�x�) : x� 2 X�; kx�k = 1; hx�; �x� �yi = k�x� �ykg :
Let (�x�;��x)� 2 @ k�x� �yk be such that �p � �x� 2 DF (�x; �y)� (��x�). Hence, wehave h�p� �x�; �x� xi � h��x�; �y � yi ; x 2M 8y 2 F (x) :
It is clear that �x� 2 N (�y)F (�x) and

h��p; x� �xi � h�x�; �x� �yi � h�x�; x� yi ; x 2M; y 2 F (x) :
By the condition there exists such ~x 2 M and ~y 2 F (~x) that h�x�; �x� �yi �h�x�; ~x� ~yi > 0. Therefore, h��p; ~x� �xi > 0; i.e. ��p =2 NM (�x). Then, it is clear that0 =2 @W (�x) +NM (�x), i.e. we get a contradiction. The theorem is proved.Corollary 2. If M is a closed convex set in X; int M is non-empty, grF isclosed and convex, the point �x 2M is a minimum of the function W (x) in the setM and �y 2 F (�x) are such that W (�x) = k�x� �yk and for any x� 2 X�; kx�k = 1there exist such points ~x 2M and ~y 2 F (~x) that hx�; ~x� ~yi � 0; then �x = �y.Remark 3. If X is a Hilbert space, then the condition k�x� �yk > h�x�; ~x� ~yi,where �x� 2 X�; k�x�k = 1; h�x�; �x� �yi = k�x� �yk is equivalent to the condition:k�x� �yk2 > h�x� �y; ~x� ~yi.Remark 4. Let �y 2 F (�x) be such that W (�x) = k�x� �yk > 0 and for anyx 2 M the set F (x) be convex, bounded and closed. Show that if the inequal-ity �x (F (�x) ; F (�y)) < k�x� �yk is ful�lled, then there exists such ~y 2 F (�y) thath�x�; �x� ~yi < k�x� �yk for �x� 2 N (�y)F (�x); k�x�k = 1; h�x�; �x� �yi = k�x� �yk.From �x� 2 N (�y)F (�x) it follows that h�x�; �yi = maxfh�x�; yi : y 2 F (�x)g.Let ~y 2 F (�y) be such that h�x�; ~yi = maxfh�x�; zi : z 2 F (�y)g. Using the formula

�x (A;B) = supfjSA (x�)� SB (x�)j : x 2 X�; kx�k � 1g;
where A and B are closed bounded sets in X; we get

jh�x�; �y � ~yij = ���� maxy2F (�x) h�x�; yi � maxy2F (�y) h�x�; zi
���� � �x (F (�x) ; F (�y)) < k�x� �yk :

Lemma 8. If minx;z2M infy2F (x) kz � yk = miny2F (�x) k�x� yk = k�x� �yk ; where �y 2F (�x) ; �x 2 M; F (�x) is a closed convex set and F (�x) \ (�x+ TM (�x)) 6= ?, then�y = �x, i.e. �x 2 F (�x).Proof. Assume � (z; x) = inffkz � yk : y 2 F (x)g. Since minz2M� (z; �x) =� (�x; �x) = k�x� �yk, then 0 2 @z� (z; �x)z=�x + NM (�x). Using the supposition 4.5.1[3] we get that, if �y 6= �x, then x� 2 @z� (z; �x)z=�x if and only if, then x� 2 N (�y)F (�x);kx�k = 1; hx�; �x� �yi = k�x� �yk. Let �x� 2 @z� (z; �x)z=�x be such that ��x� 2 NM (�x).Then by the condition, we get
max fhy � �x; �x�i : y 2 F (�x)g = �k�x� �yk � 0:



Proceedings of IMM of NAS of Azerbaijan [On the characterization of zeros] 183Hence it follows �y = �x. The lemma is proved.Let X and Y be Banach spaces, F1 : X ! 2Y ; W0 (x) = inffkyk : y 2 F1 (x)g;�W (x; y�) = inffhy; y�i : y 2 F1 (x)g. If F1 (x) is convex and closed, then (see [6])W0 (x) = supf �W (x; y�) : ky�k � 1g. Therefore, if grF1 is convex and closed, thenx!W0 (x) is a convex function. It is clear dom F�11 = F1 (X).Lemma 9. Let grF1 be convex and closed, �y 2 F1 (�x) where �y 2 int domF�11 ;such that W0 (�x) = k�yk and 0 2 @W0 (�x). Then �y = 0; i.e. 0 2 F1 (�x).Proof. By theorem 4.5.2 [3] �p 2 @W0 (�x) if and only if there exists such �q 2@ k�yk ; that �p 2 DF1 (�x; �y)� (�q). Since �y 2 int dom F�11 , then domD �F�11 � (�y; �x) =Y . Then by lemma 2.1.2 [7], we get that D �F�11 � (�y; �x)� = D (F1) ((�x; �y)�)�1 isbounded.By lemma 2.1.1 [7] adjoined mapping D �F�11 � (�y; �x)� is bounded, if and onlyif, then D �F�11 � (�y; �x)� (0) = f0g. Since �p = 0; we get that �q = 0, i.e. 0 2 @ k�yk.Hence, it follows that �y = 0. The lemma is proved.Theorem 6. Let M � domF1 be a closed convex set, grF1 be closed andconvex, �x 2M be a minimum of the function W0 (x) on the set M and �y 2 F1 (�x)be such that W0 (�x) = k�yk. Besides, let either int M 6= ? or W0 (x) be continuousat some point x1 2 M . Then, if for any x0 2 M and y0 2 F1 (x0) ; whereW0 (x0) = ky0k > 0; and for �y� 2 N (y0)F (x0), where ky�k = 1; hy�; y0i = ky0k ; thereexist such points ~x 2 M and ~y 2 F1 (~x) ; that ky0k > hy�; ~yi then �y = 0, i.e.0 2 F1 (�x).Proof. Since �x 2M minimizes the function W0 on the set M; then by theorem4.4 [2] 0 2 @W0 (�x) +NM (�x). By theorem 5.4.2 [3] �p 2 @W0 (�x) if and only if thereexists such �q 2 @ k�yk ; that �p 2 @F1 (�x; �y)� (�q). If �y 6= 0, then
@ k�yk = f�y� 2 Y � : k�y�k = 1; h�y�; �yi = k�ykg:

Let �y� 2 @ k�yk be such that �p 2 DF1 (�x; �y)� (�y�). Then, it is clear that
h�p; �x� xi � h�y�; �y � yi ; x 2M; y 2 F1 (x) :

By the condition there exists ~x 2 M and ~y 2 F1 (~x) ; that k�yk = h�y�; �yi >h�y�; ~yi. Then it is clear that h�p; �x� ~xi > 0; i.e. ��p =2 NM (�x). Hence, we have0 =2 @W0 (�x) +NM (�x). The obtained contradiction means that �y = 0 2 F1 (�x). Thetheorem is proved.Let a : X ! 2Y ; W1 (x) = inffkx� yk2 : y 2 a (x)g; Da (x0; y0)x = fy 2 X :(x; y) 2 Tgra (x0; y0)g; M � dom a. It there exists such a vicinity U of the point x0and a compact V � X; that a (U) � V and a (x) is non-empty and compact for allx 2 U , then a is said to be uniformly compact at the point x0.Lemma 10. Let X be a Hilbert space, many-valued mapping a be closed,x0 2M and y0 2 a (x0) be such that W1 (x0) = kx0 � y0k2, the set a (x0) be convex,many valued mapping a be uniformly compact at the point x0; intTM (x0) 6= ?;TM (x0) � dom Da (x0; y0) and (x0 � y0) 2 Da (x0; y0)� (x0 � y0). Then, if x0 6= y0and 0 =2 @W1 (x0), then 0 =2 @W1 (x0) +NM (x0).Proof. By theorem 2.11 [6] �p 2 @W1 (x0), then (�p; 0) 2 (2 (x0 � y0) ;�2 (x0 � y0)) + Ngr (x0; y0) or �p � 2 (x0 � y0)� 2 Da (x0; y0)� (2 (y0 � x0)). There-fore, h�p� 2 (x0 � y0) ; xi+2 hx0 � y0; yi � 0 for (x; y) 2 Tgra (x0; y0). Then h��p; xi �2 hy0 � x0; xi+ 2 hx0 � y0; yi for (x; y) 2 Tgra (x0; y0). By the condition (x0 � y0) 2
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Da (x0; y0)� (x0 � y0) ; i.e. �hx0 � y0; xi+ hx0 � y0; yi � 0 for (x; y) 2 Tgra (x0; y0).Since TM (x0) � dom Da (x0; y0), then h��p; xi � 0 for x 2 TM (x0). It is clearthat �p 6= 0; therefore for z 2 int TM (x0) the inequality h��p; zi � 0 is ful�lled, i.e.��p =2 NM (x0). Hence, we have 0 =2 @W1 (x0) +NM (x0). The lemma is proved.Theorem 7. Let X be a Hilbert space, a multi-value mapping a be closed, theset a (x) be non-empty and convex for x 2M; �x 2M be a minimum of the functionW1 (x) on the set M and �y 2 a (�x) be such that W1 (�x) = k�x� �yk2 there exist ahypertanget to M at the point �x; dom Da (�x; �y) \ int TM (�x) 6= ?, the mappinga uniformly compact at the point �x, for any x0 2 M and for y0 2 a (x0) ; whereW1 (x0) = kx0 � y0k2 > 0 there exist such points ~x 2 TM (x0) and ~y 2 Da (x0; y0) ~xthat hx0 � y0; ~x� ~yi < 0. Then �x = �y; i.e. �x 2 a (�x).Proof. By theorem 11.2 [6] �p 2 @W1 (�x), then (�p; 0) 2 2 (�x� �y; �y � �x) +Ngra (�x; �y). Since

