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CRACK WITH BONDINGS BETWEEN FACES IN
RIB REINFORCED

Abstract

Interaction of reinforcing rib on growth of crack with bondings between faces
1s investigated.

The equilibrium boundary value problem of crack with bondings between faces
in 1ib reinforced plate in action of environmental tensile load is reduced to non-
linear singular integrodifferential equation.

The normal forces in bondings is found from solution of this equation. The
condition of limit equilibrium of crack with end zone is formulated subject to
criterion of limit draft of bond.

Statement of problem.

We consider unbounded isotropic plate weakened by the rectilinear crack with
2[ in length.

In the paper the model of crack is considered in the presence of domains in which
the faces of crack interact.

Assume that these domains join to apex of cracks and their sizes are preunknown,
can be congruent with size of crack. Interaction of crack faces in end domain is
modeled by introduction bonding between crack faces having the given deformation
curve.

The physical nature of such cohesive forces and size of end zones in which the
interaction of crack faces is realized, depend on the form of material. Crack faces
are free from external forces. The transversal stiffening rib at the points z = £L £+
iyo is fastened to the plate. The homogeneous tensile stress o° = oq acts at
infinity. Action of fastened reinforcing rib in calculation scheme is replaced by
four concentrated force is unknown and is to be defined in the process of solution
of the problem. We select a part of crack in length d (end zone) adjoint to its apex
(A <lz| <l; y=0; d=1— ) in which crack faces interact, so that this interaction
keeps crack opening.

For the mathematical description of interaction of crack faces we assume that in
end zones between crack faces the cracks have bonding (cohesive forces), where law
deformation which is given. In general case it is nonlinear deformation law [1-3].

By action of environmental loads in bondings between cracks the force g (z)
having only normal component because of symmetry of problems with respect to
abscissa axis, will arise. Since end zones are small as against the rest parts of
reinforced plate, we can mentally delete it replacing it by section whose surfaces
interact among themselves by some law corresponding to action of remote material.

Consequently, the normal stress ¢ (z) will be applied to crack faces in end zones.
The quantity of these stresses is previously unknown and is to be defined in the
process of solution of boundary-value problem of fracture mechanics.

The boundary conditions in the considered problem have the following form

Oy —iTgy =0 at y=0, |z[<A

(1)

oy —iTey=q(z) at y=0, A<|z|<I
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The basic relation’s of the posed problem must be complemented by equations
connecting the crack opening displacement and binding force in bonding.

This equation, without losing generality, in the considered problem can be rep-
resented in the following form

v(z1) =C(z1,9)q (1), v(@1) =V (21,00 =V (21,0), (2)

where v (1) is crack opening in end zone, x; is affix of points of crack faces in end
zone; we can consider the fucntion C (z1, q) as effective compliance bond depending
on tension of bondings.

On the basis of Kolosov-Muskheleshvili formulae [4] and boundary conditions
on crack faces, the problem is reduced to determination of two analytical functions
® (z) and ¥ (z) from the boundary conditions

0 at |z <A

O(t)+ () +tP(t) +T(t) = (3)

g(z) at A<|z|<I

Solution of boundary value problem.
We seek solution of boundary value problem (3) in the following form

¢ (2) =g (2) + 1 (2);

P (2) = o (2) + 91 (2);

where ® (2) = ¢’ (2), ¥ (2) = ' (2), @ (2),%, (2) define the stress and strain fields
of intack reinforced plate. In this case, as ¢, (z) and ¥, (2) it follows to take [4]

(4)

4
1 . og
=N Xy +iV)In(z - 0z
(700(2) 27T(1+33)h];( k+IL k) II(Z Zk)+ 42,
4
Yo (2) = 1+3e h; Xp—iV) In (2 — z) + (5)

Here (X},1Y)) are pin forces applied at the points zj
(21 =L +iyo; z2=L—iyy; 23=—L+iyy 24=—L—iyp; Xy=0;
Y,=-P; Y,=P; X;=-P; Y;=P)

& is a Muskhelishvili constant.
For determination of the analytical functions @4 (z) and 4 (2) = 2®1 (2)+ ¥ (2)
on the basis of (4)-(5) we obtain the following boundary value problem

as y=0, |z|]<X @1(2)+P1(2) +Q(2) =f(x)

