Sabir S. MIRZOYEV, Ayten T. ALIYEVA

ON SOLVABILITY OF ONE CLASS OF BOUNDARY VALUE PROBLEM FOR A FOURTH ORDER OPERATOR-DIFFERENTIAL EQUATION

Abstract

The theorem about correct and univalent solvability of a class of boundary value problem for operator-differential equation with variable coefficients was obtained. These conditions are expressed only by the coefficients of the given equation.

In separable Hilbert space H consider the boundary value problem

$$P\left(\frac{d}{dt}\right)u \equiv \frac{d^{4}u(t)}{dt^{4}} + \rho(t)A^{4}u(t) + \sum_{j=0}^{4} A_{4-j}(t)u^{(j)}(t) = f(t),$$

$$t \in R_{+} = (0, \infty),$$

$$u(0) = u'(0) = 0,$$
(1)

where f(t), u(t) are vector functions with values from H,

$$\rho(t) = \begin{cases} \alpha^4, t \in (0, 1), \\ \beta^4, t \in (1, \infty), \end{cases}$$

 $\alpha > 0, \ \beta > 0$ and operators A and $A_i(t)$ $(j = \overline{0,4})$ satisfy the following conditions.

- 1. A is a normal reversible operator, whose spectrum is contained in angular sector $S_{\varepsilon} = \{\lambda : |\arg \lambda| \leq \varepsilon\}, \ 0 \leq \varepsilon < \frac{\pi}{4};$
- **2.** The operators $B_{j}\left(t\right)=A_{j}\left(t\right)A^{-j}\left(j=\overline{0,4}\right)$ are bounded in H and $B_{j}\left(t\right)\in L_{\infty}\left(R_{+};L\left(H\right)\right)$.

Here and later on the derivatives are understood in the sense of distributions, and L(H) is a space of linear bounded operators acting in H.

From condition 1) it follows, that the operator A is represented in the form: A = UC = CU, where C is positive-definite self-adjoint operator, and U is a unitary operator in H. Let's consider the scale of Hilbert spaces generated by the operator C, i.e.

$$H_{\gamma} = D\left(C^{\gamma}\right), (x, y)_{\gamma} = \left(C^{\gamma}x, C^{\gamma}y\right), x, y \in H_{\gamma}, \gamma \geq 0.$$

Then, let's denote by $L_2(R_+; H)$ the Hilbert space of vector-functions f(t), defined in R_+ with values from H for which

$$||f||_{L_2(R_+;H)} = \left(\int_0^\infty ||f(t)||^2 dt\right)^2 < \infty.$$

[S.S.Mirzoyev, A.T.Aliyeva

Let's denote by $W_2^4(R_+; H)$ the Hilbert space (see [1])

$$W_2^4(R_+; H) = \{u : u^{(4)} \in L_2(R_+; H), A^4u \in L_2(R_+; H)\}$$

with norm

$$||u||_{W_2^4(R_+;H)} = \left(||u^{(4)}||_{L_2}^2 + ||A^4u||_{L_2}^2 \right)^{\frac{1}{2}}.$$

Let

$$\mathring{W}_{2}^{4}(R_{+};H) = \{u : u \in W_{2}^{4}(R_{+};H), u(0) = u'(0) = 0\}.$$

It follows from the theorem on traces [1], that $\mathring{W}_{2}^{4}(R_{+}; H)$ is a complete subspace of the space $W_{2}^{4}(R_{+}; H)$.

The spaces $L_2(R; H)$ and $W_2^4(R; H)$, where $R = (-\infty, \infty)$ are defined similarly.

Definition 1. If at any $f(t) \in L_2(R_+; H)$ there exists the vector-function $u(t) \in W_2^4(R_+; H)$, satisfying the equation (1) almost everywhere, the boundary conditions (2) in the sense

$$\lim_{t \to +0} \|u(t)\|_{7/2} = 0, \ \lim_{t \to +0} \|u'(t)\|_{5/2} = 0$$

and for which the estimate

$$||u||_{W_2^4} \le const \, ||f||_{L_2}$$

is true, then we'll call the problem (1), (2) regularly solvable.

Let's find the conditions of regular solvability of problem (1), (2) in the given work.

Let's note, that at $\rho(t) \equiv 1$ (i.e. $\alpha = \beta = 1$) this problem was investigated in the paper [2] and at $\alpha \neq \beta$ and A is a self-adjoint operator in [3].

