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STATEMENT OF A CONICAL SHELL FLUTTER
PROBLEM

Abstract

In the proposed work it is considered a case of aeroelastic vibrations of a
truncated conical shell, constituting a part of a right circular cone, streamlined
by supersonic gas flow.

Introduction. A problem on aeroelastic vibrations of a slanting shell or a shell
of revolution streamlined by supersonic gas flow is considered in the paper [1].

Expressions for the pressure of aerodynamic interaction between flow and os-
cillating shell are obtained in a general form. It is considered a partial case when
a slanting shell occupies a part of the surface of a thin profile. It is shown that
”dynamical” part of pressure consists of two constituents: the first of them is the
well-known piston theory, but with a coefficient depending on the flow velocity in
a sufficiently complicated way; the second one makes sense of contractive normal
stress in median surface of a shell and obviously may exert noticeable effect on the
character of vibrations and critical velocity of a flutter. The results of calculations of
a plate flutter occupying a part of a surface of a thin wedge confirms this deduction
[2].

In the present work we consider a case of aeroelastic vibrations of a truncated
conical shell constituting a part of a right circular cone streamlined by supersocin
gas flow that is important in applications.

1Y. Relations of gas dynamics. Let’s consider a thin circular cone stream-
lined by a supersonic flow. Origin of a rectangular system of coordinates is located
on a vertex, the axis z is directed along the velocity vector. In undeformable state
an equation of a generator z1 = kz, k = tga « is angle of half-opening of a cone.
Denote by w (z,t) deflections of a shell (it ossupies a part [x1,x3] of a cone, we first
consider an axially symmetric case). On the part [x1, x2] of the shell we have

z=kx —w(x,t) (1)

Assume (w (z,t) /kx) << 1.

According to the law of plane sections, state of gas in the field between schock
wave (Sh.W) and body is determined from the solution of a plane problem on a
piston which moves by the law

z (t) = kvt — w (vt, t) (2)

where v is stream velocity.
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Solution of the streamline problem is sought by the expansion in small parameter
0 2

P’ y—1 2ag ]
— = 1+ =ca(D
p* 7+1[ (y—1) D? )

here p° is gas density before ShW, p* - after ShW, D is velocity of propaga-

tion of ShW, ag is sound velocity in undisturbed flow, v is polytropic exponent
(p/1° = (p/P°)").

Introduce Lagrangian coordinates ¢ and z, such that dz = p%* ldr, r is the
distance of particles from the axis at initial time. The desired functions: distance
of particles from the axis £ = £ (¢, z), pressure p = p(t, z), p = p(t, 2).

Equations of motion, conservation of mass, energy

d%¢ _ - 16p 8§ 1 .8<p>:0
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Conditions on shock wave z = z*
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p

Conditions on piston (2)
z=0, £(t,0)= kvt —w (vt,t) (5)

Here pY is the pressure in unperturbed flow.
We seek for the solution of system (3) by the expansion in e:

E=&+eli+.ip=potepi+..; p=¢c 'pgt+pt ..

Putting it into (3) we get systems for the zero and first approximations and
integrate them. The zero approximation

0% pl/v
: _ 1 0. _ :
o =80 (1); PO—P(t)—Zouwv Po—voo()a (6)
the first approximation

1
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here &y (t),p (t),vo (2),&] (t),pi (t),v1 (2) are the unknown functions defined from
boundary conditions.
Let &, (t) be a ShW motion law, then there will be 2* = p°¢h (¢) /.
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Then, from (4) we have: for z = z* = p¢} (t) /u there should be

1

=6, m=—"70%  m=0"/a(f) (8)

51 :07 p1 = _pO’ P1 = 0.

