Elina R. GASIMOVA

STRONG SOLVABILITY OF THE FIRST BOUNDARY VALUE PROBLEM FOR DEGENERATE ELLIPTIC-PARABOLIC EQUATIONS OF SECOND ORDER

Abstract

In the work the first boundary value problem is considered for degenerate elliptic-parabolic equations of second order with, generally speaking, discontinuous coefficients. It's supposed that a matrix of senior coefficients satisfies parabolic Cordes condition with respect to space variables. A unique strong (almost everywhere) solvability is established for above mentioned problem in the corresponding weighted Sobolev space.

Introduction.

Let \mathbf{E}_{n} be an n-dimensional Euclidean space of points $x=\left(x_{1}, \ldots, x_{n}\right), \Omega$ be a bounded domain in \mathbf{E}_{n} with a boundary $\partial \Omega, \partial \Omega \in C^{2}, Q_{T}$ be a cylinder $\Omega \times(0, T)$, where $T \in(0, \infty)$.

Let's consider in Q_{T} the first boundary value problem

$$
\begin{gather*}
\mathcal{L} u=\sum_{i . j=1}^{n} a_{i j}(x, t) u_{i j}+\psi(x, t) u_{t t}-u_{t}=f(x, t), \tag{1}\\
\left.u\right|_{\Gamma\left(Q_{T}\right)}=0, \tag{2}
\end{gather*}
$$

where for $i, j=\overline{1, n} u_{i j}=\frac{\partial^{2} u(x, t)}{\partial x_{i} \partial x_{j}}, u_{i}=\frac{\partial u}{\partial x_{i}}, u_{i t}=\frac{\partial^{2} u}{\partial x_{i} \partial t}, \Gamma\left(Q_{T}\right)=(\partial \Omega \times[0, T]) \cup$ $(\Omega \times\{(x, t): t=0\})$ is a parabolic boundary of the domain Q_{T} and $\psi(x, t)=$ $\lambda(\rho) \omega(t) \varphi(T-t), \rho=\rho(x)=\operatorname{dist}(x, \partial \Omega)$.

Assume that the coefficients of the operator \mathcal{L} satisfy the following conditions: $\left\|a_{i j}(x, t)\right\|$ is a real symmetrical matrix with elements measurable in Q_{T} and for any $(x, t) \in Q_{T}$ and $\xi \in \mathbf{E}_{n}$ the following inequalities are true

$$
\begin{equation*}
\gamma|\xi|^{2} \leq \sum_{i, j=1}^{n} a_{i j}(x, t) \xi_{i} \xi_{j} s \leq \gamma^{-1}|\xi|^{2} \tag{3}
\end{equation*}
$$

where $\gamma \in(0,1]$ is a constant

$$
\begin{equation*}
\sigma=\sup _{Q_{T}}\left(\sum_{i, j=1}^{n} a_{i j}^{2}(x, t) / \sum_{i=1}^{n} a_{i i}(x, t)\right)^{2}<\frac{1}{n-\lambda^{2}}, \tag{4}
\end{equation*}
$$

where

$$
\lambda=\frac{\inf _{Q_{T}} \sum_{i=1}^{n} a_{i i}(x, t)}{\sup _{Q_{T}} \sum_{i=1}^{n} a_{i i}(x, t)},
$$

$$
\begin{gather*}
\lambda(\rho) \geq 0, \quad \lambda(\rho) \in C^{1}[0, \operatorname{diam} \Omega], \quad\left|\lambda^{\prime}(\rho)\right| \leq p \sqrt{\lambda(\rho)} \tag{5}\\
\omega(t) \geq 0, \quad \omega(t) \in C^{1}[0, T] \tag{6}\\
\varphi(z) \geq 0, \quad \varphi^{\prime}(z) \geq 0, \quad \varphi(z) \in C^{1}[0, T], \quad \varphi(0)=\varphi^{\prime}(0)=0 \\
\varphi(z) \geq \beta z \varphi^{\prime}(z) \tag{7}
\end{gather*}
$$

where p and β are positive constants.
The condition (4) is called Cordes condition and is taken within non-degenerate linear transformation in the following sense: the domain Q_{T} can be covered by finite number of domains Q^{1}, \ldots, Q^{M} so, that in each Q^{i} such a non-degenerate linear transformation of coordinates exists, that the matrix of senior coefficients of an image of the operator \mathcal{L} satisfies the condition (4) in image of $Q^{i}, \quad i=\overline{1, M}$.

The purpose of this work is to prove a unique strong (almost everywhere) solvability of the first boundary value problem (1)-(2) in the corresponding weighted Sobolev space for any $f(x, t) \in L_{2}\left(Q_{T}\right)$. Let's note that for similar equations with one space variable the first fundamental result in this direction was obtained by Keldysh [1]. We will also mention the works [2]-[4] where strong solvability of the boundary value problem (1)-(2) is established for equations with smooth coefficients. For the case when $\psi(x, t)=\varphi(T-t)$ the corresponding result was obtained in the work [5] for equations whose main part satisfies the parabolic Cordes condition. As to the second order elliptic and parabolic equations of non-divergence structure, satisfying the condition of Cordes type, we will mention the works [6]-[13] in this connection. We'd also note that the questions of weak solvability of the first boundary value problem for degenerate second order elliptic-parabolic equations of divergence structure were studied in the works [14]-[15]. As a base of our considerations in the given work we take the coercive estimate for operators of \mathcal{L}-type established in he work by the author [16].

1^{0}. Estimate for a model operator.

At first we introduce some denotations and definitions. Let $W_{2}^{1,0}\left(Q_{T}\right), W_{2}^{2,0}\left(Q_{T}\right)$, $W_{2}^{2,1}\left(Q_{T}\right)$ and $W_{2, \psi}^{2,2}\left(Q_{T}\right)$ be Banach spaces of functions $u(x, t)$ given on Q_{T} with finite norms

$$
\begin{gather*}
\|u\|_{W_{2}^{1,0}\left(Q_{T}\right)}=\left(\int_{Q_{T}}\left(u^{2}+\sum_{i=1}^{n} u_{i}^{2}\right) d x d t\right)^{1 / 2} \\
\|u\|_{W_{2}^{2,0}\left(Q_{T}\right)}=\left(\int_{Q_{T}}\left(u^{2}+\sum_{i=1}^{n} u_{i}^{2}+\sum_{i, j=1}^{n} u_{i j}^{2}\right) d x d t\right)^{1 / 2} \\
\|u\|_{W_{2}^{2,1}\left(Q_{T}\right)}=\|u\|_{W_{2}^{2,0}\left(Q_{T}\right)}+\left\|u_{t}\right\|_{L_{2}\left(Q_{T}\right)} \\
\|u\|_{W_{2, \psi}^{2,2}\left(Q_{T}\right)}=\left(\int_{Q}\left(u^{2}+\sum_{i=1}^{n} u_{i}^{2}+\sum_{i, j=1}^{n} u_{i j}^{2}+u_{t}^{2}+\psi^{2}(x, t) u_{t t}^{2}+\psi(x, t) \sum_{i=1}^{n} u_{i t}^{2}\right) d x d t\right)^{1 / 2} \tag{8}
\end{gather*}
$$

respectively.
Let $\stackrel{W}{W}_{2, \psi}^{2,2}\left(Q_{T}\right)$ be a subspace of $W_{2, \psi}^{2,2}\left(Q_{T}\right)$ that has a set of all functions from $C^{\infty}\left(\overline{Q_{T}}\right)$ vanishing on $\Gamma\left(Q_{T}\right)$ as a dense set. For $R>0, x^{0} \in \mathbf{E}_{n}$ we denote a ball $\left\{x:\left|x-x^{0}\right|<R\right\}$ by $B_{R}\left(x^{0}\right)$ and a cylinder $B_{R}\left(x^{0}\right) \cap(0, T)$ by $Q_{T}^{R}\left(x^{0}\right)$. Let $\overline{B_{R}}\left(x^{0}\right) \subset \Omega$. We say that $u(x, t) \in A\left(Q_{T}^{R}\left(x^{0}\right)\right)$ if $u(x, t) \in C^{\infty}\left(\bar{Q}_{T}^{R}\left(x^{0}\right)\right),\left.u\right|_{t=0}=0$ and supp $u \subset \bar{Q}_{T}^{\rho}\left(x^{0}\right)$ for some $\rho \in(0, R)$.

Everywhere further the notation $C(\cdot)$ means that a positive constant C depends only on the contents of brackets.

