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ON SOLVABILITY OF ONE CLASS OF BOUNDARY

VALUE PROBLEM FOR A FOURTH ORDER

OPERATOR-DIFFERENTIAL EQUATION

Abstract

The theorem about correct and univalent solvability of a class of boundary
value problem for operator-differential equation with variable coefficients was
obtained. These conditions are expressed only by the coefficients of the given
equation.

In separable Hilbert space H consider the boundary value problem

P

(
d

dt

)
u ≡ d4u (t)

dt4
+ ρ (t)A4u (t) +

4∑
j=0

A4−j (t)u(j) (t) = f (t) ,

t ∈ R+ = (0,∞) , (1)

u (0) = u′ (0) = 0, (2)

where f (t) , u (t) are vector functions with values from H,

ρ (t) =

{
α4, t ∈ (0, 1) ,
β4, t ∈ (1,∞) ,

α > 0, β > 0 and operators A and Aj (t)
(
j = 0, 4

)
satisfy the following conditions.

1. A is a normal reversible operator, whose spectrum is contained in angular
sector Sε = {λ : |arg λ| ≤ ε}, 0 ≤ ε <

π

4
;

2. The operators Bj (t) = Aj (t)A−j
(
j = 0, 4

)
are bounded in H and Bj (t) ∈

L∞ (R+;L (H)).
Here and later on the derivatives are understood in the sense of distributions,

and L (H) is a space of linear bounded operators acting in H.
From condition 1) it follows, that the operator A is represented in the form:

A = UC = CU , where C is positive-definite self-adjoint operator, and U is a unitary
operator in H. Let’s consider the scale of Hilbert spaces generated by the operator
C, i.e.

Hγ = D (Cγ) , (x, y)γ = (Cγx,Cγy) , x, y ∈ Hγ , γ ≥ 0.

Then, let’s denote by L2 (R+;H) the Hilbert space of vector-functions f (t),
defined in R+ with values from H for which

‖f‖L2(R+;H) =

∞∫
0

‖f (t)‖2 dt

2

<∞.
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Let’s denote by W 4
2 (R+;H) the Hilbert space (see [1])

W 4
2 (R+;H) = {u : u(4) ∈ L2 (R+;H) , A4u ∈ L2 (R+;H)}

with norm

‖u‖W 4
2 (R+;H) =

(∥∥∥u(4)
∥∥∥2

L2

+
∥∥A4u

∥∥2

L2

) 1
2

.

Let

W̊ 4
2 (R+;H) = {u : u ∈W 4

2 (R+;H) , u (0) = u′ (0) = 0}.

It follows from the theorem on traces [1], that W̊ 4
2 (R+;H) is a complete subspace

of the space W 4
2 (R+;H).

The spaces L2 (R;H) and W 4
2 (R;H) , where R = (−∞,∞) are defined similarly.

Definition 1. If at any f (t) ∈ L2 (R+;H) there exists the vector-function
u (t) ∈ W 4

2 (R+;H), satisfying the equation (1) almost everywhere, the boundary
conditions (2) in the sense

lim
t→+0

‖u (t)‖7/2 = 0, lim
t→+0

∥∥u′ (t)∥∥
5/2

= 0

and for which the estimate

‖u‖W 4
2
≤ const ‖f‖L2

,

is true, then we’ll call the problem (1), (2) regularly solvable.

Let’s find the conditions of regular solvability of problem (1), (2) in the given
work.

Let’s note, that at ρ (t) ≡ 1 (i.e. α = β = 1) this problem was investigated in
the paper [2] and at α 6= β and A is a self-adjoint operator in [3].

Let’s write the problem (1), (2) in the form of the equation

Pu = P0u+ P1u = f,

where

f ∈ L2 (R+;H) , u ∈ W̊ 2
2 (R+;H)

and

P0u = u(4) +A4u, P1u =
4∑

j=0

A4−j (t)u(j) (t) , u ∈ W̊ 4
2 (R+;H) .

