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STATEMENT OF A CONICAL SHELL FLUTTER

PROBLEM

Abstract

In the proposed work it is considered a case of aeroelastic vibrations of a
truncated conical shell, constituting a part of a right circular cone, streamlined
by supersonic gas flow.

Introduction. A problem on aeroelastic vibrations of a slanting shell or a shell
of revolution streamlined by supersonic gas flow is considered in the paper [1].

Expressions for the pressure of aerodynamic interaction between flow and os-
cillating shell are obtained in a general form. It is considered a partial case when
a slanting shell occupies a part of the surface of a thin profile. It is shown that
”dynamical” part of pressure consists of two constituents: the first of them is the
well-known piston theory, but with a coefficient depending on the flow velocity in
a sufficiently complicated way; the second one makes sense of contractive normal
stress in median surface of a shell and obviously may exert noticeable effect on the
character of vibrations and critical velocity of a flutter. The results of calculations of
a plate flutter occupying a part of a surface of a thin wedge confirms this deduction
[2].

In the present work we consider a case of aeroelastic vibrations of a truncated
conical shell constituting a part of a right circular cone streamlined by supersocin
gas flow that is important in applications.

10. Relations of gas dynamics. Let’s consider a thin circular cone stream-
lined by a supersonic flow. Origin of a rectangular system of coordinates is located
on a vertex, the axis x is directed along the velocity vector. In undeformable state
an equation of a generator z1 = kz, k = tgα α is angle of half-opening of a cone.
Denote by w (x, t) deflections of a shell (it ossupies a part [x1, x2] of a cone, we first
consider an axially symmetric case). On the part [x1, x2] of the shell we have

z = kx− w (x, t) (1)

Assume (w (x, t) /kx) << 1.
According to the law of plane sections, state of gas in the field between schock

wave (Sh.W) and body is determined from the solution of a plane problem on a
piston which moves by the law

z (t) = kvt− w (vt, t) (2)

where v is stream velocity.
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Solution of the streamline problem is sought by the expansion in small parameter

ρ0

ρ∗
=
γ − 1
γ + 1

[
1 +

2a2
0

(γ − 1)D2

]
≡ εa (D)

here ρ0 is gas density before ShW, ρ∗ - after ShW, D is velocity of propaga-
tion of ShW, a0 is sound velocity in undisturbed flow, γ is polytropic exponent(
p/p0 =

(
ρ/ρ0

)γ)
.

Introduce Lagrangian coordinates t and z, such that dz = ρ0rµ−1dr, r is the
distance of particles from the axis at initial time. The desired functions: distance
of particles from the axis ξ = ξ (t, z), pressure p = p (t, z), ρ = ρ (t, z).

Equations of motion, conservation of mass, energy

∂2ξ

∂t2
= −ξµ−1∂p

∂z
;

∂ξ

∂z
=

1
ρξµ−1 ;

∂

∂t

(
p

ργ

)
= 0 (3)

Conditions on shock wave z = z∗

p∗ =
2

γ + 1
ρ0D2 − εp0; ρ∗ =

ρ0

εa (D)
; (4)

Conditions on piston (2)

z = 0, ξ (t, 0) = kvt− w (vt, t) (5)

Here p0 is the pressure in unperturbed flow.
We seek for the solution of system (3) by the expansion in ε:

ξ = ξ0 + εξ1 + ...; p = p0 + εp1 + ...; ρ = ε−1ρ0 + ρ1 + ...

Putting it into (3) we get systems for the zero and first approximations and
integrate them. The zero approximation

ξ0 = ξ0 (t) ; p0 = p (t)− zξ1−µ
0

∂2ξ0
∂t2

; ρ0 =
p
1/γ
0

v0 (z)
; (6)

the first approximation

ξ1 =
1

ξµ−1
0

z∫
z∗
v0 (z) p−1/γ

0 dz + ξ∗1 (t)

p1 = (µ− 1)
∂2ξ0
∂t2

1
ξµ
0

z∫
z∗
ξ1dz −

1

ξµ−1
0

z∫
z∗

∂2ξ1
∂t2

dz + p∗1 (t) (7)

p1

p0
− γ ρ1

ρ0

= v1 (z)

here ξ0 (t) , p (t) , v0 (z) , ξ∗1 (t) , p∗1 (t) , v1 (z) are the unknown functions defined from
boundary conditions.

