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THE LIMIT THEOREMS FOR ONE CLASS OF
MOMENTS OF FIRST INTERSECTION OF

NONLINEAR BOUNDARY BY
MULTIDIMENSIONAL WALK

Abstract

In the present paper the moment of first intersection of nonlinear boundary
by the random process, described by nonlinear functions of multidimensional
walk is considered. The integral limit theorems for one class of n on-linear
moments of the first intersection are proved.

1. Introduction.
Let ξn, n ≥ 1 be a sequence of independent equally distributed random vectors

in Rk, k ≥ 1, and let the numerical Borel function ∆ (x) , x ∈ Rk be given.
Assume at n ≥ 1

Sn =
n∑

k=1

ξk, Tn = n∆ (Sn/n) .

Consider the first passage time of the process Tn crosses the nonlinear boundary

τ = τa = inf {n ≥ 1 : Tn ≥ fa (n)} ,

where fa (t) , a > 0, t > 0 is some family of nonlinear boundaries.
Many papers (see, for example, the monograph [1] and thesis [3]) have been de-

voted to study of asymptotic properties of the Markov moment τ c in one-dimensional
case (k = 1) at fa (t) ≡ a.

In the papers [1] and [3] the integral limit theorems (ILT) for τa are studied,
under which it is got any statement that at some conditions there exist the constants
A (a) , B (a) > 0 and the variate η such that

τa −A (a)
B (a)

=⇒ η, a −→∞, (1)

where the sign =⇒ means convergence in distribution.
Recently, there is a great interest to study of boundary-value problems for mul-

tidimensional random walk [4-7].
As it was noted in [7] the multidimensional case (i.e. the case k > 1) has

been studied substantially smaller. It is connected therewith, that the method of
study of boundary-value problems in multi-dimensional case has been developed less
systematically, than one-dimensional case. A series of particular results, relating to
asymptotic properties of the distribution τa are in the papers [2, 5, 6, 7]. In [2]
some problems of sequential analysis are investigated, in which arises the moment
of stoppage of the form τ c and ∆ (x) = ‖x‖2 and fa (t) ≡ a, where ‖·‖ is an ordinary
Euclidean norm in Rk. In the paper [5], the ILT have been studied for τa in the
case of linear boundary (fa (t) ≡ a).

The purpose of the present paper is the further study of ILT in multidimensional
case for boundary crossing time τa (fa (t) 6= a).



96
[F.G.Ragimov]

Proceedings of IMM of NAS of Azerbaijan

2. Conditions and denotation.
We’ll assume, that the random vector ξ1 has finite mathematical expectation

ν = Eξ1. Let’s denote by H a class of the functions ∆ (x), x ∈ Rk, for which the
following conditions are fulfilled: ∆ (x) has continuous partial derivatives ∆′

xi
(x),

i = 1, k at some neighborhood of the point x = ν, at that ∆ (ν) > 0 and ∆′
xi

(ν) 6= 0
at least for one i = 1, k.

With respect to nonlinear boundary fa (t) we’ll assume, that it satisfies the
following conditions:

1) For each a the function fa (t) monotonically increases, continuously differen-
tiable at t > 0, and fa (1) ↑ ∞, a →∞.

2) n = n (a) →∞ as a →∞, such that
1
n

f (n) → µ = ∆ (ν) > 0 and f ′a (n) → θ

for some θ ∈ [0, µ).
3) For each a the function f ′a (t) weakly oscillates at the infinity, i.e.

f ′a (n)
f ′a (m)

→ 1 as
n

m
→ 1, n →∞.

Let’s denote by W a class of family of boundaries, satisfying conditions 1)-3),
and by Na = Na (µ) - the solution of the equation fa (n) = nµ, which exists for
sufficiently large a [4].

(x, y) below means ordinary scalar product of the vectors x, y ∈ Rk.