It holds

Theorem 1. Let the condition 1) be fulfilled then, the operator P0 : W̊ 4
2 (R+;H) →

L2 (R+;H) is isomorphism.
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Proof. It’s easy to see, that the equation P0u = 0 has only a zero solution. Let’s
show that the image of the space operator P0 coincides with the space L2 (R;H).
Evidently, the vector-functions

u1 (t) =
1
2π

∞∫
−∞

1
λ4E + α4A4

∞∫
0

f (s) e−iλ(t−s)ds

 dλ

and

u2 (t) =
1
2π

∞∫
−∞

1
λ4E + β4A4

∞∫
0

f (s) e−iλ(t−s)ds

 dλ

satisfy respectively, the equation u(4) + α4A4u = f and u(4) + β4A4 = f almost
everywhere in R+. Let’s show, that u1 (t) , u2 (t) ∈ W 4

2 (R;H). By Plansharel
theorem∥∥∥u(4)

∥∥∥
L2(R;H)

=
∥∥λ4û1 (λ)

∥∥
L2(R+;H)

=
∥∥∥λ4

(
λ4E + α4A4

)−1
f̂ (λ)

∥∥∥
L2(R;H)

≤

≤ sup
λ∈R

∣∣∣λ4
(
λ4 + α4A4

)−1
∣∣∣ ‖f‖L2(R;H) ≤

≤ sup
λ∈R

(
sup

µ∈σ(A)

∣∣∣λ4
(
λ4 + α4µ4

)−1
∣∣∣) ‖f‖L2(R;H) ≤ ‖f‖L2(R;H) .

It’s analogously proved, that A4u1 ∈ L2 (R;H), i.e. u1 (t) ∈ W 4
2 (R;H) . By

the same way it is proved, that u2 (t) ∈ W 4
2 (R;H). Let’s denote the contractions

of vector-functions u1 (t) and u2 (t) on [0; 1] and (1;∞), by ψ1 (t) and ψ2 (t), re-
spectively. It is evident, that ψ1 (t) ∈ W 4

2 ([0; 1] ;H) , ψ2 (t) ∈ W 4
2. ((1;∞) ;H) , and

ψ1 (0) ∈ H7/2, ψ
′
1 (0) ∈ H5/2, ψ

(j)
1 (1) , ψj

2 (1) ∈ H4−j−1/2

(
j = 0, 3

)
.

Let’s determine the vector-function

u (t) =


ξ1 (t) ≡ ψ1 (t) + eαω1tAϕ1 + eαω2tAϕ2 + eαω1(1−t)Aϕ3+
+eαω2(1−t)Aϕ4, t ∈ [0; 1),
ξ2 (t) ≡ ψ2 (t) + eβω1(t−1)Aϕ5 + eβω2(t−1)Aϕ6, t ∈ (1;∞) ,

where ω1 = −
√

2
2

(1 + i) , ω2 = −
√

2
2

(1− i), and the unknown vectors ϕj ∈
H7/2

(
j = 0, 6

)
. It’s easy to see, that vectors ϕj are identically defined from the con-

dition u ∈ W̊ 4
2 (R+;H)

(
ξ1 (0) = 0, ξ′1 (0) = 0, ξ(j)1 (1) = ξ

(j)
2 (1) , j = 0, 3

)
. Thus,

u (t) ∈ W̊ 4
2 (R;H). Since at u ∈ W̊ 4

2 (R+;H)

‖P0u‖L2
≤
√

2 max
(
1;α4;β4

)
‖u‖W 4

2
,

then approval of the theorem follows from Banach theorem on the inverse operator.
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It follows from this theorem, that norms ‖P0u‖L2
and ‖u‖W 4

2
are equivalent in

the space W̊ 4
2 (R;H). Therefore, by the theorem on intermediate derivatives, the

norms
N̊j (R+) = sup

0 6=u∈W̊ 4
2 (R+;H)