(6)
as y=0, A<|g| <A+d  @1(2) + @1 (2) + D (2) = q(2) + f (2),
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where f (z) = — [CDO () + Do (z) + 2P (z) + o (x)]

It follows to seek the solution of boundary value problem (6) in a class of every-
where bounded functions. Now, we note that by virtue of conditions with respect
to the axis z, the fucntion f (z) is real, therefore on the basis of (6) on whole real
axis Im Q4 (z) = 0. Consequently, allowing for the condition at infinity, we obtain

Ql (Z) =0

Thus, on the basis of (6) for the fucntion ®; (z) we obtain the Dirichlet problem

as y=0, |z <A Re@l(z):%f(x);
(7)

as y=0, A<[z[ <l Re® (2) = (q(x) + f(2));

N | =

as z > oo Py (z) = 0.
The following conjugation problem corresponds to boundary value problem (7)

df (z) + @7 (z) = f () —A<z <A -
8
Of (2) + 07 (z) = f(2) +q(z)  A<l|z| <A

It is required to find a solution of (8), satisfying the condition

Dy (2) = @1 (2)
The corresponding homogeneous problem has the form
®f (z) + @, (z) =0 —l<z<l 9)

We take the fucntion

X (2)=V22-12

as a partial solution of homogeneous problem (9), implying that branch for which
the equality-
Xt (z)=-X(z) on |z|<I (10)

holds. On the basis of relations (10) we rewrite conjugation problem (9) as

o (z) _ 2 (=)
Xt (z) X~ (2)

=0 on —-I1<z<l (11)

From boundary condition it follows that the solution of homogeneous problem
vanishing at infinity is equal to zero.
We represent homogeneous conjugation problem (8) in the following form

®f (z) @y (z) _ Fl(a)

X+($)_X—(x):X+(x) on —I1<z<lI (12)

Denote by

0. (2) = P1(2) /X (2); Fu(z) =F(2) /X" (2),
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then boundary condition (12) has the form

O (2) =@, (2) =F,(z) on —Il<z<lI

Here
F. (z) = i;f?p as |z] <A (13)
F, (z =q($);_f($) as A<z <l
z2 —[?

The desired solution of problem (8) is written as

Py (2) =

l
Y _ZQ/F* (14)

r—z

According to behaviour of the fucntion ®4 (z) at infinity the solvability condition
of boundary value problem has the form

l
F, (z)dz N q(z)dz N q(z)dx
l1/l2_$2 l‘/l2_$2 / NP

=0 (15)

This relation serves for determination the size of end zone. Now we compute the
integrals in (14)-(15). We represent integral (14) in the following form

— l2 / x)dx N
Va2 — l2 (x — 2)

q(z)dz x)dx
+/\/ —lg(x—z Vz —l2a:—z) (16)

=l

For computation of the first integral in braces we use calculus of residues (see
formula (3) §70 [4]).
We shall have

fle)de
J Va2 — 2 (x—2z)

22— 2

Here G (2),G1(2),G2(2),G3(z),G4 (=) are leading parts of the functions
f(2) /Vz? —1? at the points z = o0, 21, 22, 23, 24, respectively,

:m’{'};(z)—Goo (2) —G1(2) —Ga(z) —G3(2) — Ga (Z)} (17)

Pyo
mh |y2 + (z — L)2]

flz)=- —(1+4v)

2 yg + (z — L)

3+v (z — L) ]_
2
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_ Pyo
wh |43 + (@ — L)’]

3 L)?
+V_(1+,j)%
Yy + (z + L)

+00 (18)

After defining the leading parts of the fucntion f(z)/v22 —1? in the poles
21, 29, 23, 24 and z = oo the solution of the Dirichlet problem for the fucntion ®4 (2)
we rewrite as

Pyg 3+v  (1+v)(z— L)
@1(2):— 5 2 — 3 5 —
27rh[y§+(z—L)} v+ (z—L)
P 3+ +L)°
- Yo ”—(1+u)% + 204
27ch [yg—i-(z—FL)Q] 2 yp + (z+ L) 2
_ Py 22 —1? —1 _1(1—}-1/)21(2%—12)_ (1+v)
2mh 2212 |2y (2 —z1) 4 (z — 21) 4(z—2)?
N 21 [ i _1(1-1—1/),22(23—[2)_ (1+v) _+