W 01 (�x; �) = sup fhp; �i : p 2 @W1 (�x)g �
� sup fhp; �i : (p; 0) 2 2 (�x� �y; �y � �x) +Ngra (�x; �y)g == sup f2 h�x� �y; �i+ hx�; �i : (x�; 2 (�x� �y)) 2 Ngr (�x; �y)g ;then dom W 01 (�x; �) � dom Da (�x; �y). By the condition �x 2 M minimizes thefunction W1 on the set M , then by theorem 2.9.8 [1] we get 0 2 @W1 (�x) +NM (�x).Let �x = �y. Since (�p� 2 (�x� �y) ; 2 (�x� �y)) 2 Ngra (�x; �y), then
h�p� 2 (�x� �y) ; xi+ 2 h�x� �y; yi � 0; (x; y) 2 Tgra (�x; �y) :

Then h��p; xi � 2 h�y � �x; xi + 2 h�x� �y; yi for (x; y) 2 Tgra (�x; �y). By the conditionthere exists such (~x; ~y) 2 Tgra (�x; �y) that h��p; ~xi � 2 h�y � �x; ~xi + 2 h�x� �y; ~yi =2 h�y � �x; ~x� ~yi > 0; i.e. h��p; ~xi > 0 and ~x 2 TM (�x). Therefore �p =2 NM (�x). Thenit is clear that 0 =2 @W1 (�x) + NM (�x) ; i.e. we get a contradiction. The theorem isproved.Remark 5. If X is a re
exive Banach space and the square of the norm iseverywhere strictly di�erentiable, then theorem 7 is also true. Besides, we cansubstitute the convexity of the set a (x) by the condition: the set fy 2 a (x) :W1 (x) = kx� yk2g consists of a unique point.By KV (X) we denote a totality of all non-empty convex compact subsets, andlet a : X ! KV (X). Assume Sa (x; x�) = sup fhx�; yi : y 2 a (x)g ; where x� 2 X�.The mapping a is said to be weakly uniformly di�erentiable (w.u.d.) at the pointx0 the direction of �x if Sa is lower w.u.d. at the points (x0; x�) ; x� 2 X�, in thedirection of �x; i.e. there exists S0a (x0; x�; �x) and
limt#0;z�!x� 1t (Sa (x0 + t�x; z�)� Sa (x0; z�)) � S0a (x0; x�; �x) :

Let z0 = (x0; y0) 2 gra; T̂Hgra (z0) = ��z 2 X �X : limt#0 da (z0 + t�z)t = 0� ; where
da (z) = inffky � �k : � 2 a (x)g; z = (x; y) and D̂Ha (z0; �x) = f�y 2 X : (�x; �y) 2T̂Hgra (z)g. It is clear that D̂Ha (z0; �x) = limt#0 1t (a (x0 + t�x)� y0).