Let's write the problem (1), (2) in the form of the equation

$$Pu = P_0u + P_1u = f.$$

where

$$f \in L_2(R_+; H), u \in \mathring{W}_2^2(R_+; H)$$

and

$$P_0u = u^{(4)} + A^4u, P_1u = \sum_{j=0}^4 A_{4-j}(t) u^{(j)}(t), \ u \in \mathring{W}_2^4(R_+; H).$$

It holds

Theorem 1. Let the condition 1) be fulfilled then, the operator $P_0: \mathring{W}_2^4(R_+; H) \to L_2(R_+; H)$ is isomorphism.

 $\frac{Proceedings \ of \ IMM \ of \ NAS \ of \ Azerbaijan}{[On \ solvability \ of \ one \ class \ of \ bound...]}$

Proof. It's easy to see, that the equation $P_0u=0$ has only a zero solution. Let's show that the image of the space operator P_0 coincides with the space $L_2(R; H)$. Evidently, the vector-functions

$$u_{1}(t) = \frac{1}{2\pi} \int_{-\infty}^{\infty} \frac{1}{\lambda^{4}E + \alpha^{4}A^{4}} \left(\int_{0}^{\infty} f(s) e^{-i\lambda(t-s)} ds \right) d\lambda$$

and

$$u_{2}(t) = \frac{1}{2\pi} \int_{-\infty}^{\infty} \frac{1}{\lambda^{4}E + \beta^{4}A^{4}} \left(\int_{0}^{\infty} f(s) e^{-i\lambda(t-s)} ds \right) d\lambda$$

satisfy respectively, the equation $u^{(4)} + \alpha^4 A^4 u = f$ and $u^{(4)} + \beta^4 A^4 = f$ almost everywhere in R_{+} . Let's show, that $u_{1}(t), u_{2}(t) \in W_{2}^{4}(R; H)$. By Plansharel theorem

$$\begin{aligned} \left\| u^{(4)} \right\|_{L_{2}(R;H)} &= \left\| \lambda^{4} \hat{u}_{1} \left(\lambda \right) \right\|_{L_{2}(R_{+};H)} = \left\| \lambda^{4} \left(\lambda^{4} E + \alpha^{4} A^{4} \right)^{-1} \hat{f} \left(\lambda \right) \right\|_{L_{2}(R;H)} \leq \\ &\leq \sup_{\lambda \in R} \left| \lambda^{4} \left(\lambda^{4} + \alpha^{4} A^{4} \right)^{-1} \right| \left\| f \right\|_{L_{2}(R;H)} \leq \\ &\leq \sup_{\lambda \in R} \left(\sup_{\mu \in \sigma(A)} \left| \lambda^{4} \left(\lambda^{4} + \alpha^{4} \mu^{4} \right)^{-1} \right| \right) \left\| f \right\|_{L_{2}(R;H)} \leq \left\| f \right\|_{L_{2}(R;H)}. \end{aligned}$$

It's analogously proved, that $A^4u_1 \in L_2(R; H)$, i.e. $u_1(t) \in W_2^4(R; H)$. By the same way it is proved, that $u_2(t) \in W_2^4(R;H)$. Let's denote the contractions of vector-functions $u_1(t)$ and $u_2(t)$ on [0;1] and $(1;\infty)$, by $\psi_1(t)$ and $\psi_2(t)$, respectively. It is evident, that $\psi_{1}\left(t\right)\in W_{2}^{4}\left(\left[0;1\right];H\right),\psi_{2}\left(t\right)\in W_{2}^{4}\left(\left(1;\infty\right);H\right),$ and $\psi_1(0) \in H_{7/2}, \ \psi_1'(0) \in H_{5/2}, \ \psi_1^{(j)}(1), \ \psi_2^{j}(1) \in H_{4-j-1/2}(j=\overline{0,3}).$

Let's determine the vector-function

$$u\left(t\right) = \left\{ \begin{array}{l} \xi_{1}\left(t\right) \equiv \psi_{1}\left(t\right) + e^{\alpha\omega_{1}tA}\varphi_{1} + e^{\alpha\omega_{2}tA}\varphi_{2} + e^{\alpha\omega_{1}\left(1-t\right)A}\varphi_{3} + \\ + e^{\alpha\omega_{2}\left(1-t\right)A}\varphi_{4}, \ t \in \left[0;1\right), \\ \xi_{2}\left(t\right) \equiv \psi_{2}\left(t\right) + e^{\beta\omega_{1}\left(t-1\right)A}\varphi_{5} + e^{\beta\omega_{2}\left(t-1\right)A}\varphi_{6}, \qquad t \in \left(1;\infty\right), \end{array} \right.$$