It is convenient to pass from z to 7 : 2 = p°&} (7) /i, then z* = ¢k (t) /p.
Finally for pg, p1,£&; we get
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This solution was expressed by & (¢); this function is found from the piston condi-
tion: for 7 =0 (z = 0) there should be

§(t) =& (t) + &1 () = 2 () = kvt —w (vt,1), (10)

Functional &; () is essentially non-linear, therefore (10) is solved by the sequen-
tial approximations method. Procedure of the method, estimation and reasons in
favour of convergence is in the paper [1], and we don’t cite it here. We finally get
(addends with e at the first degree were retained)

£, (t) = Dt — (1 +ca (D) /) w (vt, 1) + 2;27a (D) (vt, t) 12—
—276 [(1—=79)a(D)+1] th=n z AT (vr,T)dT. (11)

20, Definition of interaction pressure. In the case of conical shell in the

plane x = vt we have a plane problem on extension of a cylindric piston, therefore
p = 2. We have from (11)

£ (t) = Dt — (1 F2e 4 ga (D)) w (vt 1) + %a (D)1 (vt t) t+

2 t
@ (D) (0,0 = [w(ve.Q)d¢
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& (1) = DGQ(D) <5; —t> — @w(m&,t) (1— 5;) +5 }w (vs, s) ds—
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By passing to the problem on streamline of a cone in the Euler system of coor-
dinates connected with fixed body, it should be accepted:

substitute & (t) and &; (¢, 7) into (9) and carry out estimations similar to one in [1];
for the pressure to pass to the surface of a shell we’ll get

Ap=(p+epr —p°) _, = qo (x) + @ (x,1);

here qo (x) is a quasistatic constituent, ¢ (z,t) is a dynamic one.
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Velocity of shock wave D is determined from quadratic equation eDa (D) +
2utga. = 2D; after introdusing denotation MtgB3 = z, Mtga = zy this equation
takes the form (3 +7) 22 — 2 (y+ 1) 292 — 2 = 0.

State of a shell is described by the equations of technical theory in a mixed form.
Since Ap = qo + q1, we represent deflections and efforts functions in the sum of
the basic (quasistatistical) and perturbed (dynamic) states; w = wq () + wy (z,1);
F=F (.’L‘) + F (:L',t).

Let’s linearize the basic system, introduce dimensionless coordinates and param-
eters and make estimations in the pressure function qg; we get a basic state equation

tga h2 9 . 1 502%F,
12 (1 —v?) r3 0T 5 T as? G5 (14)
1 0%w
tgaA*Fy 4+ = - s 20 =0,

boundary conditions of hinge support

Pwy v Owy
s = 81, Szlzwozo, W—{—EEZO (15)
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here s is a dimensionless coordinate
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The solution of the system in perturbations is sought in the class of functions
w = W (s)cosnpexp (wt); F' = & (s)cosnpexp (wt). For W (s), ®(s) we get the
system
tgaA2d + %W" =0,

tgo h? 2 L., ho 1,
—2 AW - 2®" —tga—F,-W"—
12(1—2v2)r3 " s 90
h (1., n? 1" "
7o s s2sin” «

here A, = §%/9s%*—(9/0s) /s—n?/sin? a; 4402+ A1Q+X =0, Q = row/co, 2 =
E/p,

p is density of shell’s material; parameters A; in a sufficiently complicated way
depend on z = MtgB. Boundary conditions of a hinge support

1
s=s1,s=1:W=0 W' +=-W =0
s

TL2

sin? o

o —

d=0; & =0 (17)

Statement of the flutter problem is traditional; in a complex plane A it is con-
structed a stability parabola A4 (J m)\)2 = A? Re ) that separates the domain of sta-
ble (Re ) < 0) and unstable (Re > 0) vibrations ; A located interior to a parabola
responds to stable vibrations. As is known, eigen-value problem (16), (17) has a
discrete spectrum, therefore, in fact, the problem is stated as follows; to find the
eigen value that by increasing M will first come to stability parabola.

Remark 1. For M < My, the basic state should be statically stable;

Remark 2. Critical velocity depends on n : My, = My, (n); My, (ngy) =
rnganp (n) is assumed to be truth critical velocity of a flutter.
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