∥∥∥A4−ju(j)
∥∥∥

L2

‖P0u‖−1
L2
, j = 0, 4 (3)

are finite. Let’s prove the following lemma for estimation of these numbers.
Lemma 1. Let the condition 1) be fulfilled, then the inequality

‖P0u‖2
L2
≥ min

(
α4;β4

)(∥∥∥ρ− 1
2u(4)

∥∥∥2

L2

+
∥∥∥ρ 1

2A4u
∥∥∥2

L2

+

+ 2 cos 4ε
∥∥A2u′′

∥∥2

L2

)
, (4)

holds at any u ∈ W̊ 4
2 (R+;H).

Proof. Since∥∥∥ρ− 1
2P0u

∥∥∥2

L2

=
∥∥∥ρ− 1

2u(4) + ρ
1
2A4u

∥∥∥2

L2

=
∥∥∥ρ− 1

2u(4)
∥∥∥2

L2

+

+
∥∥∥ρ 1

2A4u
∥∥∥2

L2

+ 2 Re
(
u(4), A4u

)
L2

. (5)

Considering that u ∈ W̊ 4
2 (R+;H) (u (0) = u′ (0) = 0) integrating by parts we get

(
u(4), A4u

)
L2

=

∞∫
0

(
u(4), A4u

)
dt =

∞∫
0

(
A∗2u′′, A2u′′

)
dt =

(
A∗2u′′, A2u′′

)
L2
,

i.e.
Re
(
u(4), A4u

)
L2

= Re
(
A∗2u′′, A2u′′

)
L2
≥ cos 4ε

(
A2u′′, A2u′′

)
L2

=

= cos 4ε
∥∥A2u′′

∥∥2

L2
.

Thus it follows, from (5) that∥∥∥ρ− 1
2P0u

∥∥∥2

L2

≥
∥∥∥ρ− 1

2u(4)
∥∥∥2

L2

+
∥∥∥ρ 1

2A4u
∥∥∥2

L2

+ 2 cos 4ε
∥∥A2u′′

∥∥2

L2
. = (6)

The approval of the lemma follows from inequality (6) subject to inequality∥∥∥ρ− 1
2P0u

∥∥∥2

L2

≤ max
t
ρ−1 (t) ‖P0u‖2

L2
=

1
min

(
α4, β4

) ‖P0u‖2
L2
.

The lemma is probed.
Lemma 2. For numbers N̊j (R+) the following estimations hold:

N̊j (R+) ≤ cj (α;β; ε) , j = 0, 4,

where

c0 (α;β; ε) =
1

min
(
α4, β4

)


1, 0 ≤ ε ≤ π

8
,

1√
2 cos 2ε

,
π

8
≤ ε <

π

4
,

(7)
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c1 (α;β; ε) =
1

min
(
α3, β3

)


1√
2 cos 2ε

, 0 ≤ ε <
π

8
,

1
4
√

8 cos 2ε
,
π

8
≤ ε <

π

4
,

(8)

c2 (α;β; ε) =
1

2 cos 2εmin
(
α2;β2

) , 0 ≤ ε <
π

4
, (9)

c4 (α;β; ε) =
max

(
α2;β2

)
min

(
α2;β2

)


1, 0 ≤ ε <
π

8
,

1√
2 cos 2ε

,
π

8
≤ ε <

π

4
.

