
Proceedings of IMM of NAS of Azerbaijan 245
To�k I. NADJAFOV

A PROBLEM ON PERIODIC TRAJECTORIES OF
CIRCULAR DYNAMIC BILLIARD AND ITS

APPLICATIONS
Abstract

It is considered a problem on the construction of periodic trajectories ofbilliard in a circle in the presence of small impressed forces. A two-step iterationprocedure in non-smooth dynamic system developed by the author is used for itssolution. A bundle of two satellites in cyclic orbit is considered as an example.
1. Problem statement.Mathematical billiard is material point moving by inertia interior to some con-vex plane domain D with smooth boundary whose re
ection occurs by the law ofperfectly elastic collision: the absolute value of velocity remains, the re
ection angleequals the angle of incidence. The development of this model is a dynamic billiard:some impressed forces a�ect on the point. The papers [3, 4] are devoted to theinvestigation of special cases of a dynamic billiard.We shall consider the impressed forces to be small and time independent. In thiscase the equations of motion interior to a unique radius circle have the form

�x = �X (�; x; y; _x; _y) ; �y = �Y (�; x; _x; _y) ; x2 + y2 < 1 (1)
where the origin OXY coincides with the center of the circle, � << 1.If � = 0, then in intervals between the collisions upon the boundary the tra-jectories are linear, and all units are equidistant from center [1, 2]. To describethe trajectory we use Birkho� coordinates s; � representing the parameter of thecurve (in the considered case as s we can take an angle between radius drawn tothe current point of the curve, and axis OX) and angle between the unit of polygonand tangent to the curve at the re
ection point. Each trajectory of a mathematicalbilliard is uniquely characterized by the sequence fsk; �kg (k = 1; 2; :::) and for acircular domain we have

sk+1 = sk + 2�k; �k � �� = const (k = 1; 2; :::) (2)
It is easily seen that formulae (2) de�ne periodic or quasiperiodic trajectorydepending on the number ��: if �� = �m=n, where m and n are mutually primeintegers, then the trajectory consists of n units. But if the numbers �� and � arerationally incommensurable, then the trajectory is quasiperiodic (nonclosed).The present paper is devoted to the construction of periodic trajectories of system(1), transferring as �! 0 to periodic trajectory of system (2).
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2. A method for constructing periodic trajectories.To construct the solutions of system (1) it is necessary to know the initial valuesof coordinates x and y and their time derivatives. Add to Birkho� coordinates sand � the velocity value �k at the moment of the k-th re
ection, then
xk = cos sk; yk = sin sk; _xk = ��k sin (sk + �k) ; _yk = �k cos (sk + �k) (3)
Let's solve the Cauchy problem (1), (3) on such a time interval where it is validthe inequality x2 + y2 < 1 (4)
The moment that the billiard reaches the frontier corresponds to the convertingof inequality (4) into equality. For this moment we calculate the value sk+1; angleof incidence �k+1 and velocity �k+1 by the formulae similar to (3). Then we use there
ection law �k+1 = � � �k+1 (5)
As a result, by formula (3) we get initial conditions for constructing the nextunion of a billiard trajectory.Such an approach admits to construct approximately a trajectory of dynamicbilliard on a �nite time interval. However, it is not su�cient for qualitative analy-sis of the system in unlimited time interval, including the construction of periodictrajectories and study of their stability. To solve these problems we use the methoddeveloped in [5] and [6] for systems with small parameter and nonanalytic righthand-side.Let �� = �m=n; then formulae (2) de�ne a two-parametric family of periodictrajectories of a mathematical billiard (i.e. in formulae (1) � = 0). We can takethe initial apex coordinate s1 and velocity of particle � as parameters. Because ofperiodicity the n+ 1-th unit of the broken line coincides with its �rst unit, i.e.

sn+1 = s1 (mod 2�) ; �n+1 = �1; �n+1 = �1 (6)
Under the made assumptions, periodicity conditions (6) are ful�lled for � = 0,it is necessary to achieve their ful�lment also for � 6= 0. Let the connection betweenthe characteristics of two successive units be described by the fucntion �, i.e.