3. Statement of the basic results.
Theorem 1. Let ξn, n ≥ 1 be a sequence of the independent identically distrib-

uted random vectors in Rk with the mean value ν = Eξ1 and matrix of covariation
B. Moreover, let ∆ (x) ∈ H and fa (t) ∈ W . Then

τa −Na√
Na

=⇒ (η, λ)
µ− θ

,

where λ =
(
∆′

x1
(ν) , ...,∆′

xk
(ν)
)
, and η = (η1, ..., ηk) is a k-dimensional normal

random vector with a zero vector of mathematical expectations and matrix of covari-
ation B.

Note, that it follows from the well known properties of the Gauss variate that
the random variable (η, λ) has the normal distribution with the parameters(

0,
k∑

i,j=1
cov

(
ηi, ηj

)
∆′

xi
(ν) ∆′

xj
(ν)

)
.

Theorem 1 permits the following generalization for random vectors, belonging
to the gravitation domain of multidimensional stable distribution in the sense of
Levi-Feldheym with the characteristical exponent α ∈ (1, 2] ([9], [10]).

Theorem 2. Let ξn, n ≥ 1 be a sequence of independent identically distributed
random vectors in Rk with a finite vector of mathematical expectations ν = Eξ1 and
∆ (x) ∈ H, fa (t) ∈ W .

Suppose, that there is the sequence A (n) > 0 and k-dimensional random vector
J such that

Sn − nν

A (n)
=⇒ J.

Then
τ c −Na

A ([Na])
=⇒ −(J, λ)

µ− θ
,
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where [] is a sign of the whole part.
Note, that here the random vector J has k-dimensional stable distribution in Rk

with the characteristical exponent α ∈ (1, 2] and as a A (n) we can take
A (n) = n1/αL (n), where L (x) , x > 0 is a slowly varying function [10].

4. The proof of basic results.
First of all, let’s remark, that under the given conditions, concerning the function

∆ (x), we have
Tn = Zn + εn (2)

where
Zn =

n∑
k=1

Xi, Xi = ∆ (ν) + (λ, ξi − ν) ,

εn = n

(
1
n

Sn − ν, λn − λ

)
,

λn =
(
∆′

x1
(νn) , ...,∆′

xk
(νn)

)
and νn, n ≥ 1 is some sequence of the random points from the neighbourhood of
ν, at that νn

?????−→ ν, n →∞.
As it is seen, Zn, n ≥ 1 is a one-dimensional random walk with EZ1 = ∆ (ν) > 0.
So, the first passage time τa takes the following form

τa inf {n ≥ 1 : Zn + εn ≥ fa (t)} ,

which allows to apply analytical methods of the papers [1] and [4].
The proof of the stated theorems is based on the following auxiliary lemmas.
Lemma 1. Let the random vector ξ1 have the finite mathematical expectation

ν = Eξ1 and ∆ (x) ∈ H, fa (t) ∈ W . Then

1) τa
a.c−→∞, a →∞;

2)
τa

Na

a.c.−→ 1, a →∞;

3)
A (τa)

A ([Na])
P−→ 1, a →∞.

Proof. From expansion (2) we have

Tn

n
=

Zn

n
+
(

Sn

n
− ν, λn − λ

)
.

By virtue of strong law of large numbers(
Sn

n
− ν, λn − λ

)
a.c.−→ 0, n →∞.

Therefore,
Tn

n

a.c.−→ ∆ (ν) > 0, n →∞.

From here, it follows, that sup
n

Tn = ∞.
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According to

P (τa > n) = P

(
max

1≤k≤n
(Tk − fa (k)) ≤ 0

)
≥ P

(
max

1≤k≤n
Tk ≤ fa (1)

)
,

we obtain statement 1).
Let us prove statement 2). By definition of τ we have

Tτ−1

τ
≤ fa (τ)

τ
≤ Tτ

τ

or
Zτ−1 + ετ−1

τ
≤ fa (τ)

τ
≤ Zτ + ετ

τ
.

By virtue of strong law of large numbers

Zn

n

a.c.−→ µ and
εn

n

a.c.−→ 0, n →∞.

Therefore, from the first part of lemma 2 and from the Richter lemma [11] we
obtain, that

fa (τa)
τa

a.c.−→ µ as a →∞.