(10)

Proof. At u ∈ W̊ 4
2 (R+;H) (u (0) = u′ (0) = 0) we have

∥∥A2u′′
∥∥2

L2
=
∥∥C2u′′

∥∥2

L2
=

∞∫
0

(
C2u′′, C2u′′

)
dt =

∞∫
0

(
C4u, u(4)

)
dt =

=
(
ρ

1
2C4u, ρ−

1
2u(4)

)
L2

≤
∥∥∥ρ 1

2C4u
∥∥∥

L2

∥∥∥ρ− 1
2u(4)

∥∥∥
L2

=

=
∥∥∥ρ 1

2A4u
∥∥∥

L2

∥∥∥ρ− 1
2u(4)

∥∥∥
L2

≤ 1
2

(∥∥∥ρ 1
2A4u

∥∥∥2

L2

+
∥∥∥ρ− 1

2u(4)
∥∥∥2

L2

)
. (11)

Taking into account inequality (4) in (11) we get:

∥∥A2u′′
∥∥2

L2
≤ 1

2

(
1

min
(
α4;β4

)
‖P0u‖2

L2
− 2 cos 4ε

∥∥A2u′′
∥∥2

L2

)
or ∥∥A2u′′

∥∥
L2
≤ 1

2 cos 2ε
1

min
(
α2;β2

) ‖P0u‖L2
= c2 (α;β; ε) ‖P0u‖L2

, (12)

i.e. N̊2 (R+) ≤ c2 (α;β; ε).
At 0 ≤ ε ≤ π

8
(cos 4ε ≥ 0) it follows from inequality (4), that

∥∥A4u
∥∥

L2
≤ max

t
ρ−

1
2 (t)

∥∥∥ρ 1
2A4u

∥∥∥
L2

≤ 1
min

(
α4;β4

) ‖P0u‖2
L2
. (13)

And at
π

8
≤ ε <

π

4
(cos 4ε ≤ 0) from inequality (4) with regard to (12) we get

‖P0u‖2
L2
≥ min

(
α4;β4

)(∥∥∥ρ 1
2A4u

∥∥∥2

L2

+
2 cos 4ε

4 cos2 2εmin
(
α4;β4

) ‖P0u‖2
L2

)
or ∥∥∥ρ 1

2A4u
∥∥∥2

L2

≤ 1
2 cos2 2ε

1
min

(
α2;β4

) ‖P0u‖2
L2
.

Whence it follows, that∥∥A4u
∥∥

L2
≤ 1√

2 cos 2ε
1

min
(
α2;β4

) ‖P0u‖L2
. (14)



90
[S.S.Mirzoyev, A.T.Aliyeva]

Proceedings of IMM of NAS of Azerbaijan

It follows from inequality (13) and (14) that N̊0 ≤ c0 (α;β; ε).
Now let’s estimate the norms N̊1, N̊3 and N̊4.
At u ∈ W̊ 4

2 (R+;H) we have:

∥∥A3u′
∥∥2

L2
=
∥∥C3u′

∥∥2

L2
=

∞∫
0

(
C3u′, C3u′

)
dt = −

∞∫
0

(
C4u,C2u′′

)
dt =

= −
(
C4u,C2u′′

)
L2
≤
∥∥C4u

∥∥
L2

∥∥C2u′′
∥∥

L2
=
∥∥A4u

∥∥
L2

∥∥A2u′′
∥∥

L2
.

Hence taking into account the estimations proved for N̊0 and N̊2 we get, that∥∥A3u′
∥∥

L2
≤ c

1/2
0 (α;β; ε) c1/2

2 (α;β; ε) ‖P0u‖L2
= c1 (α;β; ε) ‖P0u‖L2

,

i.e. N̊1 ≤ c1 (α;β; ε) .
Then at 0 ≤ ε <

π

8
(cos 2ε ≥ 0) from inequalities (4) it follows, that

∥∥∥u(4)
∥∥∥2

L2

≤ max
t
ρ (t)

∥∥∥ρ− 1
2u(4)

∥∥∥2

L2

≤
max

(
α4;β4

)
min

(
α4;β4

) ‖P0u‖2
L2
,

i.e. ∥∥∥u(4)
∥∥∥

L2

≤
max

(
α2;β2

)
min

(
α2;β2

) ‖P0u‖L2
. (15)

