Sabir S. MIRZOYEV, Ayten T. ALIYEVA

ON SOLVABILITY OF ONE CLASS OF BOUNDARY VALUE PROBLEM FOR A FOURTH ORDER OPERATOR-DIFFERENTIAL EQUATION

Abstract

The theorem about correct and univalent solvability of a class of boundary value problem for operator-differential equation with variable coefficients was obtained. These conditions are expressed only by the coefficients of the given equation.

In separable Hilbert space H consider the boundary value problem

$$
\begin{gather*}
P\left(\frac{d}{d t}\right) u \equiv \frac{d^{4} u(t)}{d t^{4}}+\rho(t) A^{4} u(t)+\sum_{j=0}^{4} A_{4-j}(t) u^{(j)}(t)=f(t) \\
t \in R_{+}=(0, \infty) \tag{1}\\
u(0)=u^{\prime}(0)=0 \tag{2}
\end{gather*}
$$

where $f(t), u(t)$ are vector functions with values from H,

$$
\rho(t)=\left\{\begin{array}{c}
\alpha^{4}, t \in(0,1) \\
\beta^{4}, t \in(1, \infty)
\end{array}\right.
$$

$\alpha>0, \beta>0$ and operators A and $A_{j}(t)(j=\overline{0,4})$ satisfy the following conditions.

1. A is a normal reversible operator, whose spectrum is contained in angular sector $S_{\varepsilon}=\{\lambda:|\arg \lambda| \leq \varepsilon\}, 0 \leq \varepsilon<\frac{\pi}{4}$;
2. The operators $B_{j}(t)=A_{j}(t) A^{-j}(j=\overline{0,4})$ are bounded in H and $B_{j}(t) \in$ $L_{\infty}\left(R_{+} ; L(H)\right)$.

Here and later on the derivatives are understood in the sense of distributions, and $L(H)$ is a space of linear bounded operators acting in H.

From condition 1) it follows, that the operator A is represented in the form: $A=U C=C U$, where C is positive-definite self-adjoint operator, and U is a unitary operator in H. Let's consider the scale of Hilbert spaces generated by the operator C, i.e.

$$
H_{\gamma}=D\left(C^{\gamma}\right),(x, y)_{\gamma}=\left(C^{\gamma} x, C^{\gamma} y\right), x, y \in H_{\gamma}, \gamma \geq 0
$$

Then, let's denote by $L_{2}\left(R_{+} ; H\right)$ the Hilbert space of vector-functions $f(t)$, defined in R_{+}with values from H for which

$$
\|f\|_{L_{2}\left(R_{+} ; H\right)}=\left(\int_{0}^{\infty}\|f(t)\|^{2} d t\right)^{2}<\infty
$$

\qquad
Let's denote by $W_{2}^{4}\left(R_{+} ; H\right)$ the Hilbert space (see [1])

$$
W_{2}^{4}\left(R_{+} ; H\right)=\left\{u: u^{(4)} \in L_{2}\left(R_{+} ; H\right), A^{4} u \in L_{2}\left(R_{+} ; H\right)\right\}
$$

with norm

$$
\|u\|_{W_{2}^{4}\left(R_{+} ; H\right)}=\left(\left\|u^{(4)}\right\|_{L_{2}}^{2}+\left\|A^{4} u\right\|_{L_{2}}^{2}\right)^{\frac{1}{2}}
$$

Let

$$
\stackrel{\circ}{W}_{2}^{4}\left(R_{+} ; H\right)=\left\{u: u \in W_{2}^{4}\left(R_{+} ; H\right), u(0)=u^{\prime}(0)=0\right\}
$$

It follows from the theorem on traces [1], that $W_{2}^{4}\left(R_{+} ; H\right)$ is a complete subspace of the space $W_{2}^{4}\left(R_{+} ; H\right)$.