where $\omega_1 = -\frac{\sqrt{2}}{2}(1+i)$, $\omega_2 = -\frac{\sqrt{2}}{2}(1-i)$, and the unknown vectors $\varphi_j \in$ $H_{7/2}(j=\overline{0,6})$. It's easy to see, that vectors φ_j are identically defined from the condition $u \in \mathring{W}_{2}^{4}(R_{+}; H)$ $\left(\xi_{1}(0) = 0, \ \xi_{1}'(0) = 0, \ \xi_{1}^{(j)}(1) = \xi_{2}^{(j)}(1), \ j = \overline{0,3}\right)$. Thus, $u(t) \in \mathring{W}_{2}^{4}(R; H)$. Since at $u \in \mathring{W}_{2}^{4}(R_{+}; H)$

$$||P_0u||_{L_2} \le \sqrt{2} \max(1; \alpha^4; \beta^4) ||u||_{W_2^4},$$

then approval of the theorem follows from Banach theorem on the inverse operator.

It follows from this theorem, that norms $||P_0u||_{L_2}$ and $||u||_{W_2^4}$ are equivalent in the space $\mathring{W}_{2}^{4}\left(R;H\right) .$ Therefore, by the theorem on intermediate derivatives, the norms

$$\mathring{N}_{j}(R_{+}) = \sup_{0 \neq u \in \mathring{W}_{2}^{4}(R_{+}:H)} \left\| A^{4-j} u^{(j)} \right\|_{L_{2}} \left\| P_{0} u \right\|_{L_{2}}^{-1}, \ j = \overline{0,4}$$
(3)

are finite. Let's prove the following lemma for estimation of these numbers.

Lemma 1. Let the condition 1) be fulfilled, then the inequality

$$||P_0 u||_{L_2}^2 \ge \min\left(\alpha^4; \beta^4\right) \left(\left\| \rho^{-\frac{1}{2}} u^{(4)} \right\|_{L_2}^2 + \left\| \rho^{\frac{1}{2}} A^4 u \right\|_{L_2}^2 + 2\cos 4\varepsilon \left\| A^2 u'' \right\|_{L_2}^2 \right), \tag{4}$$

holds at any $u \in \mathring{W}_{2}^{4}(R_{+}; H)$.

Proof. Since

$$\left\| \rho^{-\frac{1}{2}} P_0 u \right\|_{L_2}^2 = \left\| \rho^{-\frac{1}{2}} u^{(4)} + \rho^{\frac{1}{2}} A^4 u \right\|_{L_2}^2 = \left\| \rho^{-\frac{1}{2}} u^{(4)} \right\|_{L_2}^2 + \left\| \rho^{\frac{1}{2}} A^4 u \right\|_{L_2}^2 + 2 \operatorname{Re} \left(u^{(4)}, A^4 u \right)_{L_2}.$$
 (5)

Considering that $u \in \mathring{W}_{2}^{4}(R_{+}; H)$ (u(0) = u'(0) = 0) integrating by parts we get

$$\left(u^{(4)}, A^4 u\right)_{L_2} = \int_0^\infty \left(u^{(4)}, A^4 u\right) dt = \int_0^\infty \left(A^{*2} u'', A^2 u''\right) dt = \left(A^{*2} u'', A^2 u''\right)_{L_2},$$

i.e.

$$\begin{split} \operatorname{Re}\left(u^{(4)},A^{4}u\right)_{L_{2}} &= \operatorname{Re}\left(A^{*2}u'',A^{2}u''\right)_{L_{2}} \geq \cos 4\varepsilon \left(A^{2}u'',A^{2}u''\right)_{L_{2}} = \\ &= \cos 4\varepsilon \left\|A^{2}u''\right\|_{L_{2}}^{2}. \end{split}$$

Thus it follows, from (5) that

$$\left\| \rho^{-\frac{1}{2}} P_0 u \right\|_{L_2}^2 \ge \left\| \rho^{-\frac{1}{2}} u^{(4)} \right\|_{L_2}^2 + \left\| \rho^{\frac{1}{2}} A^4 u \right\|_{L_2}^2 + 2 \cos 4\varepsilon \left\| A^2 u'' \right\|_{L_2}^2. = \tag{6}$$

The approval of the lemma follows from inequality (6) subject to inequality

$$\left\| \rho^{-\frac{1}{2}} P_0 u \right\|_{L_2}^2 \le \max_t \rho^{-1} \left(t \right) \left\| P_0 u \right\|_{L_2}^2 = \frac{1}{\min \left(\alpha^4, \beta^4 \right)} \left\| P_0 u \right\|_{L_2}^2.$$

The lemma is probed.