Then
∆ (a) =

fa (τa)
τa

− fa (Na)
Na

=
λa (νa)

νa

Na − τa

νa
,

where
λa (t) = fa (t)− tf ′a (t) .

Taking into account, that ∆ (a) a.c.−→ 0 as a → ∞ from the last correlation we
obtain statement 2) of lemma 2.

Statement 3) follows from statement 2 and from the fact, that the convergence

L (tx)
L (x)

→ 1, x →∞

is uniformly fulfilled with respect to t from the bounded set in (0,∞) [10].
Lemma 2. Let ξn = (ξn1, ξn2, ..., ξnk) , n ≥ 1 be a sequence of k-dimensional

random vectors and ξ = (ξ1, ξ2, ..., ξk) be a k-dimensional random vector such that
ξn =⇒ ξ. Then

k∑
i=1

ξni =⇒
k∑

i=1
ξi, n →∞.

Proof. Denote by f (t) and f (t) , t = (t1, ..., tk) ∈ Rk the characteristical
functions of the random vectors ξn and ξ respectively. From the condition of the
lemma we have

fn (t) → f (t) , n →∞

for each t ∈ Rk.

The characteristical functions of the sums
k∑

i=1
ξni and

k∑
i=1

ξi are equal to

ϕnk (s) = fn (t) |t1=t2=...=tk=S and ϕk (s) = f (t) |t1=t2=...=tk=S .
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respectively.
Hence, we obtain that for each s ∈ R

ϕnk (s) → ϕk (s) as n →∞,

that proves the statement of lemma 2.
Now let us prove the theorems.
Proof of theorem 1. We have

Z∗
n =

Zn − n∆ (ν)√
n

=
(

λ,
Sn − nν√

n

)
, (3)

According to multidimensional central limit theorem

S∗
n =

Sn − nν√
n

=⇒ η, n →∞.

Then from (3) and lemma 2 we find

Z∗
n =⇒ (λ, η) , n →∞. (4)

It is well known (see [1]), that the sequence of normalized sums Z∗
n, ≥ 1 of

independent equally distributed variates is uniformly continuous in probability (see
also [3]). Hence, by virtue of (4) and statement (2) of lemma 1 the Anskombe
theorem is applicable to it, according to which

Zτ − τ∆ (ν)√
τ

=⇒ (λ, η) , a →∞. (5)

Then, by the definition τ = τa and χa = Tτ − fa (τ) we have

Zτ − µτ√
τ

=
fa (τ)− µτ√

τ
+

χa − ετ√
τ

=

=
fa (Na)− µτ√

τ
+

fa (τ)− fa (Na)√
τ

+
χa − ετ√

τ
=

= −µτ∗ + f ′a (ν) τ∗ +
χa − ετ√

τ
= τ∗

(
f ′a (νa)− µ

)
+

χa − ετ√
τ

, (6)

where τ∗ =
τ −Na√

Na
and νa is some intermediate point between τa and Na.

Let’s show that
χa − ετ√

τ

P−→ 0, a →∞. (7)

Really, we have

0 ≤ χa ≤ Tτ − Tτ−1 ≤ Xτ + ετ − ετ−1,

εn√
n

=
(

λn − λ,
Sn − nν√

n

)
and

Xn√
n

=
∆ (ν)√

n
+
(

λ,
ξn − ν√

n

)
.
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It is easy to see, that λn
nh−→ λ and

Xn√
n

P−→ 0 as n →∞.

With the help of discussions, realized in the papers [4] and [5] we can show, that
χτ√

τ

P−→ 0 and
ετ√
τ

P−→ 0, a →∞ (8)

(7) follows from (8).
Now the statement of the proved theorem follows from (5) and (7).
Proof of theorem 2. This theorem is proved by the scheme of the proof of

theorem 1. At that it suffices to show, that the sequence

Z∗
n =

Zn − nµ

A (n)
, n ≥ 1

is uniformly continuous in probability and this follows from the fact, that the
normalizing constants A (n) = n1/αL (n) satisfy the condition of the paper [6] and
thus we can apply the Anskombe theorem. Other distributions are realized with the
corresponding computations, beginning with equality (3), where instead of

√
n we

are to take A (n).
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