The spaces $L_{2}(R ; H)$ and $W_{2}^{4}(R ; H)$, where $R=(-\infty, \infty)$ are defined similarly.
Definition 1. If at any $f(t) \in L_{2}\left(R_{+} ; H\right)$ there exists the vector-function $u(t) \in W_{2}^{4}\left(R_{+} ; H\right)$, satisfying the equation (1) almost everywhere, the boundary conditions (2) in the sense

$$
\lim _{t \rightarrow+0}\|u(t)\|_{7 / 2}=0, \lim _{t \rightarrow+0}\left\|u^{\prime}(t)\right\|_{5 / 2}=0
$$

and for which the estimate

$$
\|u\|_{W_{2}^{4}} \leq \mathrm{const}\|f\|_{L_{2}}
$$

is true, then we'll call the problem (1), (2) regularly solvable.
Let's find the conditions of regular solvability of problem (1), (2) in the given work.

Let's note, that at $\rho(t) \equiv 1$ (i.e. $\alpha=\beta=1$) this problem was investigated in the paper [2] and at $\alpha \neq \beta$ and A is a self-adjoint operator in [3].

Let's write the problem (1), (2) in the form of the equation

$$
P u=P_{0} u+P_{1} u=f
$$

where

$$
f \in L_{2}\left(R_{+} ; H\right), u \in \dot{W}_{2}^{2}\left(R_{+} ; H\right)
$$

and

$$
P_{0} u=u^{(4)}+A^{4} u, P_{1} u=\sum_{j=0}^{4} A_{4-j}(t) u^{(j)}(t), u \in \stackrel{\circ}{W}_{2}^{4}\left(R_{+} ; H\right)
$$

It holds
Theorem 1. Let the condition 1) be fulfilled then, the operator $P_{0}: \dot{W}_{2}^{4}\left(R_{+} ; H\right) \rightarrow$ $L_{2}\left(R_{+} ; H\right)$ is isomorphism.

Proof. It's easy to see, that the equation $P_{0} u=0$ has only a zero solution. Let's show that the image of the space operator P_{0} coincides with the space $L_{2}(R ; H)$. Evidently, the vector-functions

$$
u_{1}(t)=\frac{1}{2 \pi} \int_{-\infty}^{\infty} \frac{1}{\lambda^{4} E+\alpha^{4} A^{4}}\left(\int_{0}^{\infty} f(s) e^{-i \lambda(t-s)} d s\right) d \lambda
$$

and

$$
u_{2}(t)=\frac{1}{2 \pi} \int_{-\infty}^{\infty} \frac{1}{\lambda^{4} E+\beta^{4} A^{4}}\left(\int_{0}^{\infty} f(s) e^{-i \lambda(t-s)} d s\right) d \lambda
$$

satisfy respectively, the equation $u^{(4)}+\alpha^{4} A^{4} u=f$ and $u^{(4)}+\beta^{4} A^{4}=f$ almost everywhere in R_{+}. Let's show, that $u_{1}(t), u_{2}(t) \in W_{2}^{4}(R ; H)$. By Plansharel theorem

$$
\begin{gathered}
\left\|u^{(4)}\right\|_{L_{2}(R ; H)}=\left\|\lambda^{4} \hat{u}_{1}(\lambda)\right\|_{L_{2}\left(R_{+} ; H\right)}=\left\|\lambda^{4}\left(\lambda^{4} E+\alpha^{4} A^{4}\right)^{-1} \hat{f}(\lambda)\right\|_{L_{2}(R ; H)} \leq \\
\leq \sup _{\lambda \in R}\left|\lambda^{4}\left(\lambda^{4}+\alpha^{4} A^{4}\right)^{-1}\right|\|f\|_{L_{2}(R ; H)} \leq \\
\leq \sup _{\lambda \in R}\left(\sup _{\mu \in \sigma(A)}\left|\lambda^{4}\left(\lambda^{4}+\alpha^{4} \mu^{4}\right)^{-1}\right|\right)\|f\|_{L_{2}(R ; H)} \leq\|f\|_{L_{2}(R ; H)} .
\end{gathered}
$$