Lemma 2. For numbers $N_j(R_+)$ the following estimations hold:

$$\mathring{N}_{j}\left(R_{+}\right) \leq c_{j}\left(\alpha;\beta;\varepsilon\right), \ j = \overline{0,4},$$

where

$$c_0(\alpha; \beta; \varepsilon) = \frac{1}{\min(\alpha^4, \beta^4)} \begin{cases} 1, & 0 \le \varepsilon \le \frac{\pi}{8}, \\ \frac{1}{\sqrt{2}\cos 2\varepsilon}, & \frac{\pi}{8} \le \varepsilon < \frac{\pi}{4}, \end{cases}$$
(7)

 $\frac{Proceedings \ of \ IMM \ of \ NAS \ of \ Azerbaijan}{[On \ solvability \ of \ one \ class \ of \ bound...]}89$

$$c_{1}(\alpha; \beta; \varepsilon) = \frac{1}{\min(\alpha^{3}, \beta^{3})} \begin{cases} \frac{1}{\sqrt{2\cos 2\varepsilon}}, & 0 \le \varepsilon < \frac{\pi}{8}, \\ \frac{1}{\sqrt[4]{8}\cos 2\varepsilon}, & \frac{\pi}{8} \le \varepsilon < \frac{\pi}{4}, \end{cases}$$
(8)

$$c_2(\alpha; \beta; \varepsilon) = \frac{1}{2\cos 2\varepsilon \min(\alpha^2; \beta^2)}, 0 \le \varepsilon < \frac{\pi}{4}, \tag{9}$$

$$c_4(\alpha; \beta; \varepsilon) = \frac{\max(\alpha^2; \beta^2)}{\min(\alpha^2; \beta^2)} \begin{cases} 1, & 0 \le \varepsilon < \frac{\pi}{8}, \\ \frac{1}{\sqrt{2}\cos 2\varepsilon}, & \frac{\pi}{8} \le \varepsilon < \frac{\pi}{4}. \end{cases}$$
(10)

Proof. At $u \in \mathring{W}_{2}^{4}(R_{+}; H)$ (u(0) = u'(0) = 0) we have

$$\begin{aligned} \left\|A^{2}u''\right\|_{L_{2}}^{2} &= \left\|C^{2}u''\right\|_{L_{2}}^{2} = \int_{0}^{\infty} \left(C^{2}u'', C^{2}u''\right) dt = \int_{0}^{\infty} \left(C^{4}u, u^{(4)}\right) dt = \\ &= \left(\rho^{\frac{1}{2}}C^{4}u, \rho^{-\frac{1}{2}}u^{(4)}\right)_{L_{2}} \leq \left\|\rho^{\frac{1}{2}}C^{4}u\right\|_{L_{2}} \left\|\rho^{-\frac{1}{2}}u^{(4)}\right\|_{L_{2}} = \\ &= \left\|\rho^{\frac{1}{2}}A^{4}u\right\|_{L_{2}} \left\|\rho^{-\frac{1}{2}}u^{(4)}\right\|_{L_{2}} \leq \frac{1}{2} \left(\left\|\rho^{\frac{1}{2}}A^{4}u\right\|_{L_{2}}^{2} + \left\|\rho^{-\frac{1}{2}}u^{(4)}\right\|_{L_{2}}^{2}\right). \end{aligned}$$
(11)

Taking into account inequality (4) in (11) we get:

$$\|A^2 u''\|_{L_2}^2 \le \frac{1}{2} \left(\frac{1}{\min} \left(\alpha^4; \beta^4 \right) \|P_0 u\|_{L_2}^2 - 2\cos 4\varepsilon \|A^2 u''\|_{L_2}^2 \right)$$

or

$$\|A^{2}u''\|_{L_{2}} \le \frac{1}{2\cos 2\varepsilon} \frac{1}{\min(\alpha^{2}; \beta^{2})} \|P_{0}u\|_{L_{2}} = c_{2}(\alpha; \beta; \varepsilon) \|P_{0}u\|_{L_{2}},$$
 (12)

i.e. $\mathring{N}_{2}(R_{+}) \leq c_{2}(\alpha; \beta; \varepsilon)$. At $0 \leq \varepsilon \leq \frac{\pi}{8}(\cos 4\varepsilon \geq 0)$ it follows from inequality (4), that

$$\|A^4 u\|_{L_2} \le \max_{t} \rho^{-\frac{1}{2}}(t) \|\rho^{\frac{1}{2}} A^4 u\|_{L_2} \le \frac{1}{\min(\alpha^4; \beta^4)} \|P_0 u\|_{L_2}^2.$$
 (13)