Our goal is to establish a unique strong solvability of the boundary value problem (1)(2) by means of coercive estimate obtained in the work [16] and method of continuation by parameter. For this purpose we have to prove independently the solvability of the problem mentioned for some model equation from the class under consideration. As a model operator we take the following one

$$
\mathcal{L}_{0}=\Delta+\varphi(T-t) \frac{\partial^{2}}{\partial t^{2}}-\frac{\partial}{\partial t},
$$

where $\Delta=\sum_{i=1}^{n} \frac{\partial^{2}}{\partial x_{i}^{2}}$ is a Laplace operator and fucntion $\varphi(z)$ satisfies the conditions (7).
Everywhere further we limit ourselves to consideration of the most interesting case, when $\varphi(z)>0$ at $z>0$. If $\varphi(z) \equiv 0$, then the equation (1) is parabolic and the corresponding result on solvability of the first boundary value problem was obtained in [8]. But if $\varphi(z)=0$ at $z \in\left[0, z^{0}\right]$, then the solution of the problem (1)-(2) can be obtained by assembling of the solution $u(x, t)$ of the problem in a cylinder $Q_{z^{0}}$ and the solution $v(x, t)$ of the first boundary value problem for parabolic equation in a cylinder $\Omega \times\left(z^{0}, T\right)$ with boundary conditions $v\left(x, z^{0}\right)=u\left(x, z^{0}\right),\left.\quad v\right|_{\partial \Omega \times\left[z^{0}, T\right]}=0$.

Let's fix an arbitrary $\varepsilon \in(0, T)$ and introduce a fucntion $\varphi_{\varepsilon}(z)$ in the following way: $\varphi_{\varepsilon}(z)=\varphi(\varepsilon)-\frac{\varphi^{\prime}(\varepsilon) \varepsilon}{m}+\frac{\varphi^{\prime}(\varepsilon)}{m \varepsilon^{m-1}} z^{m}$ at $z \in[0, \varepsilon), \varphi_{\varepsilon}(z)=\varphi(z)$ at $z \in[\varepsilon, T]$, where $m=\frac{2}{\beta}$. It's easy to see that $\varphi_{\varepsilon}(z) \in C^{1}[0, T]$. Let's show that for $z \in[0, T]$

$$
\begin{equation*}
\varphi_{\varepsilon}(z) \geq \frac{1}{2} \varphi(z) \tag{9}
\end{equation*}
$$

It's enough to prove (9) for $z \in[0, \varepsilon)$. It's clear that due to monotonicity of $\varphi(z)$ the inequality (9) will be fulfilled if

$$
\varphi(\varepsilon)-\frac{\varphi^{\prime}(\varepsilon) \varepsilon}{m} \geq \frac{1}{2} \varphi(\varepsilon)
$$

or $\varphi(\varepsilon) \geq \frac{2}{m} \varphi^{\prime}(\varepsilon) \varepsilon$.
But the last estimate is true because of (7). Hence the inequality (9) has been proved.
Without losing of generality we consider $m>1$. Then

$$
\begin{equation*}
q_{\varepsilon}(T)=\sup _{[0, T]} \varphi_{\varepsilon}^{\prime}(z) \leq q(T)=\sup _{[0, T]} \varphi^{\prime}(z) \tag{10}
\end{equation*}
$$

Indeed, $q_{\varepsilon}(T) \leq \max \left\{\sup _{[0, \varepsilon]}(\varepsilon)\left(\frac{z}{\varepsilon}\right)^{m-1}, q(T)\right\}=\max \left\{\varphi^{\prime}(\varepsilon), q(T)\right\}=q(T)$.
We say, that $u(x, t) \in B\left(Q_{T}^{R}\left(x^{0}\right)\right)$, if $u(x, t) \in A\left(Q_{T}^{R}\left(x^{0}\right)\right)$ and, besides, $\left.u\right|_{t=T}=$ $\left.u_{t}\right|_{t=T}=0$.

Let's define the operator

$$
\mathcal{L}_{\varepsilon}=\Delta+\varphi_{\varepsilon}(T-t) \frac{\partial^{2}}{\partial t^{2}}-\frac{\partial}{\partial t} .
$$

[E.R.Gasimova]

Lemma 1. If $\varphi(z)$ satisfies the conditions (7), then there exists such $T_{1}(\varphi, n)$, that at $T \leq T_{1}$ for any fucntion $u(x, t) \in B\left(Q_{T}^{R}\left(x^{0}\right)\right)$ the estimate is true:

$$
\begin{gather*}
\int_{Q_{T}^{R}\left(x^{0}\right)}\left(\sum_{i, j=1}^{n} u_{i j}^{2}+u_{t}^{2}+\varphi_{\varepsilon}^{2}(T-t) u_{t t}^{2}+\varphi_{\varepsilon}(T-t) \sum_{i=1}^{n} u_{i t}^{2}\right) d x d t \leq \\
\leq(1+2(n+1) q(T)) \int_{Q_{T}^{R}\left(x^{0}\right)}\left(\mathcal{L}_{\varepsilon} u\right)^{2} d x d t \tag{11}
\end{gather*}
$$

Proof. For simplicity we'll write Q instead of $Q_{T}^{R}\left(x^{0}\right)$

$$
\begin{align*}
& \int_{Q}\left(\mathcal{L}_{\varepsilon} u\right)^{2} d x d t \geq \int_{Q} \sum_{i, j=1}^{n} u_{i j}^{2} d x d t+\int_{Q} \varphi_{\varepsilon}^{2}(T-t) u_{t t}^{2} d x d t+\int_{Q} u_{t}^{2} d x d t+ \\
& \quad+2 \int_{Q} \varphi_{\varepsilon}(T-t) u_{t t} \Delta u d x d t-2 \int_{Q} \varphi_{\varepsilon}(T-t) u_{t t} u_{t} d x d t \tag{12}
\end{align*}
$$

But on the other hand

$$
\begin{align*}
& 2 \int_{Q} \varphi_{\varepsilon}(T-t) u_{t t} \Delta u d x d t-2 \int_{Q} \sum_{i=1}^{n}\left(\varphi_{\varepsilon}(T-t) u_{i i}\right)_{t} u_{t} d x d t \\
& \left(\text { as }\left.u_{i i}\right|_{t=0}=\left.u_{i i}\right|_{t=T}=0\right)=2 \int_{Q} \varphi_{\varepsilon}^{\prime}(T-t) \sum_{i=1}^{n} u_{i i} u_{t} d x d t- \\
& -2 \int_{Q} \varphi_{\varepsilon}(T-t) \sum_{i=1}^{n} u_{i i t} u_{t} d x d t \geq-q_{\varepsilon}(T) \int_{Q} \sum_{i, j=1}^{n} u_{i j}^{2} d x d t- \\
& \quad-n q_{\varepsilon}(T) \int_{Q} u_{t}^{2} d x d t+2 \int_{Q} \varphi_{\varepsilon}(T-t) \sum_{i=1}^{n} u_{i t}^{2} d x d t \tag{13}
\end{align*}
$$

and similarly

$$
\begin{gather*}
-2 \int_{Q} \varphi_{\varepsilon}(T-t) u_{t t} u_{t} d x d t=-\int_{Q} \varphi_{\varepsilon}^{\prime}(T-t) u_{t}^{2} d x d t+ \\
+\varphi_{\varepsilon}(T) \int_{B} u_{t}^{2}(x, 0) d x \quad\left(\text { as }\left.u_{t}\right|_{t=T}=0\right) \geq-q_{\varepsilon}(T) \int_{Q} u_{t}^{2} d x d t . \tag{14}
\end{gather*}
$$

Owing to $(7) q(T) \rightarrow 0$ at $T \rightarrow 0$. Choosing T_{1} so small that $(n+1) q\left(T_{1}\right) \leq \frac{1}{2}$, we have at $T \leq T_{1}$

$$
\frac{1}{1-(n+1) q(T)} \leq 1+2(n+1) q(T)
$$

Using this and (10), and proving like in lemma 1, from the work [16], we get the estimate (11) on the base of (12)-(14).

Lemma has been proved.
Lemma 2. Let $\varphi(z)$ satisfy the conditions (7), \mathcal{L} at $\varepsilon>0$ have the same meaning as in lemma 1. Then at $T \leq T_{2}(\varphi, n, \Omega)$ for any function $u(x, t) \in \dot{W}_{2, \varphi_{\varepsilon}}^{2,2}\left(Q_{T}\right)$ the estimate is true:

$$
\begin{equation*}
\|u\|_{W_{2, \varphi_{\varepsilon}}^{2,2}\left(Q_{T}\right)} \leq C_{1}(\varphi, n, \Omega)\left\|\mathcal{L}_{\varepsilon} u-\mu u\right\|_{L_{2}\left(Q_{T}\right)} \tag{15}
\end{equation*}
$$

where $\mu=\frac{1}{T} ; W_{2, \varphi_{\varepsilon}}^{2,2}\left(Q_{T}\right)$ is a Banach space of functions $u(x, t)$ given on Q_{T} with the finite norm defined by the equality (8), where function ψ is replaced by $\varphi_{\varepsilon} ; \dot{W}_{2, \varphi_{\varepsilon}}^{2,2}\left(Q_{T}\right)$ is a completion of a set of all functions from $C^{\infty}\left(\bar{Q}_{T}\right)$ vanishing on ∂Q_{T} with respect to a norm of the space $W_{2, \varphi_{\varepsilon}}^{2,2}\left(Q_{T}\right)$.