It's analogously proved, that $A^{4} u_{1} \in L_{2}(R ; H)$, i.e. $u_{1}(t) \in W_{2}^{4}(R ; H)$. By the same way it is proved, that $u_{2}(t) \in W_{2}^{4}(R ; H)$. Let's denote the contractions of vector-functions $u_{1}(t)$ and $u_{2}(t)$ on $[0 ; 1]$ and $(1 ; \infty)$, by $\psi_{1}(t)$ and $\psi_{2}(t)$, respectively. It is evident, that $\psi_{1}(t) \in W_{2}^{4}([0 ; 1] ; H), \psi_{2}(t) \in W_{2}^{4} .((1 ; \infty) ; H)$, and $\psi_{1}(0) \in H_{7 / 2}, \psi_{1}^{\prime}(0) \in H_{5 / 2}, \psi_{1}^{(j)}(1), \psi_{2}^{j}(1) \in H_{4-j-1 / 2}(j=\overline{0,3})$.

Let's determine the vector-function

$$
u(t)=\left\{\begin{array}{l}
\xi_{1}(t) \equiv \psi_{1}(t)+e^{\alpha \omega_{1} t A} \varphi_{1}+e^{\alpha \omega_{2} t A} \varphi_{2}+e^{\alpha \omega_{1}(1-t) A} \varphi_{3}+ \\
+e^{\alpha \omega_{2}(1-t) A} \varphi_{4}, t \in[0 ; 1), \\
\xi_{2}(t) \equiv \psi_{2}(t)+e^{\beta \omega_{1}(t-1) A} \varphi_{5}+e^{\beta \omega_{2}(t-1) A} \varphi_{6}, \quad t \in(1 ; \infty),
\end{array}\right.
$$

where $\omega_{1}=-\frac{\sqrt{2}}{2}(1+i), \omega_{2}=-\frac{\sqrt{2}}{2}(1-i)$, and the unknown vectors $\varphi_{j} \in$ $H_{7 / 2}(j=\overline{0,6})$. It's easy to see, that vectors φ_{j} are identically defined from the condition $u \in \dot{W}_{2}^{4}\left(R_{+} ; H\right)\left(\xi_{1}(0)=0, \xi_{1}^{\prime}(0)=0, \xi_{1}^{(j)}(1)=\xi_{2}^{(j)}(1), j=\overline{0,3}\right)$. Thus, $u(t) \in \dot{W}_{2}^{4}(R ; H)$. Since at $u \in \dot{W}_{2}^{4}\left(R_{+} ; H\right)$

$$
\left\|P_{0} u\right\|_{L_{2}} \leq \sqrt{2} \max \left(1 ; \alpha^{4} ; \beta^{4}\right)\|u\|_{W_{2}^{4}},
$$

then approval of the theorem follows from Banach theorem on the inverse operator.

It follows from this theorem, that norms $\left\|P_{0} u\right\|_{L_{2}}$ and $\|u\|_{W_{2}^{4}}$ are equivalent in the space $\dot{W}_{2}^{4}(R ; H)$. Therefore, by the theorem on intermediate derivatives, the norms

$$
\begin{equation*}
\stackrel{\circ}{N}_{j}\left(R_{+}\right)=\sup _{0 \neq u \in \dot{W}_{2}^{4}\left(R_{+} ; H\right)}\left\|A^{4-j} u^{(j)}\right\|_{L_{2}}\left\|P_{0} u\right\|_{L_{2}}^{-1}, j=\overline{0,4} \tag{3}
\end{equation*}
$$

are finite. Let's prove the following lemma for estimation of these numbers.
Lemma 1. Let the condition 1) be fulfilled, then the inequality