NZ | 240 (z—22) 4 (z — 22) 4(z — z)*

VER[ i L1 +0)2(3-P)  (1+v)

+m_2y0(z—zg)_1 (z — z3) _4(z—Z3)2_+
P i 10+ -P)  (1+v) .
+ [2y0 PP S P o) }+11, (19)

- I
B () dz q(z)dz _
Il__/l\/a;2—l2(:r—z)+)\/\/a:2—l2(x—z)’

Here under the functions V(% — 2?2 it is implied that branch which at large |z|
has the form V12 — 22 = iv22 — 12 =iz (1 — [2/22% + ...).

The solvability condition of boundary value problem (15) which serves for defin-
ing the length of end zone, after integration gets the form:

Py [ (14 &)L 3y3 (7 — ) L3
o9 — + +
h |[4AVA—-B+2L? A2(A+ B -2L?)VA— B+ 2L?

(7T—e)L(2B—-A—4L?) 3 (T—=)L(B+ A) (2B — A —4L?%)
4+ 0
2A2\/A - B + 2L? 4A3 (A+ B —2L2)vVA - B +2I2

—-A

l
[ q(z)dz [ q(z)dz
VE-2 | Ve

Here B =y3 +1?> + L?; A= VB2 —-4L22.

(20)
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Determination of quantity P.

For determination of quantity of the force P we use Hooke’s law. According to
this law the desired quantity of the pin force P acting on every rivet from reinforcing
rib is equal to
EgF

240

Her E; is the Young modulus of material of reinforcing rib, F' is cross-section
area of rib, 2y, is distance between rivets, Av is mutual displacement of rivets that
equals the lengthening of a rib.

Denote by r a radius of rivet. Following the work [5] naturally we assume that
mutual displacement of the points z = +L +i(yo —r), 2 = +L —i(yo — r) in the
considered problem is equal to indicated mutual displacement of rivets Av. The
noted additional compatibility condition allows to find effectively a solution of the
posed problem.

For this it is necessary mutual displacement of the points

P = Av

z=L+i(yo—r) and z=4+L—i(yo—r)

in the considered problem. Using the Kolosov-Muskhelishvili relations [4] and
(15), (16) and (18) after fulfilment of elementary though some bulky calculations
mutual displacement of rivet Av of reference points, we find in the following form:

Av = Avq + Awvsg

2 4L2 2
Am:% sIn TQ( +77) — (21)
(1 + ) (r — 290)* [412 + (240 — 1)?]
320 L2 (yg —
n yoL” (yo — 1) + 7% (2041) (o — 1) ;

(4L2 + r2) [4L2 + (290 — 7‘)2] m
! !
N ST YNy BT LY

_i_i
Ly VIZ —t2 T 12 —¢2
Here F (t) = (e + 1) fi (t) +2(yo — 1) f2 (¢);
2
D?cos? ¢ + (D sin o — /12 —tQ)

2
D2 cos? p + (D sin ¢ + V12 —t2>

fi(t)=Dsinp+VI?—t*In

1

)= ———

DL (dycosp — dy sing) — (yo — ) (d1 cos ¢ + dg sin )] ;

1 d
o= farctg—l; do = t> — L? + (yo —7")2; dy =2L (yg —r);

2 B
Al = \/Bg—l-d%; D =+\/A
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The desired force P is determined by the following relations
B E,F
8uyo (1 —a — by)

[0'0(2&+1)(y0—7“)+

l
dog [ F(t)dt 4 [ F(t)q(t)dt
kP T A S 22
+7‘( 12_t2+7r ‘/l2_t2 ()
A

Here
2 (4L% +1?)

xIn r
(r — 2y0)2 [4[/2 + (290 — r)Q}

= +
drpyo (1 +2) h

(23)
32y0L” (yo — 1)
(412 +12) [4L2 + (290 — 1)’]