(sk+1; �k+1; �k+1) = � (sk; �k; �k; �) (7)
We represent periodicity condition (6) in the form

�n (s1; �1; �1; �) = (s1 + 2�m;�1; �1) (8)
Because of (2) for � = 0 the mapping � is linear:

�n (s1; �1; �1; 0) = (s1 + 2n�1; �1; �1) (9)
If �1 = �� then identities (8) are ful�lled for any s1; �1.
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Expand the function (7) in powers of �.
� (s; �; �; �) = �0 (s; �; �) + ��1 (s; �; �) + ::::�0 (s; �; �) = (s+ 2�; �; �) (10)
Then �n (s1; �1; �1; �) = (s1 + 2n�1; �1; �1)+

+��n1 + :::�n1 = @@�
nY
k=1� (sk; �k; �k; 0) (11)

Condition (8) takes the form
(2n�1 � 2�m; 0; 0) + ��n1 (s1; �1; �1) +O ��2� = 0 (12)

The given vector relation is equivalent to the system of three scalar equationswith respect to the unknown s1; �1; �1. For � = 0 this system is degenerate, there-fore, its solution for small � 6= 0 exists only at some additional conditions.Find the roots of amplitude equations and then depending on their multiplicitywe use the two-step iteration procedure constructed in [5, 6].Note that an important special case of dynamic billiard, when impressed forcesposses a generalized potential, i.e. system (1) admits the �rst integral. In this casewe can lower the order of system (12) up to the second order, since from equalities
�n+1 = �1; sn+1 = s1 (13)

periodicity of trajectory follows automatically.
3. Two-unit trajectories of body bundle in orbit.A bundle of satellites moving along cyclic orbit is considered as an example.Until stretched the cable connecting the satellites doesn't obstruct their sepa-rate motion. At stretching moment of cable there happens a collision. Neglectingdissipation we shall consider this collision to be elastic. The length of the cable willbe considered negligibly small in comparison with the radius of orbit.The motion equations of the system with respect to the center of mass O in or-bital system of coordinates can be written in Lagrange form with Lagrange function

L = 12 � _x2 + _y2�+
(x _y � y _x) + 32
2x2; x2 + y2 � 1 (14)
where 
 is angular velocity of orbital motion, the axis OX is directed along radiusdrawn from the attraction center, the axis OY is directed along the tangent toorbit. By deriving formula (14) the normalization of a unit of mass and length wasperformed.If in (11) we put 
 = 0, we get the Lagrangian of a mathematical billiard incyclic domain. Considering 
 a small parameter we'll construct periodic trajectoriesof a dynamic billiard (14). From practical point of view two-unit trajectories of amathematical billiard are most important: the motion of satellites along such a
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trajectory leads to their collision. This form of accident should be stipulated bydesigning the cable system, selecting its turning velocity from the safety reason.The Lagrange equations for fucntion (14) are of the form

ddt ( _x� 
y)� 3
2x = 0; ddt ( _y +
x) = 0 (15)
The second equation (15) is integrated at once

_y +
x = C = const (16)
Putting equality (16) into the �rst from equation (15), we get

�x� 2
2x = C
 (17)
Using formulae (16) and (17) it is easy to construct a general solution of linearsystem (15)

x = � C2
 +A coshp2
t+B sinhp2
t;
y = D + 32Ct� Ap2 sinhp2
t� Bp2 coshp2
t

(18)
where A;B;C;D are arbitrary constants. Expressing the latter from initial condi-tions represent (8) with regard to (3) where k = 1; �1 = �=2 + �1 in the form

x (t) = cos s1�1 + 32
2�2��

��1� cos (s1 + �1)
�1 + 13
2�2�� 12
�1�2 sin (s1 + �1)

y (t) = sin s1 � �1� sin (s1 + �1)
�1� 16
2�2�+ 12
�1�2 cos (s1 + �1) :

(19)

where � = t � t1 and the terms of the third and highest orders of smallness arerejected.Time in 
ight determine from the condition x2 (t) + y2 (t) = 1. As a result ofsimple but laborious calculations we arrive at:
� = 2 cos �1�1

�1 + 
�1 sin �1
�+ 
2

�31
�2 sin2 �1 cos �1 � ��

� = 6 cos �1 cos2 s1 + 83 cos3 �1 �2 cos2 (s1 + �1)� sin2 (s1 + �1)�+
+2 cos3 �1 � 443 cos2 �1 cos s1 cos (s1 + �1) + 43 cos2 �1 sin s1 sin (s1 + �1)

(20)
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Putting the obtained expression into formula (19), we �nd

x2 = � cos (s1 + 2�1)� 2� sin (s1 + 2�1) cos �1 + 6�2 cos s1 cos2 �1�
��2 �cos (s1 + �1) �2 sin2 �1 cos (�1 � �)�+ 83 cos3 �1 cos (s1 + �1)��

�4�2 sin �1 cos2 �1 sin (s1 + �1)
_x (�) = ��1 cos (s1 + �1)� 2
 sin (s1 + �1)+
+�2�1 �6 cos �1 cos s1 � 4 cos2 � cos (s1 + �1)�

�2 sin �1 cos �1 sin (s1 + �1))
y2 = � sin (s1 + �1) + 2� cos �1 cos (s1 + 2�1)+

+�2 ��� 2 sin2 �1 cos �1� sin (s1 + �1)+
+43�2 cos3 �1 sin (s1 + �1) + 4�2 sin �1 cos2 �1 cos (s1 + �1)

_y (�) = ��1 sin (s1 + �1) + 2
 cos �1 cos (s1 + �1)+
+2�2�1 cos �1 sin (s1 + 2�1)

(21)

where � = 
=�1.To �nd the characteristics of the second unit of the broken line we use the formula
�2 =q( _x (�))2 + ( _y (�))2; x2 = cos s2; _x (�) = � sin (s2 � �2) (22)

Putting expression (21) into (22) we get
�2 = �1 � 32
�2 sin 2�1 sin 2 (s1 + �1) +O �
3� (23)
s2 = s1 + � + 2�1 � 2� cos "1 + �2	+O �
3�

�2 = �2 � �2 = �1 + �2� +O �
3�
� = 	� 32 sin 2�1 sin 2 (s1 + �1) tg (s1 + �1)�
�2 cos2 �1tg (s1 + �1) 2 + 2cos �1 cos (s1 + 2�1)cos (s1 + �1)

	 = 2tg (s1 + 2�1) cos2 �1 � 4sin �1 cos2 �1 cos (s1 + �1)cos (s1 + 2�1) �
� sin (s1 + �1)cos (s1 + 2�1)

�43 cos3 �1 + 2 sin2 �1 cos �1 +��
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By composing bifurcation equation (12), for two-unit billiard trajectory we put�1 = 0, then because of (23)
�2 = �1 +O ��3� ; s2 = s1 + � + 2�1 +O (�) ; �2 = �2� (s1; 0) +O ��3�
s3 = s1 + 4�1 +O (�) ; �3 = �1 + �2 (� (s1; 0) + � (s1 + �; 0)) +O ��3� (24)
Assuming in (24) �3 = �1 after reduction by 
2 we get an amplitude equation inthe form sin s1 cos s1 � tg s1 + 1 = 0 (25)
Equation (25) has the roots s1 = s� + �l; l 2 Z, where s� � 55o420. The sametrajectory of mathematical billiard generating periodical solutions of orbital bundlecorresponds to these roots. This trajectory lies on a line inclined to orbit line at anangle of �=2� s�.Note that a mathematical billiard trajectory generates a whole family of peri-odic solutions of the considered system whose parameter may be a value of energyintegral.Take into account the linearity of equations (15): change of independent variableby formula t = 
t0 preserves the form of these equations but with new value of theparameter 
0 = 
=
. Therefore, we restrain ourselves to the construction of such aperiodic solution for which �1 = 1, here 
 = �.We'll look for the solution of system (8) at �1 = 1. As initial values of variableswe take s01 = s�; �01 = �=2. For these values we calculate �2 �s01; �01; 1; ��. To this endwe have to compose expressions (18) and then solve the equation x2 (t)+y2 (t) = 1 todetermine the �rst collision moment, and provide boundary conditions by formulae(3) and (5). Then all these operations are repeated for the second time. As a resultwe get the relation s03 = �21 �s01; �01; 1; �� (26)
Comparing (26) with (24), we get the �rst step of iteration in he form

�11 = �01 � 14 �s03 � s01� (27)
To perform the second step of iterative procedure it is necessary [5] to calculate�2 �s01; �11; 1; ��, and then to consider the equation

�03 = �22 �s01; �11; 1; �� (28)
Allowing for (24), we have
s11 = s01 � 1� ��03 � �01� ; � = �2@	@s = 4�2 �cos 2s� � sec2 s�� � �14�2 (29)
Then the described procedure is repeated successively to determine by formula(27) and (29) the values �21; s21; �31; s31 and etc. the advantage of this method is inpossibility of error estimation at each step of iteration.
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The initial estimation may be determined from the comparison of diametraltrajectory with parameter s� and curve (19) with parameters

s1 = s�; �1 = 0; �1 = 1; 
 = �
Moment � = 2 corresponds to the tension of cable, here

x (2) = ��1 + 103 �2� cos s1 � 2� sin s1
y (2) = ��1 + 43�2

� sin s1 + 2� cos s1
(30)

Since for diametral trajectory the values of variables are expressed by the sameformulae (30), where � = 0, we can estimate the initial error as 2�.If we put � = 1 in formulae (19), we get the estimate of minimal distance betweenthe satellites in the form
r (1) =px2 (1) + y2 (1) = 12� (31)

Proceeding from (31), w conclude that for providing safe distance between thesatellites the d velocity of the cable turn must satisfy the inequality
� > 12 
l

2
d

where l is the length of the cable.
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