Let ξ0 (t) be a ShW motion law, then there will be z∗ = ρ0ξµ
0 (t) /µ.
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Then, from (4) we have: for z = z∗ = ρ0ξµ
0 (t) /µ there should be

ξ0 = ξ0 (t) , p0 =
1

γ + 1
ρ0ξ̇

2
0 ρ0 = ρ0/a

(
ξ̇
)

(8)

ξ1 = 0, p1 = −p0, ρ1 = 0.

It is convenient to pass from z to τ : z = ρ0ξµ
0 (τ) /µ, then z∗ = ρ0ξµ

0 (t) /µ.
Finally for p0, p1, ξ1 we get

p0 =
2

γ + 1
ρ0ξ̇

2
0 +

1
µ
ρ0ξ0ξ̈ − ξ̈0ξ

1−µ
0 z

p1 = − (µ− 1)
ρ0ξ̈0
ξµ
0

t∫
τ
ξ1 (t, ζ) ξµ−1

0 (ζ) ξ̇0 (ζ) dζ+

+
ρ0

ξµ−1
0

t∫
τ

∂2ξ1
∂t2

ξµ−1
0 (ζ) ξ̇0 (ζ) dζ − p0; (9)

ξ1 = ξ1 (t, τ) = − 1

ξµ−1
0

t∫
τ
a

(
ξ̇ (ζ)

)
ψ (t, τ) ξ̇

1+ 2
γ

0 (ζ) dζ,

ψ (t, ζ) =
[
ξ̇
2
0 (t) +

1
µ
ξ0 (t) ξ̈0 (t)

(
1− ξµ

0 (ζ)
ξµ
0 (t)

)]− 1
γ

.

This solution was expressed by ξ0 (t); this function is found from the piston condi-
tion: for τ = 0 (z = 0) there should be

ξ (t) = ξ0 (t) + εξ1 (t) = z (t) = kvt− w (vt, t) , (10)

Functional ξ1 (t) is essentially non-linear, therefore (10) is solved by the sequen-
tial approximations method. Procedure of the method, estimation and reasons in
favour of convergence is in the paper [1], and we don’t cite it here. We finally get
(addends with ε at the first degree were retained)

ξ0 (t) = Dt− (1 + εa (D) /µ)w (vt, t) +
ε

2µ2γ
a (D) ẅ (vt, t) t2−

−2ε
γ

[(1− γ) a (D) + γ] t1−µ
t∫
0

τµ−1ẇ (vτ , τ) dτ . (11)

20. Definition of interaction pressure. In the case of conical shell in the
plane x = vt we have a plane problem on extension of a cylindric piston, therefore
µ = 2. We have from (11)

ξ0 (t) = Dt−
(
1 + 2ε+

ε

2
a (D)

)
w (vt, t) +

ε

γ
a (D) ẇ (vt, t) t+

+
ε

8γ
a (D) ẅ (v, t) t2 − 2ε

t

t∫
0

w (vζ, ζ) dζ
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ξ1 (t, τ) =
Da (D)

2

(
ξ2

t
− t

)
− a (D)

γ
ẇ (vt, t)

(
1− ξ2

t

)
+

2
γt

t∫
τ
w (vs, s) ds−

−w (vt, t)
[
a (D)

ξ2

t2
− 2 (1 + a (D))

]
− a (D)

8γ
ẅ (vt, t)

(
t2 − 2τ2 +

τ4

t2

)
.