$$
\begin{gather*}
\left\|P_{0} u\right\|_{L_{2}}^{2} \geq \min \left(\alpha^{4} ; \beta^{4}\right)\left(\left\|\rho^{-\frac{1}{2}} u^{(4)}\right\|_{L_{2}}^{2}+\left\|\rho^{\frac{1}{2}} A^{4} u\right\|_{L_{2}}^{2}+\right. \\
\left.+2 \cos 4 \varepsilon\left\|A^{2} u^{\prime \prime}\right\|_{L_{2}}^{2}\right) \tag{4}
\end{gather*}
$$

holds at any $u \in \dot{W}_{2}^{4}\left(R_{+} ; H\right)$.
Proof. Since

$$
\begin{gather*}
\left\|\rho^{-\frac{1}{2}} P_{0} u\right\|_{L_{2}}^{2}=\left\|\rho^{-\frac{1}{2}} u^{(4)}+\rho^{\frac{1}{2}} A^{4} u\right\|_{L_{2}}^{2}=\left\|\rho^{-\frac{1}{2}} u^{(4)}\right\|_{L_{2}}^{2}+ \\
+\left\|\rho^{\frac{1}{2}} A^{4} u\right\|_{L_{2}}^{2}+2 \operatorname{Re}\left(u^{(4)}, A^{4} u\right)_{L_{2}} . \tag{5}
\end{gather*}
$$

Considering that $u \in \dot{W}_{2}^{4}\left(R_{+} ; H\right)\left(u(0)=u^{\prime}(0)=0\right)$ integrating by parts we get

$$
\left(u^{(4)}, A^{4} u\right)_{L_{2}}=\int_{0}^{\infty}\left(u^{(4)}, A^{4} u\right) d t=\int_{0}^{\infty}\left(A^{* 2} u^{\prime \prime}, A^{2} u^{\prime \prime}\right) d t=\left(A^{* 2} u^{\prime \prime}, A^{2} u^{\prime \prime}\right)_{L_{2}}
$$

i.e.

$$
\begin{gathered}
\operatorname{Re}\left(u^{(4)}, A^{4} u\right)_{L_{2}}=\operatorname{Re}\left(A^{* 2} u^{\prime \prime}, A^{2} u^{\prime \prime}\right)_{L_{2}} \geq \cos 4 \varepsilon\left(A^{2} u^{\prime \prime}, A^{2} u^{\prime \prime}\right)_{L_{2}}= \\
=\cos 4 \varepsilon\left\|A^{2} u^{\prime \prime}\right\|_{L_{2}}^{2}
\end{gathered}
$$

Thus it follows, from (5) that

$$
\begin{equation*}
\left\|\rho^{-\frac{1}{2}} P_{0} u\right\|_{L_{2}}^{2} \geq\left\|\rho^{-\frac{1}{2}} u^{(4)}\right\|_{L_{2}}^{2}+\left\|\rho^{\frac{1}{2}} A^{4} u\right\|_{L_{2}}^{2}+2 \cos 4 \varepsilon\left\|A^{2} u^{\prime \prime}\right\|_{L_{2}}^{2} \cdot= \tag{6}
\end{equation*}
$$

The approval of the lemma follows from inequality (6) subject to inequality

$$
\left\|\rho^{-\frac{1}{2}} P_{0} u\right\|_{L_{2}}^{2} \leq \max _{t} \rho^{-1}(t)\left\|P_{0} u\right\|_{L_{2}}^{2}=\frac{1}{\min \left(\alpha^{4}, \beta^{4}\right)}\left\|P_{0} u\right\|_{L_{2}}^{2} .
$$

