Magsud A. NAJAFOV

STATEMENT OF A CONICAL SHELL FLUTTER PROBLEM

Abstract

In the proposed work it is considered a case of aeroelastic vibrations of a truncated conical shell, constituting a part of a right circular cone, streamlined by supersonic gas flow.

Introduction. A problem on aeroelastic vibrations of a slanting shell or a shell of revolution streamlined by supersonic gas flow is considered in the paper [1].

Expressions for the pressure of aerodynamic interaction between flow and oscillating shell are obtained in a general form. It is considered a partial case when a slanting shell occupies a part of the surface of a thin profile. It is shown that "dynamical" part of pressure consists of two constituents: the first of them is the well-known piston theory, but with a coefficient depending on the flow velocity in a sufficiently complicated way; the second one makes sense of contractive normal stress in median surface of a shell and obviously may exert noticeable effect on the character of vibrations and critical velocity of a flutter. The results of calculations of a plate flutter occupying a part of a surface of a thin wedge confirms this deduction [2].

In the present work we consider a case of aeroelastic vibrations of a truncated conical shell constituting a part of a right circular cone streamlined by supersocin gas flow that is important in applications.
$\mathbf{1}^{0}$. Relations of gas dynamics. Let's consider a thin circular cone streamlined by a supersonic flow. Origin of a rectangular system of coordinates is located on a vertex, the axis x is directed along the velocity vector. In undeformable state an equation of a generator $z_{1}=k z, k=\operatorname{tg} \alpha \quad \alpha$ is angle of half-opening of a cone. Denote by $w(x, t)$ deflections of a shell (it ossupies a part $\left[x_{1}, x_{2}\right]$ of a cone, we first consider an axially symmetric case). On the part $\left[x_{1}, x_{2}\right.$] of the shell we have

$$
\begin{equation*}
z=k x-w(x, t) \tag{1}
\end{equation*}
$$

Assume $(w(x, t) / k x) \ll 1$.
According to the law of plane sections, state of gas in the field between schock wave (Sh.W) and body is determined from the solution of a plane problem on a piston which moves by the law

$$
\begin{equation*}
z(t)=k v t-w(v t, t) \tag{2}
\end{equation*}
$$

where v is stream velocity.

Solution of the streamline problem is sought by the expansion in small parameter

$$
\frac{\rho^{0}}{\rho^{*}}=\frac{\gamma-1}{\gamma+1}\left[1+\frac{2 a_{0}^{2}}{(\gamma-1) D^{2}}\right] \equiv \varepsilon a(D)
$$

here ρ^{0} is gas density before $\operatorname{ShW}, \rho^{*}$ - after ShW, D is velocity of propagation of $\operatorname{ShW}, a_{0}$ is sound velocity in undisturbed flow, γ is polytropic exponent $\left(p / p^{0}=\left(\rho / \rho^{0}\right)^{\gamma}\right)$.

Introduce Lagrangian coordinates t and z, such that $d z=\rho^{0} r^{\mu-1} d r, r$ is the distance of particles from the axis at initial time. The desired functions: distance of particles from the axis $\xi=\xi(t, z)$, pressure $p=p(t, z), \rho=\rho(t, z)$.

Equations of motion, conservation of mass, energy

$$
\begin{equation*}
\frac{\partial^{2} \xi}{\partial t^{2}}=-\xi^{\mu-1} \frac{\partial p}{\partial z} ; \quad \frac{\partial \xi}{\partial z}=\frac{1}{\rho \xi^{\mu-1}} ; \frac{\partial}{\partial t}\left(\frac{p}{\rho^{\gamma}}\right)=0 \tag{3}
\end{equation*}
$$

Conditions on shock wave $z=z^{*}$

$$
\begin{equation*}
p^{*}=\frac{2}{\gamma+1} \rho^{0} D^{2}-\varepsilon p^{0} ; \quad \rho^{*}=\frac{\rho^{0}}{\varepsilon a(D)} ; \tag{4}
\end{equation*}
$$