By passing to the problem on streamline of a cone in the Euler system of coor-
dinates connected with fixed body, it should be accepted:

ẇ =
∂w

∂t
+ v

∂w

∂x
; t = v/x

substitute ξ0 (t) and ξ1 (t, τ) into (9) and carry out estimations similar to one in [1];
for the pressure to pass to the surface of a shell we’ll get

∆p =
(
p+ εp1 − p0

)
τ=0

= q0 (x) + q1 (x, t);
here q0 (x) is a quasistatic constituent, q1 (x, t) is a dynamic one.

q0 (x) =
2ρ0D2

γ + 1

(
1 + ε

a (D)
4

− γp0

2ρ0D2

)
−

−4ρ0Dv

γ + 1

(
1 +

3ε
4
− ε11a (D)

8γ

)
∂w0

∂x
−

−ρ
0Dvx

2

(
1− ε 3a (D)

2γ (γ + 1)

)
∂2w0

∂x2
, (12)

q1 (x, t) = −4ρ0D

γ + 1

(
1 +

3ε
4
− ε11a (D)

8γ

) (
∂w

∂t
+ v

∂w

∂x

)
−

−ρ
0Dvx

2

(
1− ε 3a (D)

2γ (γ + 1)

)
∂2w

∂x2
. (13)

Velocity of shock wave D is determined from quadratic equation εDa (D) +
2vtgα = 2D; after introdusing denotation Mtgβ = z, Mtgα = z0 this equation
takes the form (3 + γ) z2 − 2 (γ + 1) z0z − 2 = 0.

State of a shell is described by the equations of technical theory in a mixed form.
Since ∆p = q0 + q1, we represent deflections and efforts functions in the sum of
the basic (quasistatistical) and perturbed (dynamic) states; w = w0 (x) + w1 (x, t);
F = F0 (x) + F1 (x, t).

Let’s linearize the basic system, introduce dimensionless coordinates and param-
eters and make estimations in the pressure function q0; we get a basic state equation

tgα

12 (1− v2)
h2

r22
∆2ẇ0 −

1
s

s∂2F0

∂s2
= q∗0; (14)

tgα∆2F0 +
1
s

∂2w0

∂s2
= 0,

boundary conditions of hinge support

s = s1, s = 1 : w0 = 0,
∂2w0

∂s2
+
v

s

∂w0

∂s
= 0 (15)
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∂F0

∂s
= 0,

∂2F0

∂s2
= 0,

here s is a dimensionless coordinate

q∗0 = B1

(
1 +

ε

4
a∗ (z)− 1

2z2

)
;

B1 =
2γ
γ + 1

p0

E

r22
h2
z2tgα; a∗ (z) = 1 +

2
(γ − 1) z2

The solution of the system in perturbations is sought in the class of functions
w = W (s) cosnϕ exp (ωt); F = Φ(s) cosnϕ exp (ωt). For W (s), Φ (s) we get the
system

tgα∆2
nΦ +

1
s
W ′′ = 0,

tgα

12 (1− v2)
h2

r22
∆2

nW − 1
s
Φ′′ − tgα h

r2
F ′

0

1
s
W ′′−

−tgα h
r2
F ′′

0

(
1
s
W ′ − n2

s2 sin2 α
W

)
+A3sW

′′ +A2W
′′ = λW (16)

here ∆n = ∂2/∂s2−(∂/∂s) /s−n2/ sin2 α; A4Ω2+A1Ω+λ = 0, Ω = r2ω/c0, c20 =
E/ρ,

ρ is density of shell’s material; parameters Ai in a sufficiently complicated way
depend on z = Mtgβ. Boundary conditions of a hinge support

s = s1, s = 1 : W = 0, W ′′ +
1
s
W ′ = 0

Φ′ − n2

sin2 α
Φ = 0; Φ′′ = 0 (17)

Statement of the flutter problem is traditional; in a complex plane λ it is con-
structed a stability parabola A4 (Jmλ)2 = A2

1 Reλ that separates the domain of sta-
ble (Re Ω < 0) and unstable (Re Ω > 0) vibrations ; λ located interior to a parabola
responds to stable vibrations. As is known, eigen-value problem (16), (17) has a
discrete spectrum, therefore, in fact, the problem is stated as follows; to find the
eigen value that by increasing M will first come to stability parabola.

Remark 1. For M ≤Mkp the basic state should be statically stable;
Remark 2. Critical velocity depends on n : Mkp = Mkp (n); Mkp (nkp) =

min
n
Mkp (n) is assumed to be truth critical velocity of a flutter.
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