The lemma is probed.
Lemma 2. For numbers $\stackrel{\circ}{N}_{j}\left(R_{+}\right)$the following estimations hold:

$$
\stackrel{\circ}{N}_{j}\left(R_{+}\right) \leq c_{j}(\alpha ; \beta ; \varepsilon), j=\overline{0,4},
$$

where

$$
c_{0}(\alpha ; \beta ; \varepsilon)=\frac{1}{\min \left(\alpha^{4}, \beta^{4}\right)}\left\{\begin{array}{l}
1, \quad 0 \leq \varepsilon \leq \frac{\pi}{8}, \tag{7}\\
\frac{1}{\sqrt{2} \cos 2 \varepsilon}, \frac{\pi}{8} \leq \varepsilon<\frac{\pi}{4},
\end{array}\right.
$$

$$
\begin{gather*}
c_{1}(\alpha ; \beta ; \varepsilon)=\frac{1}{\min \left(\alpha^{3}, \beta^{3}\right)}\left\{\begin{array}{l}
\frac{1}{\sqrt{2 \cos 2 \varepsilon}}, \quad 0 \leq \varepsilon<\frac{\pi}{8}, \\
\frac{1}{\sqrt[4]{8} \cos 2 \varepsilon}, \frac{\pi}{8} \leq \varepsilon<\frac{\pi}{4},
\end{array}\right. \tag{8}\\
c_{2}(\alpha ; \beta ; \varepsilon)=\frac{1}{2 \cos 2 \varepsilon \min \left(\alpha^{2} ; \beta^{2}\right)}, 0 \leq \varepsilon<\frac{\pi}{4}, \tag{9}\\
c_{4}(\alpha ; \beta ; \varepsilon)=\frac{\max \left(\alpha^{2} ; \beta^{2}\right)}{\min \left(\alpha^{2} ; \beta^{2}\right)}\left\{\begin{array}{l}
1,0 \leq \varepsilon<\frac{\pi}{8}, \\
\frac{1}{\sqrt{2} \cos 2 \varepsilon}, \frac{\pi}{8} \leq \varepsilon<\frac{\pi}{4} .
\end{array}\right. \tag{10}
\end{gather*}
$$

Proof. At $u \in \dot{W}_{2}^{4}\left(R_{+} ; H\right)\left(u(0)=u^{\prime}(0)=0\right)$ we have

$$
\begin{gather*}
\left\|A^{2} u^{\prime \prime}\right\|_{L_{2}}^{2}=\left\|C^{2} u^{\prime \prime}\right\|_{L_{2}}^{2}=\int_{0}^{\infty}\left(C^{2} u^{\prime \prime}, C^{2} u^{\prime \prime}\right) d t=\int_{0}^{\infty}\left(C^{4} u, u^{(4)}\right) d t= \\
=\left(\rho^{\frac{1}{2}} C^{4} u, \rho^{-\frac{1}{2}} u^{(4)}\right)_{L_{2}} \leq\left\|\rho^{\frac{1}{2}} C^{4} u\right\|_{L_{2}}\left\|\rho^{-\frac{1}{2}} u^{(4)}\right\|_{L_{2}}= \\
=\left\|\rho^{\frac{1}{2}} A^{4} u\right\|_{L_{2}} \| \rho^{\rho^{-\frac{1}{2}} u^{(4)} \|_{L_{2}} \leq \frac{1}{2}\left(\left\|\rho^{\frac{1}{2}} A^{4} u\right\|_{L_{2}}^{2}+\left\|\rho^{-\frac{1}{2}} u^{(4)}\right\|_{L_{2}}^{2}\right) .} \tag{11}
\end{gather*}
$$

Taking into account inequality (4) in (11) we get:

$$
\left\|A^{2} u^{\prime \prime}\right\|_{L_{2}}^{2} \leq \frac{1}{2}\left(\frac{1}{\min }\left(\alpha^{4} ; \beta^{4}\right)\left\|P_{0} u\right\|_{L_{2}}^{2}-2 \cos 4 \varepsilon\left\|A^{2} u^{\prime \prime}\right\|_{L_{2}}^{2}\right)
$$

or

$$
\begin{equation*}
\left\|A^{2} u^{\prime \prime}\right\|_{L_{2}} \leq \frac{1}{2 \cos 2 \varepsilon} \frac{1}{\min \left(\alpha^{2} ; \beta^{2}\right)}\left\|P_{0} u\right\|_{L_{2}}=c_{2}(\alpha ; \beta ; \varepsilon)\left\|P_{0} u\right\|_{L_{2}}, \tag{12}
\end{equation*}
$$

i.e. $\stackrel{\circ}{2}_{2}\left(R_{+}\right) \leq c_{2}(\alpha ; \beta ; \varepsilon)$.