Proceedings of IMM of NAS of Azerbaijan [On the characterization of zeros] 185We'll say that many valued mapping a admits the �rst order approximation onthe point z0 = (x0; y0) 2 gra in the direction of �x 2 X, if for any sequence fykg issuch that as yk 2 a (x0 + "k�x) ; k = 1; 2; :::; "k # 0; yk ! y0 2 a (x0) as k !1 it isvalid yk = y0 + "kzk + 0 ("k) ; where zk 2 D̂Ha (z0; �x) ; "kzk ! 0 as k !1.Assume 
 (x0;M) = f�x 2 X : 9"0 > 0; x0 + "�x 2M; " 2 [0; "0]g.Theorem 8. Let a compact set M � X be such that for any x0 2 M theset 
 (x0;M) is non-empty, a : X ! KV (X), for x0 2 M and y0 2 a (x0) ; whereW1 (x0) = kx0 � y0k2 > 0, there exists such ~u 2 
 (x0;M) that inffhx0 � y0; ~u� ~�i :~� 2 D̂Ha (z0; ~u)g < 0 and one of the conditions be ful�lled:1) X is �nite-dimensional, mapping a is continuous by Housdor� and w.u.d. forall points x0 2M in all directions of u;2) X is a Hilbert space, the mapping a is upper semi-continuous and at eachpoint (x0; y0) (where x0 2 M; y0 2 a (x0) and W1 (x0) = kx0 � y0k2) it admits the�rst order approximation in all directions of u.Then there exist such a point �x 2M that �x 2 a (�x).Proof. Having assumed � (x) = �' (x) = supf�kx� yk2 : y 2 a (x)g underconditions 1) of theorem 5.3, under condition 2) from corollary 1 of theorem 7.1 [6]we get �0 (x0;u) = sup�2D̂Ha(z0;u) h(�2 (x0 � y0) ; 2 (x0 � y0)) ; (u; �)i :
Hence, we have

'0 (x0;u) = 2 inf�2D̂Ha(z0;u) h(x0 � y0; y0 � x0) ; (u; �)i = 2 inf�2D̂Ha(z0;u) hx0 � y0; u� �i :
If the point �x 2M minimizes the function ' (x) on the setM , then '0 (�x;u) � 0for u 2 
 (�x;M). Since a is upper semi-continuous, then the function ' is lowersemi-continuous (see [8]). Therefore, there exist a point �x 2 M which minimizesthe function ' on the set M . Let �y 2 a (�x) be such that W1 (�x) = k�x� �yk2. If�x 6= �y, then by the condition there exist such �u 2 
 (�x;M) that inffh�x� �y; �u� ��i :�� 2 D̂Ha (�z; �u)g < 0; where z = (�x; �y) ; i.e. there exit such �u 2 
 (�x;M) ; that'0 (�x; �y) < 0. We get a contradiction. We have �x = �y. The theorem is proved.Note that under condition 1) of theorem 8 the condition inffhx0 � y0; ~u� ~�i : ~� 2D̂Ha (z0; ~u)g < 0 is equivalent to the condition hx: � y0; ~ui+W 0a (x0; y0 � x0; ~u) < 0;where Wa (x; x�) = inffhx�; yi : y 2 a (x)g.Remark 6. The corresponding results are true for the zeros of many-valuedmapping and the obtained results may be generalized for separable local convexspaces. Let a : M ! 2Y , where M � X; a (x) is non-empty and convex, X and Ybe separable local convex spaces. Besides, let V be a convex balanced vicinity ofzero in Y �; and @V be a set boundary points of the set V . Denote Ka (x; y�) =inffjhy�; yij : y 2 a (x)g and � (x) = supfKa (x; y�) : y� 2 @V g. It is clear that� (x) = supy�2V infy2a(x) hy�; yi and zeros of mapping is a minimum of the function �and we can similarly show that under same conditions the point of minimum of thefunction � on the set M is the zero of the mapping a.
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