* o /fO dt, (24)
27Wyoh VIZ—t2

where the fucntion fy (¢) is determined by the relation

Y

ThH)=F - (25)

obtained relation (22) contains the unknown parameter X\ characterizing the length
of end zone and the unknown force ¢ (x) in bondings between crack faces.
Using the relation

ZM% (U +iv) = 2B (2) — B (2) — 23 () — T (2)

and boundary values of the fucntion @ (z) we obtain on the segment |z| < [ the
following equality

_ 24 0 0 _
of (2) — @ (z) = 1+ae[8.7:(u+ )+za—$(+—u ) (26)
Using the Sohotski-Plemel formula [6] and allowing for formula (16) we find

{
~1

We put the obtained expression (27) to the right hand side of equation (26) and
allowing for (2) we obtain a nonlinear differential integral equation with respect to
the unknown function ¢ ()

q(t)dt
_/l\/l2—t2 t—x) +/l\/ 22 (t—1x)
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2u 0

“1+mor (C(7,q) q(z)) (28)

Equation (28) represents nonlinear integral equation with the Cauchy kernel and
can be solved only numerically. For its solving we can use the collocational scheme
with approximation of the unknown fucntion.

In order to refrain the solution of integrodifferential equation we represent equa-
tion (28) in the following form

”ae/cz C (2,q) () (29)

Here

q(t)

.2
Qz) = —— _/lmt_x +/lm(t—x)

We divide the segment [—I,/] into M node t,, (m =1,2,..., M) and require
the fulfilment of conditions (29) in nodes. As a result instead of equation (29)

we obtain an algebraic system of M; equations for determination of approximated
values ¢ (tp,) (m=1,2,..., M)

CoQ (t1) = C (t1) q (t1)

Co (Q (t1) + Q (t2)) = C (t2) ¢ (t2)

............................... (30)
My
C Z Q (tm) = C (tar) g (tar,)
m=1
1+ &l
where Cy = o, M ; M, is a number of nodes belonging to the end zone of cracks.
!

Note that for obtaining the algebraic systems, all the integration integrals were
led to one interval [—1,1], and then with the integrals were changed by finite sum
the help of Gauss type quadrature formula.

Even in special case of linearly elastic connections system (3) is nonlinear because
of the unknown size of end zone. In this connection for solution of obtained system
(30), (20), (22) in case of linear connections, the method of successive approximations
is used, the essence of which is next one. We solve system (30), (22) for some value
A« (for example, for A\, = 1/3) with respect to M; unknown ¢, 43, ..., qgjl.

The values A, and the found quantities q(f, qg, e qg/[l are substituted in (20), i.e
in unused system of equation (30), (22) and (20) in which the integrals are used by
the sum with the help of Gauss type quadrature formula. The taken value of the
parameter A, and the values ¢, 3, ..., qgjl corresponding to this parameter will not,
in general, satisfy equation (20) of the system. Therefore, selecting the values of
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the parameters ., the computation is repeated as long as last equation (20) of the
system will satisfy with the given accuracy.

In case of nonlinear law of deformation of bondings [7] for determination of faces
in end zones the method similar to the method of elastic solutions [8] is used.

It is assumed that the law of deformation of interparticle bondings (cohesive
forces) is linear at v < wv,.

The first step of iteration process of computations consists of solution of a system
of equations (30), (20) and (22) for linearly-elastic interparticle bondings. The
subsequent iterations are satisfied only in those cases if on a part of end zone it
holds v (z) > v. For these iterations the system of equations in each approximation
for quasibrittle bondings with effective compliance, variable along the end zone of
the crack and depending on the forces in bondings obtained at the previous step
calculation, is solved. Computation of effective compliance is performed similar to
determination of cut modulus in the method of variable of elasticity parameters [9].

Sequence approximations method process is completed as soon as the forces along
the end-zone obtained at two sequential iterations differ one from very little.

For determination of limiting-equilibrium state of crack apex, the condition of
critical crack opening is used. It is assumed that break of bondings on border of end
domain z = zg occurs by fulfilling the condition

v (7o) = g (31)

where 0, is limiting length (stretching) of bonding.

The joint solution of system (30), (20), (22) and (31) enables to find critical
environmental load. The dependence of residual strength of rib reinforced plate
weakend by crack is established by computations.
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