Proof. It's enough to prove the lemma for functions $u(x, t) \in C^{\infty}\left(\bar{Q}_{T}\right),\left.u\right|_{\partial Q_{T}=0}$.
Let's note that according to the above mentioned $q\left(T_{1}\right) \leq 1$. Then reasoning as in the proof of coercive estimate [16], we derive from (11) the existence of such $T_{3}(\varphi, n, \Omega) \leq T_{1}$, that if $T \leq T_{3}$, then for any function $v(x, t) \in C^{\infty}\left(\bar{Q}_{T}\right),\left.v\right|_{\Gamma\left(Q_{T}\right)}=0,\left.v\right|_{t=T}=\left.v_{t}\right|_{t=T}=0$ the estimate is true:

$$
\begin{equation*}
\|v\|_{W_{2, \varphi_{\varepsilon}}^{2,2}\left(Q_{T}\right)} \leq c_{2}(\varphi, n, \Omega)\left(\left\|\mathcal{L}_{\varepsilon} v\right\|_{L_{2}\left(Q_{T}\right)}+\|v\|_{L_{2}\left(Q_{T}\right)}\right) \tag{16}
\end{equation*}
$$

Let $T \leq \frac{T_{3}}{2}$. We take $R=\frac{T}{4}$, and let $u(x, t) \in C^{\infty}\left(\bar{Q}_{T}\right),\left.u\right|_{\partial Q_{T}}=0$. Let's consider such a function $\zeta(t) \in C^{\infty}[0, T]$, that $\zeta(t)=1$ at $t \in[0, T-R], \zeta(t)=0$ at $t \in\left[T-\frac{R}{2}, T\right]$, $0 \leq \zeta(t) \leq 1$ and

$$
\begin{equation*}
\left|\zeta^{\prime}(t)\right| \leq \frac{C_{3}}{R}, \quad\left|\zeta^{\prime \prime}(t)\right| \leq \frac{C_{3}}{R^{2}} \tag{17}
\end{equation*}
$$

Putting in (16) $v(x, t)=u(x, t) \zeta(t)$ and taking into account (17), we get

$$
\begin{gather*}
\|u\|_{W_{2, \varphi_{\varepsilon}}^{2,2}\left(Q_{T-R}\right)} \leq C_{2}\left(\left\|\mathcal{L}_{\varepsilon}(u \zeta)\right\|_{L_{2}\left(Q_{T}\right)}+\|u\|_{L_{2}\left(Q_{T}\right)}\right) \leq \\
\leq C_{2}\left(\left\|\mathcal{L}_{\varepsilon}(u)\right\|_{L_{2}\left(Q_{T}\right)}+\left(\frac{C_{3}}{R}+1\right)\|u\|_{L_{2}\left(Q_{T}\right)}\right)+ \\
\quad+\frac{2 C_{3}}{R}\left\|\varphi_{\varepsilon} u_{t}\right\|_{L_{2}\left(Q_{T}\right)}+\frac{C_{3}}{R^{2}}\left\|\varphi_{\varepsilon} u\right\|_{L_{2}\left(Q_{T}\right)} \tag{18}
\end{gather*}
$$

From the conditions (7) it follows, that $\sup _{[0, T]} \varphi(z) \leq C_{4}(\varphi) \cdot T$. So, taking into consideration, that $\sup _{[0, T]} \varphi_{\varepsilon}(z)=\sup _{[0, T]} \varphi(z)$, we conclude

$$
\begin{equation*}
\left\|\varphi_{\varepsilon} u\right\|_{L_{2}\left(Q_{T}\right)} \leq C_{4} T\|u\|_{L_{2}\left(Q_{T}\right)} \tag{19}
\end{equation*}
$$

On the other hand for any $\alpha^{\prime}>0$ the interpolation inequality takes place

$$
\begin{equation*}
\left\|\varphi_{\varepsilon} u_{t}\right\|_{L_{2}\left(Q_{T}\right)} \leq C_{4} T \alpha^{\prime}\left\|\varphi_{\varepsilon} u_{t t}\right\|_{L_{2}\left(Q_{T}\right)}+\frac{3}{\alpha^{\prime}}\|u\|_{L_{2}\left(Q_{T}\right)} \tag{20}
\end{equation*}
$$

Indeed, let's fix an arbitrary α^{\prime} and consider for $\nu>0$ the integral

$$
k=\int_{Q_{T}}\left[v \varphi_{\varepsilon}^{2}(T-t) u_{t t}+\frac{1}{\nu} u\right]^{2} d x d t
$$

It's clear, that $k \geq 0$. Simultaneously

$$
\begin{gathered}
k=v^{2} \int_{Q_{T}} \varphi_{\varepsilon}^{4}(T-t) u_{t t}^{2} d x d t+\frac{1}{\nu^{2}} \int_{Q_{T}} u^{2} d x d t+ \\
+2 \int_{Q_{T}} \varphi_{\varepsilon}^{2}(T-t) u_{t t} u d x d t \leq c_{4}^{2} T^{2} \nu^{2} \int_{Q_{T}} \varphi_{\varepsilon}^{2}(T-t) u_{t t}^{2} d x d t+
\end{gathered}
$$

[E.R.Gasimova]

$$
+\frac{1}{\nu^{2}} \int_{Q_{T}} u^{2} d x d t-2 \int_{Q_{T}} \varphi_{\varepsilon}^{2}(T-t) u_{t}^{2} d x d t+4 \int_{Q_{T}} \varphi_{\varepsilon}(T-t) \varphi_{\varepsilon}^{\prime}(T-t) u u_{t} d x d t
$$

Besides, using the fact, that $q(T) \leq 1$ as well as the inequality (10), we get

$$
\begin{align*}
& 4 \int_{Q_{T}} \varphi_{\varepsilon}(T-t) \varphi_{\varepsilon}^{\prime}(T-t) u u_{t} d x d t \leq \int_{Q_{T}} \varphi_{\varepsilon}^{2}(T-t) u_{t}^{2} d x d t+ \\
+ & 4 \int_{Q_{T}}\left(\varphi_{\varepsilon}^{\prime}(T-t)\right)^{2} u^{2} d x d t \leq \int_{Q_{T}} \varphi_{\varepsilon}^{2}(T-t) u_{t}^{2} d x d t+4 \int_{Q_{T}} u^{2} d x d t \tag{21}
\end{align*}
$$

From (20)-(21) it follows, that

$$
\int_{Q_{T}} \varphi_{\varepsilon}^{2}(T-t) u_{t}^{2} d x d t \leq c_{4}^{2} T^{2} v^{2} \int_{Q_{T}} \varphi_{\varepsilon}^{2}(T-t) u_{t t}^{2} d x d t+\left(\frac{1}{\nu^{2}}+4\right) \int_{Q_{T}} u^{2} d x d t
$$

Now it's enough to put $\nu=\min \left\{\alpha^{\prime}, 1\right\}$ to prove the inequality (20).
Using (19) and (20) in (18) we conclude that for any $\alpha^{\prime}>0$ the inequality is true

$$
\begin{gather*}
\|u\|_{W_{2, \varphi_{\varepsilon}}^{2,2}\left(Q_{T-R}\right)} \leq C_{2}\left\|\mathcal{L}_{\varepsilon}(u)\right\|_{L_{2}\left(Q_{T}\right)}+8 \alpha^{\prime} C_{2} C_{3} C_{4}\|u\|_{W_{2, \varphi_{\varepsilon}}^{2,2}\left(Q_{T}\right)}+ \\
+\frac{C_{5}(\varphi, n, \Omega)}{\alpha^{\prime} R}\|u\|_{L_{2}\left(Q_{T}\right)} \tag{22}
\end{gather*}
$$

Let's fix an arbitrary $\alpha>0$ and choose $\alpha^{\prime}=\frac{\alpha}{8 C_{2} C_{3} C_{4}}$. Then from (22) it follows, that

$$
\begin{equation*}
\|u\|_{W_{2, \varphi_{\varepsilon}}^{2,2}\left(Q_{T-R}\right)} \leq C_{2}\left\|\mathcal{L}_{\varepsilon}(u)\right\|_{L_{2}\left(Q_{T}\right)}+\alpha\|u\|_{W_{2, \varphi_{\varepsilon}}^{2,2}\left(Q_{T}\right)}+\frac{C_{6}(\varphi, n, \Omega)}{\alpha T^{2}}\|u\|_{L_{2}\left(Q_{T}\right)} \tag{23}
\end{equation*}
$$

Similarly we can show that if

$$
\begin{gathered}
Q^{\prime}=\Omega \times(T-2 R, T+2 R), Q^{\prime \prime}=\Omega \times(T-R, T+R), \\
S\left(Q^{\prime}\right)=\partial \Omega \times[T-2 R, T+2 R]
\end{gathered}
$$

then for any function $\omega(x, t) \in C^{\infty}\left(\bar{Q}^{\prime}\right),\left.\omega\right|_{S\left(Q^{\prime}\right)}=0$ at any $\alpha>0$ the estimate is true

$$
\begin{equation*}
\|\omega\|_{W_{2, \varphi_{\varepsilon}}^{2,2}\left(Q^{\prime \prime}\right)} \leq C_{2}\left\|\mathcal{L}_{\varepsilon} \omega\right\|_{L_{2}\left(Q^{\prime}\right)}+\alpha\|\omega\|_{W_{2, \varphi_{\varepsilon}}^{2,2}\left(Q^{\prime}\right)}+\frac{C_{7}(\varphi, n, \Omega)}{\alpha T}\|\omega\|_{L_{2}\left(Q_{T}\right)} \tag{24}
\end{equation*}
$$