Conditions on piston (2)

$$
\begin{equation*}
z=0, \quad \xi(t, 0)=k v t-w(v t, t) \tag{5}
\end{equation*}
$$

Here p^{0} is the pressure in unperturbed flow.
We seek for the solution of system (3) by the expansion in ε :

$$
\xi=\xi_{0}+\varepsilon \xi_{1}+\ldots ; p=p_{0}+\varepsilon p_{1}+\ldots ; \quad \rho=\varepsilon^{-1} \rho_{0}+\rho_{1}+\ldots
$$

Putting it into (3) we get systems for the zero and first approximations and integrate them. The zero approximation

$$
\begin{equation*}
\xi_{0}=\xi_{0}(t) ; \quad p_{0}=p(t)-z \xi_{0}^{1-\mu} \frac{\partial^{2} \xi_{0}}{\partial t^{2}} ; \quad \rho_{0}=\frac{p_{0}^{1 / \gamma}}{v_{0}(z)} ; \tag{6}
\end{equation*}
$$

the first approximation

$$
\begin{gather*}
\xi_{1}=\frac{1}{\xi_{0}^{\mu-1}} \int_{z^{*}}^{z} v_{0}(z) p_{0}^{-1 / \gamma} d z+\xi_{1}^{*}(t) \\
p_{1}=(\mu-1) \frac{\partial^{2} \xi_{0}}{\partial t^{2}} \frac{1}{\xi_{0}^{\mu}} \int_{z^{*}}^{z} \xi_{1} d z-\frac{1}{\xi_{0}^{\mu-1}} \int_{z^{*}}^{z} \frac{\partial^{2} \xi_{1}}{\partial t^{2}} d z+p_{1}^{*}(t) \tag{7}\\
\frac{p_{1}}{p_{0}}-\gamma \frac{\rho_{1}}{\rho_{0}}=v_{1}(z)
\end{gather*}
$$

here $\xi_{0}(t), p(t), v_{0}(z), \xi_{1}^{*}(t), p_{1}^{*}(t), v_{1}(z)$ are the unknown functions defined from boundary conditions.

Let $\xi_{0}(t)$ be a ShW motion law, then there will be $z^{*}=\rho^{0} \xi_{0}^{\mu}(t) / \mu$.

Then, from (4) we have: for $z=z^{*}=\rho^{0} \xi_{0}^{\mu}(t) / \mu$ there should be

$$
\begin{align*}
& \xi_{0}=\xi_{0}(t), p_{0}=\frac{1}{\gamma+1} \rho^{0} \dot{\xi}_{0}^{2} \tag{8}\\
& \xi_{1}=0, \quad p_{1}=-p^{0}, \\
& \rho^{0} / a(\dot{\xi}) \\
& \rho_{1}=0
\end{align*}
$$

It is convenient to pass from z to $\tau: z=\rho^{0} \xi_{0}^{\mu}(\tau) / \mu$, then $z^{*}=\rho^{0} \xi_{0}^{\mu}(t) / \mu$.
Finally for p_{0}, p_{1}, ξ_{1} we get