At $0 \leq \varepsilon \leq \frac{\pi}{8}(\cos 4 \varepsilon \geq 0)$ it follows from inequality (4), that

$$
\begin{equation*}
\left\|A^{4} u\right\|_{L_{2}} \leq \max _{t} \rho^{-\frac{1}{2}}(t)\left\|\rho^{\frac{1}{2}} A^{4} u\right\|_{L_{2}} \leq \frac{1}{\min \left(\alpha^{4} ; \beta^{4}\right)}\left\|P_{0} u\right\|_{L_{2}}^{2} . \tag{13}
\end{equation*}
$$

And at $\frac{\pi}{8} \leq \varepsilon<\frac{\pi}{4}(\cos 4 \varepsilon \leq 0)$ from inequality (4) with regard to (12) we get

$$
\left\|P_{0} u\right\|_{L_{2}}^{2} \geq \min \left(\alpha^{4} ; \beta^{4}\right)\left(\left\|\rho^{\frac{1}{2}} A^{4} u\right\|_{L_{2}}^{2}+\frac{2 \cos 4 \varepsilon}{4 \cos ^{2} 2 \varepsilon \min \left(\alpha^{4} ; \beta^{4}\right)}\left\|P_{0} u\right\|_{L_{2}}^{2}\right)
$$

or

$$
\left\|\rho^{\frac{1}{2}} A^{4} u\right\|_{L_{2}}^{2} \leq \frac{1}{2 \cos ^{2} 2 \varepsilon} \frac{1}{\min \left(\alpha^{2} ; \beta^{4}\right)}\left\|P_{0} u\right\|_{L_{2}}^{2} .
$$

Whence it follows, that

$$
\begin{equation*}
\left\|A^{4} u\right\|_{L_{2}} \leq \frac{1}{\sqrt{2} \cos 2 \varepsilon} \frac{1}{\min \left(\alpha^{2} ; \beta^{4}\right)}\left\|P_{0} u\right\|_{L_{2}} . \tag{14}
\end{equation*}
$$

\qquad
[S.S.Mirzoyev, A.T.Aliyeva]
It follows from inequality (13) and (14) that $\stackrel{\circ}{N}_{0} \leq c_{0}(\alpha ; \beta ; \varepsilon)$.
Now let's estimate the norms $\stackrel{\circ}{N}_{1}, \stackrel{\circ}{N}_{3}$ and $\stackrel{\circ}{N}_{4}$.
At $u \in \stackrel{\circ}{W}_{2}^{4}\left(R_{+} ; H\right)$ we have:

$$
\begin{gathered}
\left\|A^{3} u^{\prime}\right\|_{L_{2}}^{2}=\left\|C^{3} u^{\prime}\right\|_{L_{2}}^{2}=\int_{0}^{\infty}\left(C^{3} u^{\prime}, C^{3} u^{\prime}\right) d t=-\int_{0}^{\infty}\left(C^{4} u, C^{2} u^{\prime \prime}\right) d t= \\
=-\left(C^{4} u, C^{2} u^{\prime \prime}\right)_{L_{2}} \leq\left\|C^{4} u\right\|_{L_{2}}\left\|C^{2} u^{\prime \prime}\right\|_{L_{2}}=\left\|A^{4} u\right\|_{L_{2}}\left\|A^{2} u^{\prime \prime}\right\|_{L_{2}} .
\end{gathered}
$$