Let $Q_{+}^{\prime}=\Omega \times(T-2 R, T), Q_{-}^{\prime}=\Omega \times(T, T+2 R), Q_{+}^{\prime \prime}=\Omega \times(T-R, T)$. We extend the fucntion $u(x, t)$ in an odd way and $\varphi_{\varepsilon}(T-t)$ in an even way through the hyperplane $t=T$ from Q_{+}^{\prime} to Q_{-}^{\prime}. We denote the extended functions again by $u(x, t)$ and $\varphi_{\varepsilon}(T-t)$ respectively. Putting in (24) $\omega=u$ and taking into account the equality

$$
\|u\|_{W_{2, \varphi_{\varepsilon}}^{2,2}\left(Q^{\prime \prime}\right)} \leq \sqrt{2}\|u\|_{W_{2, \varphi_{\varepsilon}}^{2,2}\left(Q_{+}^{\prime}\right)}
$$

and similar equalities for norms $\|u\|_{W_{2, \varphi_{\varepsilon}}^{2,2}\left(Q^{\prime}\right)},\|u\|_{L_{2}\left(Q^{\prime}\right)}$ and $\left\|\mathcal{L}_{\varepsilon} \omega\right\|_{L_{2}\left(Q^{\prime}\right)}$, we get

$$
\begin{equation*}
\|u\|_{W_{2, \varphi_{\varepsilon}}^{2,2}\left(Q_{+}^{\prime \prime}\right)} \leq C_{2}\left\|\mathcal{L}_{\varepsilon} u\right\|_{L_{2}\left(Q_{+}^{\prime}\right)}+\alpha\|u\|_{W_{2, \varphi_{\varepsilon}}^{2,2}\left(Q_{+}^{\prime}\right)}+\frac{C_{7}}{\alpha T}\|u\|_{L_{2}\left(Q_{+}^{\prime}\right)} \tag{25}
\end{equation*}
$$

Uniting (23), (25) and choosing the corresponding α, we conclude

$$
\begin{equation*}
\|u\|_{W_{2, \varphi_{\varepsilon}}^{2,2}\left(Q_{+}\right)}^{2} \leq C_{8}(\varphi, n, \Omega)\left(\left\|\mathcal{L}_{\varepsilon} u\right\|_{L_{2}\left(Q_{T}\right)}^{2}+\frac{1}{T^{2}}\|u\|_{L_{2}\left(Q_{T}\right)}^{2}\right) \tag{26}
\end{equation*}
$$

On the other hand recalling that $\mu=\frac{1}{T}$, we have

$$
\begin{align*}
& \int_{Q_{T}}\left(\mathcal{L}_{\varepsilon} u-\mu u\right)^{2} d x d t=\left\|\mathcal{L}_{\varepsilon} u\right\|_{L_{2}\left(Q_{T}\right)}^{2}+\mu^{2}\|u\|_{L_{2}\left(Q_{T}\right)}^{2}- \\
& -2 \mu \int_{Q_{T}} u \mathcal{L}_{\varepsilon} u d x d t=\left\|\mathcal{L}_{\varepsilon} u\right\|_{L_{2}\left(Q_{T}\right)}^{2}+\mu^{2}\|u\|_{L_{2}\left(Q_{T}\right)}^{2}+k_{1} \tag{27}
\end{align*}
$$

Besides,

$$
\begin{gather*}
k_{1}=-2 \mu \int_{Q_{T}} u\left(\Delta u+\varphi_{\varepsilon}(T-t) u_{t t}-u_{t}\right) d x d t=2 \mu \int_{Q_{T}} \sum_{i=1}^{n} u_{i}^{2} d x d t- \\
\quad-2 \mu \int_{Q_{T}} \varphi_{\varepsilon}(T-t) u u_{t t} d x d t+\mu \int_{Q_{T}}\left(u^{2}\right)_{t} d x d t \geq \\
\geq 2 \mu \int_{Q_{T}} \varphi_{\varepsilon}(T-t) u_{t}^{2} d x d t-2 \mu \int_{Q_{T}} \varphi_{\varepsilon}^{\prime}(T-t) u u_{t} d x d t . \tag{28}
\end{gather*}
$$

Let's show that for $z \in(0, T)$ the inequality is true

$$
\begin{equation*}
\varphi_{\varepsilon}(z) \geq \beta z \varphi_{\varepsilon}^{\prime}(z) . \tag{29}
\end{equation*}
$$

Owing to (7) it's enough to prove (29) only for $z \in(0, \varepsilon)$. But for such $z(29)$ is equivalent to the inequality

$$
\varphi(\varepsilon)-\frac{\varphi^{\prime}(\varepsilon) \varepsilon}{m} \geq \frac{\varphi^{\prime}(\varepsilon) z^{m}}{m \varepsilon^{m-1}}, \quad \text { where } \quad m=\frac{2}{\beta} .
$$

But the last inequality is true, if the estimate takes place

$$
\begin{equation*}
\varphi(\varepsilon) \geq \frac{2}{m} \varphi^{\prime}(\varepsilon) \varepsilon \tag{30}
\end{equation*}
$$

Now it is sufficient to note that (30) is fulfilled owing to (7). Hence from (28), (29) and (10) we obtain

$$
\begin{gather*}
k_{1} \geq-\frac{\mu}{2} \int_{Q_{T}} \frac{\left[\varphi_{\varepsilon}^{\prime}(T-t)\right]^{2}}{\varphi_{\varepsilon}(T-t)} u^{2} d x d t \geq \frac{\mu}{2 \beta} \int_{Q_{T}} \frac{\varphi_{\varepsilon}^{\prime}(T-t)}{T-t} u^{2} d x d t \geq \\
\geq \frac{-\mu q(T) T}{2 \beta} \int_{Q_{T}} \frac{u^{2}}{(T-t)^{2}} d x d t . \tag{31}
\end{gather*}
$$

We apply the Hardy inequality according to which

$$
\begin{equation*}
\int_{Q_{T}} \frac{u^{2}}{(T-t)^{2}} d x d t \leq 4 \int_{Q_{T}} u_{t}^{2} d x d t . \tag{3}
\end{equation*}
$$

Then from (27), (31) and (32) we conclude

$$
\begin{equation*}
\left\|\mathcal{L}_{\varepsilon} u\right\|_{L_{2}\left(Q_{T}\right)}^{2}+\mu^{2}\|u\|_{L_{2}\left(Q_{T}\right)}^{2} \leq\left\|\mathcal{L}_{\varepsilon} u-\mu u\right\|_{L_{2}\left(Q_{T}\right)}^{2}+\frac{2 q(T)}{\beta}\|u\|_{W_{2, \varphi_{\varepsilon}}^{2,2}\left(Q_{T}\right)}^{2} \tag{33}
\end{equation*}
$$

Now we'll choose such a small $T_{4}(\varphi, n, \Omega, \beta)$, that $q\left(T_{4}\right) \leq \frac{\beta}{4 C_{8}}$ and fix $T_{2}=\min \left\{\frac{T_{3}}{2}, T_{4}\right\}$.

[E.R.Gasimova]

Then from (26) and (33) the needed estimate (15) follows.
Lemma has been proved.

2^{0}. Solvability of the problem for a model equation.

Let's consider the operator

$$
\mathcal{L}_{0}^{\prime}=\Delta+\psi(x, t) \frac{\partial^{2}}{\partial t^{2}}-\frac{\partial}{\partial t},
$$

where $\Delta=\sum_{i=1}^{n} \frac{\partial^{2}}{\partial x_{i}^{2}}$ is Laplace operator.
Lemma 3. If $\psi(x, t)$ satisfies the conditions (5)-(7) then at $T \leq T_{5}(\psi) ; \tau \in[0,1]$ for any fucntion $u(x, t) \in A\left(Q_{T}^{R}\left(x^{0}\right)\right)$ the estimate is true

$$
\begin{gather*}
\int_{Q_{T}^{R}\left(x^{0}\right)}\left(\sum_{i, j=1}^{n} u_{i j}^{2}+u_{t}^{2}+\psi^{2}(x, t) u_{t t}^{2}+\psi(x, t) \sum_{i=1}^{n} u_{i t}^{2}\right) d x d t \leq \\
\leq\left(1+S_{2} D(T)\right) \int_{Q_{T}^{R}\left(x^{0}\right)}\left(\mathcal{L}_{0}^{\prime} u-\frac{\tau}{T} u\right)^{2} d x d t \tag{34}
\end{gather*}
$$

where $S_{2}=S_{2}(\psi, n)$ is some constant

$$
\begin{gathered}
D(T)=q_{1}(T)+q(T), \\
q_{1}(T)=\sup _{t \in[0, T]} \varphi(t), \quad q(T)=\sup _{t \in[0, T]} \varphi^{\prime}(t) .
\end{gathered}
$$