$$
\begin{gather*}
p_{0}=\frac{2}{\gamma+1} \rho^{0} \dot{\xi}_{0}^{2}+\frac{1}{\mu} \rho^{0} \xi_{0} \ddot{\xi}-\ddot{\xi}_{0} \xi_{0}^{1-\mu} z \\
p_{1}=-(\mu-1) \frac{\rho^{0} \ddot{\xi}_{0}^{t}}{\xi_{0}^{\mu}} \int_{\tau}^{t} \xi_{1}(t, \zeta) \xi_{0}^{\mu-1}(\zeta) \dot{\xi}_{0}(\zeta) d \zeta+ \\
+\frac{\rho^{0}}{\xi_{0}^{\mu-1}} \int_{\tau}^{t} \frac{\partial^{2} \xi_{1}}{\partial t^{2}} \xi_{0}^{\mu-1}(\zeta) \dot{\xi}_{0}(\zeta) d \zeta-p^{0} \tag{9}\\
\xi_{1}=\xi_{1}(t, \tau)=-\frac{1}{\xi_{0}^{\mu-1}} \int_{\tau}^{t} a(\dot{\xi}(\zeta)) \psi(t, \tau) \dot{\xi}_{0}^{1+\frac{2}{\gamma}}(\zeta) d \zeta, \\
\psi(t, \zeta)=\left[\dot{\xi}_{0}^{2}(t)+\frac{1}{\mu} \xi_{0}(t) \ddot{\xi}_{0}(t)\left(1-\frac{\xi_{0}^{\mu}(\zeta)}{\xi_{0}^{\mu}(t)}\right)\right]^{-\frac{1}{\gamma}} .
\end{gather*}
$$

This solution was expressed by $\xi_{0}(t)$; this function is found from the piston condition: for $\tau=0(z=0)$ there should be

$$
\begin{equation*}
\xi(t)=\xi_{0}(t)+\varepsilon \xi_{1}(t)=z(t)=k v t-w(v t, t), \tag{10}
\end{equation*}
$$

Functional $\xi_{1}(t)$ is essentially non-linear, therefore (10) is solved by the sequential approximations method. Procedure of the method, estimation and reasons in favour of convergence is in the paper [1], and we don't cite it here. We finally get (addends with ε at the first degree were retained)

$$
\begin{align*}
\xi_{0}(t) & =D t-(1+\varepsilon a(D) / \mu) w(v t, t)+\frac{\varepsilon}{2 \mu^{2} \gamma} a(D) \ddot{w}(v t, t) t^{2}- \\
& -\frac{2 \varepsilon}{\gamma}[(1-\gamma) a(D)+\gamma] t^{1-\mu} \int_{0}^{t} \tau^{\mu-1} \dot{w}(v \tau, \tau) d \tau . \tag{11}
\end{align*}
$$

$\mathbf{2}^{0}$. Definition of interaction pressure. In the case of conical shell in the plane $x=v t$ we have a plane problem on extension of a cylindric piston, therefore $\mu=2$. We have from (11)

$$
\begin{aligned}
\xi_{0}(t)=D t & -\left(1+2 \varepsilon+\frac{\varepsilon}{2} a(D)\right) w(v t, t)+\frac{\varepsilon}{\gamma} a(D) \dot{w}(v t, t) t+ \\
& +\frac{\varepsilon}{8 \gamma} a(D) \ddot{w}(v, t) t^{2}-\frac{2 \varepsilon}{t} \int_{0}^{t} w(v \zeta, \zeta) d \zeta
\end{aligned}
$$

$$
\begin{aligned}
& \xi_{1}(t, \tau)=\frac{D a(D)}{2}\left(\frac{\xi^{2}}{t}-t\right)-\frac{a(D)}{\gamma} \dot{w}(v t, t)\left(1-\frac{\xi^{2}}{t}\right)+\frac{2}{\gamma t} \int_{\tau}^{t} w(v s, s) d s- \\
& \quad-w(v t, t)\left[a(D) \frac{\xi^{2}}{t^{2}}-2(1+a(D))\right]-\frac{a(D)}{8 \gamma} \ddot{w}(v t, t)\left(t^{2}-2 \tau^{2}+\frac{\tau^{4}}{t^{2}}\right)
\end{aligned}
$$

By passing to the problem on streamline of a cone in the Euler system of coordinates connected with fixed body, it should be accepted:

$$
\dot{w}=\frac{\partial w}{\partial t}+v \frac{\partial w}{\partial x} ; \quad t=v / x
$$

substitute $\xi_{0}(t)$ and $\xi_{1}(t, \tau)$ into (9) and carry out estimations similar to one in [1]; for the pressure to pass to the surface of a shell we'll get
$\Delta p=\left(p+\varepsilon p_{1}-p^{0}\right)_{\tau=0}=q_{0}(x)+q_{1}(x, t) ;$
here $q_{0}(x)$ is a quasistatic constituent, $q_{1}(x, t)$ is a dynamic one.