And at $\frac{\pi}{8} \le \varepsilon < \frac{\pi}{4}$ (cos $4\varepsilon \le 0$) from inequality (4) with regard to (12) we get

$$||P_0 u||_{L_2}^2 \ge \min\left(\alpha^4; \beta^4\right) \left(\left\| \rho^{\frac{1}{2}} A^4 u \right\|_{L_2}^2 + \frac{2\cos 4\varepsilon}{4\cos^2 2\varepsilon \min\left(\alpha^4; \beta^4\right)} ||P_0 u||_{L_2}^2 \right)$$

or

$$\left\| \rho^{\frac{1}{2}} A^4 u \right\|_{L_2}^2 \le \frac{1}{2 \cos^2 2\varepsilon} \frac{1}{\min \left(\alpha^2; \beta^4\right)} \left\| P_0 u \right\|_{L_2}^2.$$

Whence it follows, that

$$||A^4u||_{L_2} \le \frac{1}{\sqrt{2}\cos 2\varepsilon} \frac{1}{\min(\alpha^2; \beta^4)} ||P_0u||_{L_2}.$$
 (14)

[S.S.Mirzoyev, A.T.Aliyeva

It follows from inequality (13) and (14) that $\mathring{N}_0 \leq c_0(\alpha; \beta; \varepsilon)$.

Now let's estimate the norms \mathring{N}_1 , \mathring{N}_3 and \mathring{N}_4 .

At $u \in \mathring{W}_{2}^{4}(R_{+}; H)$ we have:

$$\begin{split} \left\|A^3 u'\right\|_{L_2}^2 &= \left\|C^3 u'\right\|_{L_2}^2 = \int\limits_0^\infty \left(C^3 u', C^3 u'\right) dt = -\int\limits_0^\infty \left(C^4 u, C^2 u''\right) dt = \\ &= -\left(C^4 u, C^2 u''\right)_{L_2} \leq \left\|C^4 u\right\|_{L_2} \left\|C^2 u''\right\|_{L_2} = \left\|A^4 u\right\|_{L_2} \left\|A^2 u''\right\|_{L_2}. \end{split}$$

Hence taking into account the estimations proved for \mathring{N}_0 and \mathring{N}_2 we get, that

$$\left\|A^3u'\right\|_{L_2} \le c_0^{1/2}\left(\alpha;\beta;\varepsilon\right)c_2^{1/2}\left(\alpha;\beta;\varepsilon\right)\left\|P_0u\right\|_{L_2} = c_1\left(\alpha;\beta;\varepsilon\right)\left\|P_0u\right\|_{L_2},$$

i.e. $\mathring{N}_1 \leq c_1(\alpha; \beta; \varepsilon)$. Then at $0 \leq \varepsilon < \frac{\pi}{8}$ (cos $2\varepsilon \geq 0$) from inequalities (4) it follows, that

$$\left\| u^{(4)} \right\|_{L_{2}}^{2} \leq \max_{t} \rho\left(t\right) \left\| \rho^{-\frac{1}{2}} u^{(4)} \right\|_{L_{2}}^{2} \leq \frac{\max\left(\alpha^{4}; \beta^{4}\right)}{\min\left(\alpha^{4}; \beta^{4}\right)} \left\| P_{0} u \right\|_{L_{2}}^{2},$$

i.e.

$$\|u^{(4)}\|_{L_2} \le \frac{\max(\alpha^2; \beta^2)}{\min(\alpha^2; \beta^2)} \|P_0 u\|_{L_2}.$$
 (15)

And at $\frac{\pi}{8} \leq \varepsilon < \frac{\pi}{4}$, analogously to estimation of \mathring{N}_0 we get that

$$\left\| u^{(4)} \right\|_{L_2} \le \frac{1}{\sqrt{2}\cos 2\varepsilon} \frac{\max\left(\alpha^2; \beta^2\right)}{\min\left(\alpha^2; \beta^2\right)} \left\| P_0 u \right\|_{L_2}. \tag{16}$$