Proof. It's enough to consider the case of $\tau>0$. We denote $\frac{\tau}{T}$ by μ^{\prime}. We have

$$
\begin{gather*}
I_{1}=\int_{Q}\left(\mathcal{L}_{0}^{\prime} u-\mu^{\prime} u\right)^{2} d x d t=\int_{Q}\left(\mathcal{L}_{0}^{\prime} u\right)^{2} d x d t+ \\
+\left(\mu^{\prime}\right)^{2} \int_{Q} u^{2} d x d t-2 \mu^{\prime} \int_{Q} u \Delta u d x d t+2 \mu^{\prime} \int_{Q} u u_{t} d t-2 \mu^{\prime} \int_{Q} \psi(x, t) u_{t t} u d x d t . \tag{35}
\end{gather*}
$$

In [16] the estimate has been obtained

$$
\begin{gathered}
\int_{Q}\left(\sum_{i, j=1}^{n} u_{i j}^{2}+u_{t}^{2}+\psi^{2}(x, t) u_{t t}^{2}+\psi(x, t) \sum_{i=1}^{n} u_{i t}^{2}\right) d x d t \leq \\
\leq(1+D(T) \times S) \int_{Q}\left(\mathcal{L}_{0}^{\prime} u\right)^{2} d x d t
\end{gathered}
$$

where $S(\psi, n)$ is some constant.
We can rewrite it in the following way

$$
\int_{Q}\left(\mathcal{L}_{0}^{\prime} u\right)^{2} d x d t \geq \frac{1}{1+S D(T)} \int_{Q}\left(\sum_{i, j=1}^{n} u_{i j}^{2}+u_{t}^{2}+\psi^{2} u_{t t}^{2}+\psi \sum_{i=1}^{n} u_{i t}^{2}\right) d x d t
$$

But

$$
\frac{1}{1+S D(T)}=1-\frac{S D(T)}{1+S D(T)} \geq 1-S D(T)
$$

and

$$
\int_{Q}\left(\mathcal{L}_{0}^{\prime} u\right)^{2} d x d t \geq(1-S D(T)) \int_{Q}\left(\sum_{i, j=1}^{n} u_{i j}^{2}+u_{t}^{2}+\psi^{2} u_{t t}^{2}+\psi \sum_{i=1}^{n} u_{i t}^{2}\right) d x d t .
$$

We will use the obtained estimate to estimate the first addend in (35).
For the third addend in (35) we've

$$
-2 \mu^{\prime} \int_{Q} u \Delta u d x d t=2 \mu^{\prime} \int_{Q} \sum_{i=1}^{n} u_{i}^{2} d x d t \geq 0,
$$

and for the fourth one

$$
2 \mu^{\prime} \int_{Q} u u_{t} d x d t=\mu^{\prime} \int_{B} u^{2}(x, T) d x \geq 0,
$$

Let's consider the fifth addend in (35) in detail:

$$
\begin{gather*}
-2 \mu^{\prime} \int_{Q} \psi(x, t) u_{t t} u d x d t=-2 \mu^{\prime} \int_{Q} \varphi(T-t) \lambda(x) \omega(t) u u_{t t} d x d t= \\
=-2 \mu^{\prime} \int_{Q} \psi(x, t) u_{t}^{2} d x d t-2 \mu^{\prime} \int_{Q} \varphi^{\prime}(T-t) \lambda(x) \omega(t) u u_{t} d x d t+ \\
+2 \mu^{\prime} \int_{Q} \varphi(T-t) \lambda(x) \omega^{\prime}(t) u u_{t} d x d t \geq \\
\geq-2 \mu^{\prime} \int_{Q} \varphi^{\prime}(T-t) \lambda(x) \omega(t)|u|\left|u_{t}\right| d x d t- \\
-2 \mu^{\prime} \int_{Q} \varphi(T-t) \lambda(x)\left|\omega^{\prime}(t)\right||u|\left|u_{t}\right| d x d t \geq \\
\geq-\mu^{\prime} C_{9}(\lambda) C_{10}(\omega) \alpha q(T) \int_{Q} u_{t}^{2} d x d t-\frac{\mu^{\prime}}{\alpha} C_{9} C_{10} q(T) \int_{Q} u^{2} d x d t- \\
-\mu^{\prime} C_{9} C_{11}(\omega) \alpha q_{1}(T) \int_{Q} u_{t}^{2} d x d t-\frac{\mu^{\prime}}{\alpha} C_{9} C_{11} q_{1}(T) \int_{Q} u^{2} d x d t \tag{36}
\end{gather*}
$$

Let's take $C_{12}=\max \left\{C_{10}, C_{11}\right\}, \quad C_{13}=C_{9} C_{12}$.
Then continuing our reasoning we obtain from (36)

$$
\begin{equation*}
-2 \mu^{\prime} \int_{Q} \psi(x, t) u_{t t} u d x d t \geq-\mu^{\prime} C_{13} \alpha D(T) \int_{Q} u_{t}^{2} d x d t-\frac{\mu^{\prime}}{2} C_{13} D(T) \int_{Q} u^{2} d x d t . \tag{37}
\end{equation*}
$$

Let $T \leq T_{5}(\psi)$ be so small, that $C_{13} D(T) \leq 1$.
Then taking all the above mentioned into account we get from (35)

$$
I_{1} \geq(1-S D(T)) \int_{Q}\left(\sum_{i, j=1}^{n} u_{i j}^{2}+u_{t}^{2}+\psi^{2} u_{t t}^{2}+\psi \sum_{i=1}^{n} u_{i t}^{2}\right) d x d t+
$$

$$
+\left(\mu^{\prime}\right)^{2} \int_{Q} u^{2} d x d t-\mu^{\prime} C_{13} \alpha D \int_{Q} u_{t}^{2} d x d t-\frac{\mu^{\prime}}{\alpha} \int_{Q} u^{2} d x d t .
$$

If we put $\alpha=\frac{1}{\mu^{\prime}}$, then

$$
\begin{gathered}
I_{1} \geq(1-S D(T)) \int_{Q}\left(\sum_{i, j=1}^{n} u_{i j}^{2}+u_{t}^{2}+\psi^{2}(x, t) u_{t t}^{2}+\psi(x, t) \sum_{i=1}^{n} u_{i t}^{2}\right) d x d t- \\
-C_{13} D(T) \int_{Q} u_{t}^{2} d x d t=\left(1-S_{1} D(T)\right) \int_{Q}\left(\sum_{i, j=1}^{n} u_{i j}^{2}+u_{t}^{2}+\psi^{2} u_{t t}^{2}+\psi \sum_{i=1}^{n} u_{i t}^{2}\right) d x d t
\end{gathered}
$$

where $S_{1}=S+C_{13}$.
Whence,

$$
\begin{aligned}
& \int_{Q}\left(\sum_{i, j=1}^{n} u_{i j}^{2}+u_{t}^{2}+\psi^{2} u_{t t}^{2}+\psi u_{i t}^{2}\right) d x d t \leq \\
& \leq \frac{1}{1-S_{1} D(T)} I_{1}=I_{1}+\frac{S_{1} D(T)}{1-S_{1} D(T)} I_{1}
\end{aligned}
$$

Let T_{5} be so small, that $S_{1} D(T) \leq \frac{1}{2}$. Then

$$
\int_{Q}\left(\sum_{i, j=1}^{n} u_{i j}^{2}+u_{t}^{2}+\psi^{2} u_{t t}^{2}+\psi u_{i t}^{2}\right) d x d t \leq\left(1+2 S_{1} D(T)\right) I_{1}=\left(1+S_{2} D(T)\right) I_{1} .
$$

So we get the needed estimate (34).
Lemma has been proved.
Lemma 4. If coefficients of the operator \mathcal{L} satisfy the conditions (3)-(7), then for any fucntion $u(x, t) \in C^{\infty}\left(\bar{Q}_{T}\right),\left.u\right|_{\Gamma\left(Q_{T}\right)}=0$ at $T \leq T_{6}(\gamma, \sigma, \psi, n, \Omega)$ and any $\tau \in[0,1]$ the estimate is true

$$
\|u\|_{W_{2, \psi}^{2,2}\left(Q_{T}\right)} \leq C_{14}(\gamma, \sigma, \psi, n)\left\|\mathcal{L} u-\frac{\tau}{T} u\right\|_{L_{2}\left(Q_{T}\right)}
$$

Proof is similar to the proof of coercive estimate for the operator \mathcal{L} in the work [16].
Further we will denote the operators $\mathcal{L}_{0}-\mu$ and $\mathcal{L}_{\varepsilon}-\mu$ by M_{0} and M_{ε} respectively. Let's denote $\min \left\{T_{9}, T_{6}\right\}$ by T^{0}.