Hence taking into account the estimations proved for $\stackrel{\circ}{N}_{0}$ and $\stackrel{\circ}{N}_{2}$ we get, that

$$
\left\|A^{3} u^{\prime}\right\|_{L_{2}} \leq c_{0}^{1 / 2}(\alpha ; \beta ; \varepsilon) c_{2}^{1 / 2}(\alpha ; \beta ; \varepsilon)\left\|P_{0} u\right\|_{L_{2}}=c_{1}(\alpha ; \beta ; \varepsilon)\left\|P_{0} u\right\|_{L_{2}}
$$

i.e. $\stackrel{\circ}{N}_{1} \leq c_{1}(\alpha ; \beta ; \varepsilon)$.

Then at $0 \leq \varepsilon<\frac{\pi}{8} \quad(\cos 2 \varepsilon \geq 0)$ from inequalities (4) it follows, that

$$
\left\|u^{(4)}\right\|_{L_{2}}^{2} \leq \max _{t} \rho(t)\left\|\rho^{-\frac{1}{2}} u^{(4)}\right\|_{L_{2}}^{2} \leq \frac{\max \left(\alpha^{4} ; \beta^{4}\right)}{\min \left(\alpha^{4} ; \beta^{4}\right)}\left\|P_{0} u\right\|_{L_{2}}^{2}
$$

i.e.

$$
\begin{equation*}
\left\|u^{(4)}\right\|_{L_{2}} \leq \frac{\max \left(\alpha^{2} ; \beta^{2}\right)}{\min \left(\alpha^{2} ; \beta^{2}\right)}\left\|P_{0} u\right\|_{L_{2}} \tag{15}
\end{equation*}
$$

And at $\frac{\pi}{8} \leq \varepsilon<\frac{\pi}{4}$, analogously to estimation of $\stackrel{\circ}{N}_{0}$ we get that

$$
\begin{equation*}
\left\|u^{(4)}\right\|_{L_{2}} \leq \frac{1}{\sqrt{2} \cos 2 \varepsilon} \frac{\max \left(\alpha^{2} ; \beta^{2}\right)}{\min \left(\alpha^{2} ; \beta^{2}\right)}\left\|P_{0} u\right\|_{L_{2}} \tag{16}
\end{equation*}
$$

It follows from (15) and (16), that $\stackrel{\circ}{N}_{4} \leq c_{4}(\alpha ; \beta ; \varepsilon)$. We use inequality for estimation of ${ }_{N}{ }_{3}$

$$
\begin{equation*}
\left\|A u^{\prime \prime \prime}\right\|_{L_{2}}^{2} \leq 2\left\|A^{2} u^{\prime \prime}\right\|_{L_{2}}\left\|u^{(4)}\right\|_{L_{2}} \tag{17}
\end{equation*}
$$

which is obtained from the inequality

$$
\begin{gathered}
\left\|\xi C^{2} u^{\prime \prime}+C u^{\prime \prime \prime}+\frac{1}{\xi} u^{(4)}\right\|_{L_{2}}^{2}=\xi^{2}\left\|C^{2} u^{\prime \prime}\right\|_{L_{2}}^{2}+\frac{1}{\xi^{2}}\left\|u^{(4)}\right\|_{L_{2}}^{2}- \\
-\left\|C u^{\prime \prime \prime}\right\|_{L_{2}}^{2}-\left\|\frac{1}{\sqrt{\xi}} C^{\frac{1}{2}} u^{\prime \prime \prime}(0)+\sqrt{\xi} C^{\frac{3}{2}} u^{\prime \prime}(0)\right\|^{2}
\end{gathered}
$$

at $\xi=\left\|u^{(4)}\right\|_{L_{2}}^{1 / 2}\left\|C^{2} u^{\prime \prime}\right\|_{L_{2}}^{-1 / 2}$.
Thus, it follows from (17), that

$$
\left\|A u^{\prime \prime \prime}\right\|_{L_{2}}^{2} \leq 2 c_{2}(\alpha ; \beta ; \varepsilon) c_{4}(\alpha ; \beta ; \varepsilon)\left\|P_{0} u\right\|_{L_{2}}^{2}=c_{3}^{2}(\alpha ; \beta ; \varepsilon)\left\|P_{0} u\right\|_{L_{2}}^{2}
$$

i.e.