And at
π

8
≤ ε <

π

4
, analogously to estimation of N̊0 we get that

∥∥∥u(4)
∥∥∥

L2

≤ 1√
2 cos 2ε

max
(
α2;β2

)
min

(
α2;β2

) ‖P0u‖L2
. (16)

It follows from (15) and (16), that N̊4 ≤ c4 (α;β; ε). We use inequality for
estimation of N̊3 ∥∥Au′′′∥∥2

L2
≤ 2

∥∥A2u′′
∥∥

L2

∥∥∥u(4)
∥∥∥

L2

, (17)

which is obtained from the inequality∥∥∥∥ξC2u′′ + Cu′′′ +
1
ξ
u(4)

∥∥∥∥2

L2

= ξ2
∥∥C2u′′

∥∥2

L2
+

1
ξ2

∥∥∥u(4)
∥∥∥2

L2

−

−
∥∥Cu′′′∥∥2

L2
−
∥∥∥∥ 1√

ξ
C

1
2u′′′ (0) +

√
ξC

3
2u′′ (0)

∥∥∥∥2

at ξ =
∥∥u(4)

∥∥1/2

L2

∥∥C2u′′
∥∥−1/2

L2
.

Thus, it follows from (17), that∥∥Au′′′∥∥2

L2
≤ 2c2 (α;β; ε) c4 (α;β; ε) ‖P0u‖2

L2
= c23 (α;β; ε) ‖P0u‖2

L2
,

i.e. ∥∥Au′′′∥∥
L2
≤ c3 (α;β; ε) ‖P0u‖L2

.
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So N̊3 ≤ c3 (α;β; ε).
The lemma is proved.
Now let’s prove the main theorem.
Theorem. Let the conditions 1), 2) be fulfilled and the following inequality hold

θ (α;β; ε) =
4∑

j=0

cj (α;β; ε) ‖B4−j (t)‖L∞(R+;L(H)) < 1.

Then the problem (1), (2) is regularly solvable.
Proof. Let’s write the equation Pu = f in the form

υ + P1P
−1
0 υ = f,

where υ = P0u. Since for any υ ∈ L2 (R+;H)

∥∥P1P
−1
0 υ

∥∥
L2

= ‖P1u‖L2
≤

4∑
j=0

‖B4−j (t)‖L∞(R+;L(H))

∥∥∥A4−ju(j)
∥∥∥

L2

≤

≤
4∑

j=0

‖B4−j (t)‖L∞(R+;L(H)) cj (α;β; ε) ‖P0u‖L2
= θ (α;β; ε) ‖υ‖L2

and θ (α;β; ε) < 1, then E + P1P
−1
0 is invertible in L2 (R+H) and

u = P−1
0

(
E + P1P

−1
0

)
f.

Hence we get, that
‖u‖W 4

2
≤ cons ‖f‖L2

.

The theorem is proved.

References

[1]. Lions G.L., Majenes E. Non-homogeneous boundary value problems and their
applications. M.: “Mir”, 1971, 371 p.

[2]. Mirzoyev S.S. Multiple completeness of a part of eigen and adjoint vectors of
polynomial operator bundles of fourth order with normal main part. Spectral theory
of operatorsa “Baku”, “Elm”, 1982, pp.148-161.

[3]. Aliyev A.R. Boundary value problems for a class of operator-differential
equations of higher order with variable coefficients. “Math.Zametki”, 2003, v.74,
issue 6, pp.803-814.

Sabir S.Mirzoyev, Ayten T. Aliyeva
Institute of Mathematics and Mechanics of NAS of Azerbaijan.



92
[S.S.Mirzoyev, A.T.Aliyeva]

Proceedings of IMM of NAS of Azerbaijan

9, F. Agayev str., AZ1141, Baku, Azerbaijan.
Tel.: (99412) 439 47 20 (off.)

Received October 27, 2004; Revised January 06, 2005.
Translated by Gachayeva L.G.