Theorem 1. If the fucntion $\varphi(z)$ satisfies the conditions (7), then at $T \leq T^{0}$ the first boundary value problem

$$
\begin{gather*}
M_{0} u=f(x, t), \quad(x, t) \in Q_{T} \tag{38}\\
\left.u\right|_{\Gamma\left(Q_{T}\right)}=0 \tag{39}
\end{gather*}
$$

has a unique strong solution in the space $\dot{W}_{2, \varphi}^{2,2}\left(Q_{T}\right)$ for any fucntion $f(x, t) \in L_{2}\left(Q_{T}\right)$.
Proof. First assume that $\mathrm{f}(x, t) \in C^{\infty}\left(\bar{Q}_{T}\right)$. Let $v(x, t)$ be classical solution of the first boundary-value problem

$$
\begin{gathered}
\Delta v-v_{t}=f(x, t), \quad(x, t) \in Q_{T} \\
\left.v\right|_{\Gamma\left(Q_{T}\right)}=0
\end{gathered}
$$

It's clear that this solution exists and owing to [17] $v(x, t) \in W_{2}^{2,2}\left(Q_{T}\right)$, and

$$
\begin{equation*}
\|u\|_{W_{2}^{2,2}(Q)} \leq C_{15}(n, \Omega, f), \tag{40}
\end{equation*}
$$

where $W_{2}^{2,2}\left(Q_{T}\right)$ is a Banach space of functions given on Q_{T} with finite norms (8), where $\varphi \equiv 1$. As at $\varepsilon \in(0, T)$ the fucntion $\varphi_{\varepsilon}(z) \leq 1$, we conclude from (40) that

$$
\begin{equation*}
\|v\|_{W_{2, \varphi_{e}}^{2,2}\left(Q_{T}\right)} \leq C_{15} \tag{41}
\end{equation*}
$$

We denote by $\dot{W}_{2}^{2,2}\left(Q_{T}\right)$ the completion of a set of all functions from $C^{\infty}\left(\bar{Q}_{T}\right)$ vanishing on ∂Q_{T} with respect to the norm of the space $W_{2}^{2,2}\left(Q_{T}\right)$; by $u^{\varepsilon}(x, t)$ - the strong (almost everywhere) solution of Dirichlet problem

$$
\begin{gathered}
M_{\varepsilon} u^{\varepsilon}=f(x, t), \quad(x, t) \in Q_{T} \\
\left(u^{\varepsilon}(x, t)-v(x, t)\right) \in \dot{W}_{2}^{2,2}\left(Q_{T}\right) .
\end{gathered}
$$

This solution exists at every $\varepsilon>0$ owing to [18]. It's clear, that $\left(u^{\varepsilon}(x, t)-v(x, t)\right) \in$ $\dot{W}_{2, \varphi_{e}}^{2,2}\left(Q_{T}\right)$. Taking into account that $\left.v\right|_{\Gamma\left(Q_{T}\right)}=0$ and the inequality (9), we get that $u^{\varepsilon}(x, t) \in \dot{W}_{2, \varphi_{e}}^{2,2}\left(Q_{T}\right)$.

Besides, for $F_{\varepsilon}(x, t)=M_{\varepsilon} v$ taking into account (41), we have

$$
\begin{equation*}
\left\|F_{\varepsilon}\right\|_{L_{2}\left(Q_{T}\right)} \leq C_{16}(n, \Omega, T, f) \tag{42}
\end{equation*}
$$

From lemma 2 it follows that

$$
\left\|u^{\varepsilon}-v\right\|_{W_{2, q_{e}}^{2,2}\left(Q_{T}\right)} \leq C_{1}\left(\|f\|_{L_{2}\left(Q_{T}\right)}+\left\|F_{\varepsilon}\right\|_{L_{2}\left(Q_{T}\right)}\right) .
$$

Then from (41), (42) and (9) we conclude

$$
\begin{equation*}
\left\|u^{\varepsilon}\right\|_{W_{2, \varphi}^{2,2}\left(Q_{T}\right)} \leq C_{17}\|u\|_{W_{2, \varphi_{\varphi}}^{2,2}\left(Q_{T}\right)} \leq C_{18}(\varphi, n, \Omega, T, f) \tag{43}
\end{equation*}
$$

Hence, a family of functions $\left\{u^{\varepsilon}(x, t)\right\}$ is bounded by norm of the space $\dot{W}_{2, \varphi}^{2,2}\left(Q_{T}\right)$ uniformly with respect to ε. So this family is weakly compact in $\dot{W}_{2, \varphi}^{2,2}\left(Q_{T}\right)$.

And this, in particular, means that there exist such sequences of positive numbers $\left\{\varepsilon_{k}\right\}, \lim _{k \rightarrow \infty} \varepsilon_{k}=0$ and a fucntion $u_{0}(x, t) \in \dot{W}_{2, \varphi}^{2,2}\left(Q_{T}\right)$, that for any $h(x, t) \in C^{\infty}\left(\bar{Q}_{T}\right)$

$$
\begin{equation*}
\lim _{k \rightarrow \infty}\left(M_{0} u^{\varepsilon_{k}}, h\right)=\left(M_{0} u_{0}, h\right), \tag{44}
\end{equation*}
$$

where $(a, b)=\int_{Q_{T}} a b d x d t$. But

$$
\begin{equation*}
\left(M_{0} u^{\varepsilon_{k}}, h\right)=\left(\left(M_{0}-M_{\varepsilon_{k}}\right) u^{\varepsilon_{k}}, h\right)+\left(M_{\varepsilon_{k}} u^{\varepsilon_{k}}, h\right)=\left(\left(M_{0}-M_{\varepsilon_{k}}\right) u^{\varepsilon_{k}}, h\right)+(f, h) . \tag{45}
\end{equation*}
$$

Besides, taking into account (9) and (43) we have

$$
\begin{gathered}
J(k)=\left|\left(M_{0}-M_{\varepsilon_{k}}\right) u^{\varepsilon_{k}}, h\right| \leq\left\|\left(\varphi-\varphi_{\varepsilon_{k}}\right) u_{t t}^{\varepsilon_{t}}\right\|_{L_{2}\left(Q\left(\varepsilon_{k}\right)\right)} \times \\
\times\|h\|_{L_{2}\left(Q\left(\varepsilon_{k}\right)\right)} \leq 3\left\|u^{\varepsilon_{k}}\right\|_{W_{2, \varphi_{\varepsilon_{k}}}^{2,2}\left(Q_{T}\right)}\|h\|_{L_{2}\left(Q\left(\varepsilon_{k}\right)\right)} \leq 3 C_{18}\|h\|_{L_{2}\left(Q\left(\varepsilon_{k}\right)\right)},
\end{gathered}
$$

where $Q(\varepsilon)=\Omega \times(T-\varepsilon, T)$. Thus, we have that

$$
\begin{equation*}
J(k) \underset{k \rightarrow \infty}{\longrightarrow} 0 \tag{46}
\end{equation*}
$$

From (44)-(46) it follows that ($\left.M_{0} u_{0}, h\right)=(f, h)$, and $M_{0} u_{0}=f(x, t)$ almost everywhere in Q_{T}.

Now let $f(x, t) \in L_{2}\left(Q_{T}\right)$. In this case such a sequence $\left\{f_{m}(x, t)\right\}, m=1,2, \ldots$ exists, that $f_{m}(x, t) \in C^{\infty}\left(\bar{Q}_{T}\right)$ and $\lim _{m \rightarrow \infty}\left\|f_{m}-f\right\|_{L_{2}\left(Q_{T}\right)}=0$. For all natural m we will consider a sequence $\left\{u_{m}(x, t)\right\}$ of strong solutions of the first boundary value problems
[E.R.Gasimova]

$$
\begin{gathered}
M_{0} u_{m}=f_{m}(x, t), \quad(x, t) \in Q_{T} \\
\left.u_{m}\right|_{\Gamma\left(Q_{t}\right)}=0
\end{gathered}
$$

On the base of above mentioned we say that for any m the fucntion $u_{m}(x, t)$ exists. Using the estimate of the previous lemma for the operator \mathcal{L}_{0} at $\tau=1$ we get

$$
\begin{equation*}
\left\|u_{m}\right\|_{W_{2, \varphi}^{2,2}\left(Q_{T}\right)} \leq C_{20}\left\|f_{m}\right\|_{L_{2}\left(Q_{T}\right)} \leq C_{19}(\varphi, n, \Omega, f) \tag{47}
\end{equation*}
$$

Thus, the sequence $\left\{u_{m}(x, t)\right\}$ is weakly compact in $\dot{W}_{2, \varphi}^{2,2}\left(Q_{T}\right)$, i.e. there exist such a subsequence $\left\{m_{k}\right\} \in \mathbf{N}, \lim _{k \rightarrow \infty} m_{k}=\infty$, and a fucntion $u(x, t) \in \dot{W}_{2, \varphi}^{2,2}\left(Q_{T}\right)$, that for any $h(x, t) \in C^{\infty}\left(\bar{Q}_{T}\right) \lim _{k \rightarrow \infty}\left(M_{0} u_{m_{k}}, h\right)=\left(M_{0} u, h\right)$.

But

$$
\lim _{k \rightarrow \infty}\left(M_{0} u_{m_{k}}, h\right)=\lim _{k \rightarrow \infty}\left(f_{m_{k}}, h\right)=(f, h)
$$

That is why $\left(M_{0} u, h\right)=(f, h)$, and $M_{0} u=f(x, t)$ almost everywhere in Q_{T}. Therefore, the existence of strong solution of the problem (38)-(39) has been proved. The uniqueness of the solution follows from lemma 4.

Theorem has been proved.

$\mathbf{3}^{\mathbf{0}}$. Strong solvability of the first boundary value problem.