$$
\begin{gather*}
q_{0}(x)=\frac{2 \rho^{0} D^{2}}{\gamma+1}\left(1+\varepsilon \frac{a(D)}{4}-\frac{\gamma p^{0}}{2 \rho^{0} D^{2}}\right)- \\
- \\
-\frac{4 \rho^{0} D v}{\gamma+1}\left(1+\frac{3 \varepsilon}{4}-\varepsilon \frac{11 a(D)}{8 \gamma}\right) \frac{\partial w_{0}}{\partial x}- \tag{12}\\
\\
-\frac{\rho^{0} D v x}{2}\left(1-\varepsilon \frac{3 a(D)}{2 \gamma(\gamma+1)}\right) \frac{\partial^{2} w_{0}}{\partial x^{2}}, \tag{13}\\
q_{1}(x, t)= \\
-\frac{4 \rho^{0} D}{\gamma+1}\left(1+\frac{3 \varepsilon}{4}-\varepsilon \frac{11 a(D)}{8 \gamma}\right)\left(\frac{\partial w}{\partial t}+v \frac{\partial w}{\partial x}\right)- \\
\\
-\frac{\rho^{0} D v x}{2}\left(1-\varepsilon \frac{3 a(D)}{2 \gamma(\gamma+1)}\right) \frac{\partial^{2} w}{\partial x^{2}} .
\end{gather*}
$$

Velocity of shock wave D is determined from quadratic equation $\varepsilon D a(D)+$ $2 v \operatorname{tg} \alpha=2 D$; after introdusing denotation $\operatorname{Mtg} \beta=z, M \operatorname{tg} \alpha=z_{0}$ this equation takes the form $(3+\gamma) z^{2}-2(\gamma+1) z_{0} z-2=0$.

State of a shell is described by the equations of technical theory in a mixed form. Since $\Delta p=q_{0}+q_{1}$, we represent deflections and efforts functions in the sum of the basic (quasistatistical) and perturbed (dynamic) states; $w=w_{0}(x)+w_{1}(x, t)$; $F=F_{0}(x)+F_{1}(x, t)$.

Let's linearize the basic system, introduce dimensionless coordinates and parameters and make estimations in the pressure function q_{0}; we get a basic state equation

$$
\begin{gather*}
\frac{\operatorname{tg} \alpha}{12\left(1-v^{2}\right)} \frac{h^{2}}{r_{2}^{2}} \Delta^{2} \dot{w}_{0}-\frac{1}{s} \frac{s \partial^{2} F_{0}}{\partial s^{2}}=q_{0}^{*} ; \tag{14}\\
\operatorname{tg} \alpha \Delta^{2} F_{0}+\frac{1}{s} \frac{\partial^{2} w_{0}}{\partial s^{2}}=0,
\end{gather*}
$$

boundary conditions of hinge support

$$
\begin{equation*}
s=s_{1}, \quad s=1: w_{0}=0, \quad \frac{\partial^{2} w_{0}}{\partial s^{2}}+\frac{v}{s} \frac{\partial w_{0}}{\partial s}=0 \tag{15}
\end{equation*}
$$

$$
\frac{\partial F_{0}}{\partial s}=0, \quad \frac{\partial^{2} F_{0}}{\partial s^{2}}=0
$$

here s is a dimensionless coordinate

$$
\begin{gathered}
q_{0}^{*}=B_{1}\left(1+\frac{\varepsilon}{4} a^{*}(z)-\frac{1}{2 z^{2}}\right) ; \\
B_{1}=\frac{2 \gamma}{\gamma+1} \frac{p_{0}}{E} \frac{r_{2}^{2}}{h^{2}} z^{2} t g \alpha ; \quad a^{*}(z)=1+\frac{2}{(\gamma-1) z^{2}}
\end{gathered}
$$