It follows from (15) and (16), that $\mathring{N}_4 \leq c_4(\alpha; \beta; \varepsilon)$. We use inequality for estimation of \mathring{N}_3

$$||Au'''||_{L_2}^2 \le 2 ||A^2u''||_{L_2} ||u^{(4)}||_{L_3},$$
 (17)

which is obtained from the inequality

$$\begin{split} \left\| \xi C^2 u'' + C u''' + \frac{1}{\xi} u^{(4)} \right\|_{L_2}^2 &= \xi^2 \left\| C^2 u'' \right\|_{L_2}^2 + \frac{1}{\xi^2} \left\| u^{(4)} \right\|_{L_2}^2 - \\ &- \left\| C u''' \right\|_{L_2}^2 - \left\| \frac{1}{\sqrt{\xi}} C^{\frac{1}{2}} u''' \left(0 \right) + \sqrt{\xi} C^{\frac{3}{2}} u'' \left(0 \right) \right\|^2 \end{split}$$

at $\xi = \|u^{(4)}\|_{L_2}^{1/2} \|C^2 u''\|_{L_2}^{-1/2}$.

Thus, it follows from (17), that

$$\left\|Au^{\prime\prime\prime}\right\|_{L_{2}}^{2}\leq2c_{2}\left(\alpha;\beta;\varepsilon\right)c_{4}\left(\alpha;\beta;\varepsilon\right)\left\|P_{0}u\right\|_{L_{2}}^{2}=c_{3}^{2}\left(\alpha;\beta;\varepsilon\right)\left\|P_{0}u\right\|_{L_{2}}^{2},$$

i.e.

$$||Au'''||_{L_2} \le c_3 (\alpha; \beta; \varepsilon) ||P_0 u||_{L_2}.$$

[On solvability of one class of bound...]

So
$$\mathring{N}_3 \leq c_3 (\alpha; \beta; \varepsilon)$$
.

The lemma is proved.

Now let's prove the main theorem.

Theorem. Let the conditions 1), 2) be fulfilled and the following inequality hold

$$\theta\left(\alpha;\beta;\varepsilon\right) = \sum_{j=0}^{4} c_{j}\left(\alpha;\beta;\varepsilon\right) \left\|B_{4-j}\left(t\right)\right\|_{L_{\infty}\left(R_{+};L(H)\right)} < 1.$$

Then the problem (1), (2) is regularly solvable.

Proof. Let's write the equation Pu = f in the form

$$v + P_1 P_0^{-1} v = f,$$

where $v = P_0 u$. Since for any $v \in L_2(R_+; H)$

$$\left\| P_{1}P_{0}^{-1}v\right\| _{L_{2}}=\left\| P_{1}u\right\| _{L_{2}}\leq \sum_{j=0}^{4}\left\| B_{4-j}\left(t\right) \right\| _{L_{\infty}\left(R_{+};L\left(H\right) \right)}\left\| A^{4-j}u^{\left(j\right) }\right\| _{L_{2}}\leq$$

$$\leq \sum_{j=0}^{4} \|B_{4-j}(t)\|_{L_{\infty}(R_{+};L(H))} c_{j}(\alpha;\beta;\varepsilon) \|P_{0}u\|_{L_{2}} = \theta(\alpha;\beta;\varepsilon) \|v\|_{L_{2}}$$

and $\theta\left(\alpha;\beta;\varepsilon\right)<1$, then $E+P_{1}P_{0}^{-1}$ is invertible in $L_{2}\left(R_{+}H\right)$ and

$$u = P_0^{-1} (E + P_1 P_0^{-1}) f.$$

Hence we get, that

$$||u||_{W_2^4} \le cons ||f||_{L_2}$$
.

The theorem is proved.

References

- [1]. Lions G.L., Majenes E. Non-homogeneous boundary value problems and their applications. M.: "Mir", 1971, 371 p.
- [2]. Mirzoyev S.S. Multiple completeness of a part of eigen and adjoint vectors of polynomial operator bundles of fourth order with normal main part. Spectral theory of operatorsa "Baku", "Elm", 1982, pp.148-161.
- [3]. Aliyev A.R. Boundary value problems for a class of operator-differential equations of higher order with variable coefficients. "Math.Zametki", 2003, v.74, issue 6, pp.803-814.

Sabir S.Mirzoyev, Ayten T. Aliyeva

Institute of Mathematics and Mechanics of NAS of Azerbaijan.

[S.S.Mirzoyev, A.T.Aliyeva]

9, F. Agayev str., AZ1141, Baku, Azerbaijan.

Tel.: (99412) 439 47 20 (off.)

Received October 27, 2004; Revised January 06, 2005.

Translated by Gachayeva L.G.