Let's replace the condition (3) by a weaker one

$$
\begin{equation*}
\inf _{Q T} \sum_{i=1}^{n} a_{i i}(x, t)=\gamma^{\prime}>0 \tag{3ı}
\end{equation*}
$$

Theorem 2. If coefficients of the operator \mathcal{L} satisfy the conditions (3') and (4)-(7), then at $T \leq T^{0}$ the first boundary value problem (1)-(2) has a unique strong solution in the space $\dot{W}_{2, \psi}^{2,2}\left(Q_{T}\right)$ for any $f(x, t) \in L_{2}\left(Q_{T}\right)$. And the following estimate is true for the solution $u(x, t)$

$$
\begin{equation*}
\|u\|_{W_{2, \psi}^{2,2}\left(Q_{T}\right)} \leq C_{20}\|f\|_{L_{2}\left(Q_{T}\right)} \tag{48}
\end{equation*}
$$

Proof. The estimate (48) and uniqueness of the solution follow from the coercive estimate in the work [16]. Let's prove the existence of the solution. We will consider a family of operators $L(\tau)=(1-\tau) M_{0}+\tau \mathcal{L}$ for $\tau \in[0,1]$. Let's show that the set E of points τ for which the problem

$$
\begin{gather*}
L^{(\tau)} u=f(x, t),(x, t) \in Q_{T}, \tag{49}\\
\left.u\right|_{\Gamma\left(Q_{T}\right)}=0, \tag{50}
\end{gather*}
$$

has a unique strong solution in $\dot{W}_{2, \psi}^{2,2}\left(Q_{T}\right)$ for any $f(x, t) \in L_{2}\left(Q_{T}\right)$, is nonempty and simultaneously open and closed with respect to $[0,1]$. Whence, $E=[0,1]$ and, in particular, the problem (49)-(50) is solvable at $\tau=1$, i.e. when $\mathcal{L}^{(1)}=\mathcal{L}$.

The nonemptiness of the set E follows directly from theorem 1 . Let's prove its openness. Let $\tau_{0} \in E$, and $\varepsilon>0$ will be chosen later. We will show that the problem (49)-(50) is solvable for all $\tau \in[0,1]$ such that $\left|\tau-\tau_{0}\right|<\varepsilon$. The problem (49)-(50) can be rewritten in the equivalent form

$$
\begin{gather*}
\mathcal{L}^{\left(\tau_{0}\right)} u=f(x, t)-\left(\mathcal{L}^{(\tau)}-\mathcal{L}^{\left(\tau_{0}\right)}\right) u, \quad(x, t) \in Q_{T} \\
u(x, t) \in \dot{W}_{2, \psi}^{2,2}\left(Q_{T}\right) \tag{51}
\end{gather*}
$$

Let's consider an arbitrary fucntion $v(x, t) \in \dot{W}_{2, \psi}^{2,2}\left(Q_{T}\right)$ and the first boundary value problem

$$
\begin{gather*}
\mathcal{L}^{\left(\tau_{0}\right)} u=f(x, t)-\left(\mathcal{L}^{(\tau)}-\mathcal{L}^{\left(\tau_{0}\right)}\right) v(x, t), \quad(x, t) \in Q_{T} \\
u(x, t) \in \dot{W}_{2, \psi}^{2,2}\left(Q_{T}\right) . \tag{52}
\end{gather*}
$$

It's clear, that $\left(\mathcal{L}^{(\tau)}-\mathcal{L}^{\left(\tau_{0}\right)}\right) v(x, t) \in L_{2}\left(Q_{T}\right)$. Let's note that for all operators $\mathcal{L}^{(\tau)}$ the conditions (3') and (4) are fulfilled with constants $\gamma_{(\tau)}^{\prime} \geq \min \left\{\gamma^{\prime}, n\right\}$ and $\sigma_{(\tau)} \leq \sigma$ respectively.

Let's prove it. We denote coefficients of senior derivatives of the operator $\mathcal{L}^{(\tau)}$ with respect to space variables by $a_{i j}^{(\tau)}(x, t), \quad i, j=\overline{1, n}$. Let

$$
\begin{gathered}
\bar{r}=\sup _{Q_{T}} \frac{\sum_{i, j=1}^{n} a_{i j}^{2}(x, t)}{g^{2}(x, t)}, r^{(\tau)}=\frac{\sum_{i, j=1}^{n}\left[a_{i j}^{(\tau)}(x, t)\right]^{2}}{\left[\sum_{i=1}^{n} a_{i i}^{(\tau)}(x, t)\right]^{2}} \\
\bar{r}^{(\tau)}=\sup _{Q_{T}} r^{(\tau)}(x, t), \text { where } g(x, t)=\sum_{i=1}^{n} a_{i i}(x, t) .
\end{gathered}
$$

Taking into account (4) and the fact, that for any operator of \mathcal{L}-type the inequality $\bar{r} \geq \frac{1}{n}$ is true, we conclude

$$
\begin{gather*}
r^{(\tau)}(x, t)=\frac{n(1-\tau)^{2}+2 \sigma(1-\tau) g(x, t)+\tau^{2} \sum_{i, j=1}^{n} a_{i j}^{2}(x, t)}{n^{2}(1-\tau)^{2}+2 \tau(1-\tau) n g(x, t)+\tau^{2} g^{2}(x, t)} \leq \\
\leq \frac{1}{n}+\frac{\tau^{2}\left(\bar{r}-\frac{1}{n}\right) g^{2}(x, t)}{n^{2}(1-\tau)^{2}+2 \tau(1-\tau) n g(x, t)+\tau^{2} g(x, t)} \leq \\
\leq \frac{1}{n}+\frac{\tau^{2}\left(\bar{r}-\frac{1}{n}\right) g^{2}(x, t)}{\tau^{2} g^{2}(x, t)}=\bar{r} . \tag{53}
\end{gather*}
$$

Let $\lambda^{-}=\inf _{Q_{T}} g(x, t), \quad \lambda^{+}=\sup _{Q_{T}} g(x, t), \bar{\lambda}(\tau)=\inf _{Q_{T}} \sum_{i=1}^{n} a_{i i}^{(\tau)}(x, t) / \sup _{Q_{T}} \sum_{i=1}^{n} a_{i i}^{(\tau)}(x, t)$.
It's easy to see that $\bar{\lambda}(\tau)=\frac{(1-\tau) n+\tau \lambda^{-}}{(1-\tau) n+\tau \lambda^{+}}$.
But on the other hand

$$
\bar{\lambda}^{\prime}(\tau)=\frac{\lambda^{-}-\lambda^{+}}{\left[(1-\tau) n+\tau \lambda^{+}\right]^{2}} \leq 0
$$

That's why

$$
\begin{equation*}
\bar{\lambda}(\tau) \geq \bar{\lambda}(1)=\lambda \tag{54}
\end{equation*}
$$

From (53) and (54) it follows that

$$
\sigma_{(\tau)}=\bar{r}^{(\tau)}-\frac{1}{n-\bar{\lambda}^{2}(\tau)} \leq \bar{r}-\frac{1}{n-\lambda^{2}}=\sigma
$$

and our statement has been proved.

Now let's note that from the above mentioned and lemma 4 it follows that at $T \leq T^{0}$ for any $\tau \in[0,1]$ and any fucntion $u(x, t) \in \dot{W}_{2, \psi}^{2,2}\left(Q_{T}\right)$ the estimate is true

$$
\begin{equation*}
\|u\|_{W_{2, \psi}^{2,2}\left(Q_{T}\right)} \leq C_{20}\left\|\mathcal{L}^{(\tau)} u\right\|_{L_{2}\left(Q_{T}\right)} \tag{55}
\end{equation*}
$$

On the base of the made assumption the boundary value problem (52) has a strong solution $u(x, t)$ for any $v(x, t) \in \dot{W}_{2, \psi}^{2,2}\left(Q_{T}\right)$. Thus, the operator \mathcal{P} from $\dot{W}_{2, \psi}^{2,2}\left(Q_{T}\right)$ into $\dot{W}_{2, \psi}^{2,2}\left(Q_{T}\right)$ is defined, and $u=\mathcal{P} v$. It is compressing when ε is chosen in the corresponding way. We will show that. Let $v^{(i)}(x, t) \in \dot{W}_{2, \psi}^{2,2}\left(Q_{T}\right), u^{(i)}=\mathcal{P} v^{(i)}, i=1,2$.