The solution of the system in perturbations is sought in the class of functions $w=W(s) \cos n \varphi \exp (\omega t) ; F=\Phi(s) \cos n \varphi \exp (\omega t)$. For $W(s), \Phi(s)$ we get the system

$$
\begin{gather*}
\operatorname{tg} \alpha \Delta_{n}^{2} \Phi+\frac{1}{s} W^{\prime \prime}=0 \\
\frac{\operatorname{tg} \alpha}{12\left(1-v^{2}\right)} \frac{h^{2}}{r_{2}^{2}} \Delta_{n}^{2} W-\frac{1}{s} \Phi^{\prime \prime}-\operatorname{tg} \alpha \frac{h}{r_{2}} F_{0}^{\prime} \frac{1}{s} W^{\prime \prime}- \\
-\operatorname{tg} \alpha \frac{h}{r_{2}} F_{0}^{\prime \prime}\left(\frac{1}{s} W^{\prime}-\frac{n^{2}}{s^{2} \sin ^{2} \alpha} W\right)+A_{3} s W^{\prime \prime}+A_{2} W^{\prime \prime}=\lambda W \tag{16}
\end{gather*}
$$

here $\Delta_{n}=\partial^{2} / \partial s^{2}-(\partial / \partial s) / s-n^{2} / \sin ^{2} \alpha ; A_{4} \Omega^{2}+A_{1} \Omega+\lambda=0, \Omega=r_{2} \omega / c_{0}, c_{0}^{2}=$ E / ρ,
ρ is density of shell's material; parameters A_{i} in a sufficiently complicated way depend on $z=M \operatorname{tg} \beta$. Boundary conditions of a hinge support

$$
\begin{gather*}
s=s_{1}, s=1: W=0, \quad W^{\prime \prime}+\frac{1}{s} W^{\prime}=0 \\
\Phi^{\prime}-\frac{n^{2}}{\sin ^{2} \alpha} \Phi=0 ; \quad \Phi^{\prime \prime}=0 \tag{17}
\end{gather*}
$$

Statement of the flutter problem is traditional; in a complex plane λ it is constructed a stability parabola $A_{4}(\operatorname{Jm\lambda })^{2}=A_{1}^{2} \operatorname{Re} \lambda$ that separates the domain of stable $(\operatorname{Re} \Omega<0)$ and unstable ($\operatorname{Re} \Omega>0)$ vibrations ; λ located interior to a parabola responds to stable vibrations. As is known, eigen-value problem (16), (17) has a discrete spectrum, therefore, in fact, the problem is stated as follows; to find the eigen value that by increasing M will first come to stability parabola.

Remark 1. For $M \leq M_{k p}$ the basic state should be statically stable;
Remark 2. Critical velocity depends on $n: M_{k p}=M_{k p}(n) ; M_{k p}\left(n_{k p}\right)=$ $\min _{n} M_{k p}(n)$ is assumed to be truth critical velocity of a flutter.

References

[1]. Kiyko I.A. Statement of a problem on of rotation shell flutter and slanting shell streamlined by a supersonic gas flow. Prikl. mat. i mekh., v.63, issue 2, 1999, pp.305-312. (Russian)
[2]. Kiyko I.A., Kudryavtsev B.Yu. Nonlinear aeroelastic vibrations of a rectangular plate. Vestnik Mosk. Univ., ser 1. Mat. mekh., 2005, No1, pp.68-71. (Russian)

Magsud A. Najafov

Azerbaijan state Pedagogical University
34, U.Hajibeyov str., AZ1000, Baku, Azerbaijan
Tel.: (99412) 4933369 (off.)
(99412) 4771866 (apt.)

Received December 19, 2005; Revised February 23, 2006.
Translated by Nazirova S.H.