$$
\left\|A u^{\prime \prime \prime}\right\|_{L_{2}} \leq c_{3}(\alpha ; \beta ; \varepsilon)\left\|P_{0} u\right\|_{L_{2}} .
$$

Proceedings of IMM of NAS of Azerbaijan ${\overline{\text { [On solvability of one class of bound...] }}{ }^{91} 10}$
So $\stackrel{\circ}{N}_{3} \leq c_{3}(\alpha ; \beta ; \varepsilon)$.
The lemma is proved.
Now let's prove the main theorem.
Theorem. Let the conditions 1), 2) be fulfilled and the following inequality hold

$$
\theta(\alpha ; \beta ; \varepsilon)=\sum_{j=0}^{4} c_{j}(\alpha ; \beta ; \varepsilon)\left\|B_{4-j}(t)\right\|_{L_{\infty}\left(R_{+} ; L(H)\right)}<1 .
$$

Then the problem (1), (2) is regularly solvable.
Proof. Let's write the equation $P u=f$ in the form

$$
v+P_{1} P_{0}^{-1} v=f
$$

where $v=P_{0} u$. Since for any $v \in L_{2}\left(R_{+} ; H\right)$

$$
\begin{gathered}
\left\|P_{1} P_{0}^{-1} v\right\|_{L_{2}}=\left\|P_{1} u\right\|_{L_{2}} \leq \sum_{j=0}^{4}\left\|B_{4-j}(t)\right\|_{L_{\infty}\left(R_{+} ; L(H)\right)}\left\|A^{4-j} u^{(j)}\right\|_{L_{2}} \leq \\
\leq \sum_{j=0}^{4}\left\|B_{4-j}(t)\right\|_{L_{\infty}\left(R_{+} ; L(H)\right)} c_{j}(\alpha ; \beta ; \varepsilon)\left\|P_{0} u\right\|_{L_{2}}=\theta(\alpha ; \beta ; \varepsilon)\|v\|_{L_{2}}
\end{gathered}
$$

and $\theta(\alpha ; \beta ; \varepsilon)<1$, then $E+P_{1} P_{0}^{-1}$ is invertible in $L_{2}\left(R_{+} H\right)$ and

$$
u=P_{0}^{-1}\left(E+P_{1} P_{0}^{-1}\right) f .
$$

Hence we get, that

$$
\|u\|_{W_{2}^{4}} \leq \operatorname{cons}\|f\|_{L_{2}} .
$$

The theorem is proved.

References

[1]. Lions G.L., Majenes E. Non-homogeneous boundary value problems and their applications. M.: "Mir", 1971, 371 p.
[2]. Mirzoyev S.S. Multiple completeness of a part of eigen and adjoint vectors of polynomial operator bundles of fourth order with normal main part. Spectral theory of operatorsa "Baku", "Elm", 1982, pp.148-161.
[3]. Aliyev A.R. Boundary value problems for a class of operator-differential equations of higher order with variable coefficients. "Math.Zametki", 2003, v.74, issue 6, pp.803-814.

Sabir S.Mirzoyev, Ayten T. Aliyeva
Institute of Mathematics and Mechanics of NAS of Azerbaijan.

9, F. Agayev str., AZ1141, Baku, Azerbaijan.
Tel.: (99412) 4394720 (off.)

Received October 27, 2004; Revised January 06, 2005.
Translated by Gachayeva L.G.