Then, taking into account the equality $\mathcal{L}^{(\tau)}-\mathcal{L}^{\left(\tau_{0}\right)}=\left(\tau-\tau_{0}\right)\left(\mathcal{L}-M_{0}\right)$ we conclude that $u^{(1)}(x, t)-u^{(2)}(x, t)$ is a strong solution of the first boundary value problem

$$
\begin{gathered}
\mathcal{L}^{\left(\tau_{0}\right)}\left(u^{(1)}-u^{(2)}\right)=\left(\tau-\tau_{0}\right)\left(\mathcal{L}-M_{0}\right)\left(v^{(1)}-v^{(2)}\right) \\
\left(u^{(1)}-u^{(2)}\right) \in \dot{W}_{2, \psi}^{2,2}\left(Q_{T}\right)
\end{gathered}
$$

Using (55) we get

$$
\begin{equation*}
\left\|u^{(1)}-u^{(2)}\right\|_{W_{2, \psi}^{2,2}\left(Q_{T}\right)} \leq C_{20}\left|\tau-\tau_{0}\right|\left\|\left(\mathcal{L}-M_{0}\right)\left(v^{(1)}-v^{(2)}\right)\right\|_{L_{2}\left(Q_{T}\right)} \tag{56}
\end{equation*}
$$

On the other hand

$$
\left\|\left(\mathcal{L}-M_{0}\right)\left(v^{(1)}-v^{(2)}\right)\right\|_{L_{2}\left(Q_{T}\right)} \leq C_{21}(\mathcal{L}, n, \Omega, T)\left\|v^{(1)}-v^{(2)}\right\|_{W_{2, \psi}^{2,2}\left(Q_{T}\right)}
$$

Thus,

$$
\left\|u^{(1)}-u^{(2)}\right\|_{W_{2, \psi}^{2,2}\left(Q_{T}\right)} \leq C_{20} C_{21} \varepsilon\left\|v^{(1)}-v^{(2)}\right\|_{W_{2, \psi}^{2,2}\left(Q_{T}\right)}
$$

Now choosing $\varepsilon=\frac{1}{2 C_{20} C_{21}}$ we prove that the operator \mathcal{P} is compressing. From here it follows that it has a stationary point $u=\mathcal{P} u$, that is a strong solution of the boundary value problem (51), and, consequently, of (49)-(50). Therefore, the openness of the set E has been proved. Now let's show that the set E is closed. Let $\tau_{k} \in E, k=1,2, \ldots ; \lim _{k \rightarrow \infty} \tau_{k}=\tau$. For natural k we denote by $u_{[k]}(x, t)$ a strong solution of the first boundary value problem

$$
\mathcal{L}^{\left(\tau_{k}\right)} u_{[k]}=f(x, t), \quad(x, t) \in Q_{T} ;\left.\quad u_{[k]}\right|_{\Gamma\left(Q_{T}\right)}=0
$$

According to (55) we have

$$
\begin{equation*}
\left\|u_{\left[k_{l}\right]}\right\|_{W_{2, \psi}^{2,2}\left(Q_{T}\right)} \leq C_{20}\|f\|_{L_{2}\left(Q_{T}\right)} \tag{57}
\end{equation*}
$$

So, the family of functions $\left\{u_{[k]}(x, t)\right\}$ is weakly compact in $\dot{W}_{2, \psi}^{2,2}\left(Q_{T}\right)$, i.e. there exists such a subsequence of natural numbers $\left\{k_{l}\right\}, \lim _{l \rightarrow \infty} k_{l}=\infty$, and a fucntion $u(x, t) \in$ $\dot{W}_{2, \psi}^{2,2}\left(Q_{T}\right)$, that for any $\psi(x, t) \in C^{\infty}\left(\bar{Q}_{T}\right)$

$$
\begin{equation*}
\left.\lim _{l \rightarrow \infty}\left(\mathcal{L}^{\left(\tau_{k_{l}}\right.}\right)_{\left.u_{\left[k_{l}\right]}, \psi\right)}\right)\left(\mathcal{L}^{(\tau)} u, \psi\right) \tag{58}
\end{equation*}
$$

But

$$
\begin{equation*}
\left(\mathcal{L}^{(\tau)} u_{\left[k_{l}\right]}, \psi\right)=\left(\left(\mathcal{L}^{(\tau)}-\mathcal{L}^{\left(\tau_{k_{l}}\right)}\right) u_{\left[k_{l}\right]}, \psi\right)+(f, \psi)=J_{1}(l)+(f, \psi) \tag{59}
\end{equation*}
$$

Moreover, taking into account (56) and (57) we have

$$
\begin{align*}
\left|J_{1}(l)\right| \leq & \left|\tau-\tau_{k_{l}}\right|\left|\left(\mathcal{L}-M_{0}\right) u_{\left[k_{l}\right]}, \psi\right| \leq\left|\tau-\tau_{k_{l}}\right| C_{21}\left\|u_{\left[k_{l}\right]}\right\|_{W_{2, \psi}^{2,2}\left(Q_{T}\right)} \times \\
& \times\|\psi\|_{L_{2}\left(Q_{T}\right)} \leq C_{20} C_{21}\left|\tau-\tau_{k_{l}}\right|\|f\|_{L_{2}\left(Q_{T}\right)}\|\psi\|_{L_{2}\left(Q_{T}\right)} \tag{60}
\end{align*}
$$

From (60) it follows that $\lim _{l \rightarrow \infty} J_{1}(l)=0$. Now from (58) and (59) we can conclude that $\left(\mathcal{L}^{(\tau)} u, \psi\right)=(f, \psi)$, i.e. $\mathcal{L}^{(\tau)} u=f(x, t)$ almost everywhere in Q_{T}. Thereby it is shown that $\tau \in E$, i.e. the set E is closed.

Theorem has been proved.
The author expresses her deep gratitude to her supervisor corr. member of NASA, prof. I.T.Mamedov for his valuable advice and useful discussion of the results.

References

[1]. Keldysh M.V. On some cases of degeneration of elliptic type equations on the boundary of domain. DAN SSSR, 1951, v.77, No2, pp.181-183. (Russian)
[2]. Franciosi M. Sue di un'equazione elliptico-parabolica a coefficienti discontinui // Boll. Un. Mat. Ital., 1983, v.6, No2, pp.63-75.
[3]. Franciosi M. Un teorema di esistenza ed unicita per la soluzione di un'equazione elliptico-parabolica, a coefficienti discontinui, in forma non divergenza // Boll. Un. Mat. Ital., 1985, v.6, No4-B, pp.253-263.
[4]. Kohn J.J., Nirenberg L. Degenerate elliptic-parabolic equations of second order. Comm. Pure Appl. Math., 1967, 20, pp.797-872.
[5]. Mamedov I.T., Huseynov G.T. On the solvability of the first boundary value problem for degenerate elliptic-parabolic equations of the second order. Dokl. AN Azerb., 2000, v.LVI, No1-3, pp.30-39. (Russian)
[6]. Talenti G. Sopra una classe di equazioni ellipiche a coefficienti misurableili. Ann. Mat. Pura Appl., 1965, 69, pp.285-304.
[7]. Alkhutov Yu.A., Mamedov I.T. Some properties of the solutions of the first boundary value problem for parabolic equations with discontinuous coefficients. Dokl AN SSSR, 284, No1, pp.11-16. English transl. in Soviet Math. Dokl, 1985, 32, No2, pp.343-347.
[8]. Alkhutov Yu.A., Mamedov I.T. The first boundary value problem for nondivergence second order parabolic equations with discontinuous coefficients. Matem. Sbornik, 1986, 12, pp.477-500; English Transl. in Math. USSR Sbornik, 1988, 59, No2, pp.471-495.
[9]. Mamedov I.T., Agayeva R.A. The first boundary value problem for non-divergent linear second order elliptic equations of Cordes type. Trans. Nat. Acad. Sci. Azerb., 2002, 1, pp.150-167.
[10]. Fiorito G. Un Contributo ala risoluzione del problema di Cauchy-Dirichlet. Matematiche, 1980, 35, pp.53-70.
[11]. Iftimie V. Sur le probleme di Dirichlet pour des equations aux coeffciients measurable. Rev. Roum. Pures et appl., 1968, v.13, pp.1353-1360.
[12]. Wen G.C., Tain Mao-ying. Initial-oblique derivative problem for nonlinear parabolic equations with measurable coefficients. Comm. in Nonlinear Sci. \& Numer., Simu., 1998, 2, pp.109-113.
[13]. Wen G.C. Initial-mixed boundary value problems for parabolic equations of second order with measurable coefficients in a higher dimensional domain. Proccedings of the Second ISAAK Congress, v.I, Kluwer Academic Publishers, Dordrecht-Boston-London, 2000.
[14]. Slamanova Sh.Y. On solvability of the first boundary value problem for the second order degenerate elliptic-parabolic equations. Proc. Inst. Math. Mech. NAt. Acad. Sci. Azerb., 2001, 15, pp.132-145.
[E.R.Gasimova]
[15]. Slamanova Sh.Y. Existence and uniqueness of a weak solution of the first boundary value problem for a class of degenerate elliptico-parabolic equations of the second order // Vestnik BGU, ser. fiz. mat. nauk, 2002, No1, pp.106-112. (Russian)
[16]. Gasimova E.R. Coercive estimate for degenerated elliptic-parabolic operators of the second order. Proceedings of IMM Of NAS of Azerb., 2003, v.XIX (XXVII), pp.59-74.
[17]. Ladyzhenskaya O.A., Solonnokov V.A., Ural'tseva N.N. Linear and quasilinear equations of parabolic type. M.: "Nauka", 1967, English transl. by Amer. Math. Soc., Providence, R.I., 1968.
[18]. Hardy G.H., Littlewrod J.E., Polya G. Inequalities. 2-nd ed., Cambridge Univ. Press., Combridge, 1952.

Elina R. Gasimova

Institute of Mathematics and Mechanics of NAS of Azerbaijan.
9, F.Agayev str., AZ1141, Baku, Azerbaijan.
Tel.: (99412) 4394720 (off.)
Received January 19, 2004; Revised June 30, 2004.
Translated by author.

