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ON THE BASIS PROPERTIES OF
STURM-LIOUVILLE PROBLEMS WITH
DECREASING AFFINE BOUNDARY CONDITIONS

Abstract

We consider Sturm-Liouville problems with a boundary condition linearly
dependent on the eigenparameter. We study the decreasing affine case where
non-real or non-simple (multiple) eigenvalues are possible. We prove that the
system of root (i.e. eigen and associated) functions of the corresponding opera-
tor, with arbitrary function removed, form a basis in L2(0,1), except some cases
where this system is neither complete nor minimal. The method used is based
on the determination of the explicit form of the biorthogonal system. For the
basisness in Ly we prove that the part of the system of root functions is quadrat-
ically close to sine or cosine systems. We also consider these basis properties
in the context of general Ly,. For this we use F. Riesz’s theorem.

Cousider the following spectral problem

—" +qlz)y =My, 0<z <1, (0.1)
y'(0)sin B =y(0)cos B, 0 < B <, (0.2)
y'(1) = (aX + b)y(1), (0.3)

where a,b are real constants and a < 0, X is the spectral parameter, ¢(z) is a real
valued and continuous function over the interval [0, 1].

The present article is about the basis properties in L,(0,1), 1 < p < oo of the
system of root functions of the boundary value problem (0.1)-(0.3).

It was proved in [2] (see also [1]) that the eigenvalues of the boundary value
problem (0.1)-(0.3) form an infinite sequence accumulating only at +o0o and only
following cases are possible: (a) all the eigenvalues are real and simple; (b) all the
eigenvalues are real and all, except one double, are simple; (c) all the eigenvalues
are real and all, except one triple, are simple; (d) all the eigenvalues are simple and
all, except a conjugate pair of non-real, are real.

The eigenvalues A, (n > 0) will be considered to be listed according to non-
decreasing real part and repeated according to algebraic multiplicity. Asymptotics
of eigenvalues and oscillation of eigenfunctions of the boundary value problem (0.1)-
(0.3), with linear function in the boundary condition, replaced by general rational
function, were studied in a recent paper [3]. For affine (linear) decreasing case this
asymptotics is as follows [2]:

_ [ (=3’ 00), B0,
An = { n2n? 3 0(1), B =0. 0-4)

The case a > 0 in our problem is considerably simpler and can be found as a
special case in papers [10,11]. In paper [15] the following boundary value problem
was considered:

- =Xy, 0<z <1, (0.5)
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y'(0) =0, '(1) = aly(1), a # 0. (0.6)

For this problem only cases (a) and (b) are possible and in [15] a complete solution
of the problem on the basis properties in L,(0,1) (1 < p < oo) of the system of root
functions, was given. We shall discuss this problem further in the last section. The
situation in problem (0.1)-(0.3) is much more complicated, with the possibility of
non-real eigenvalues and of eigenvalues with algebraic multiplicity 3 being present.

There is a vast literature on the boundary value problems with a spectral param-
eter in the boundary conditions (see e.g. [7,17]). We mention also [4,12] as recent
contributions in this area.

1. Inner products and norms of eigenfunctions. Let y(z, \) be a non-zero
solution of (0.1), (0.2), and we write the characteristic equation

@A) = '(1,)) — (aX + b)y(L, \). (1.1)

By (0.3), Ap is an eigenvalue of (0.1)-(0.3) if w(A,) = 0. A, is a simple eigenvalue
if w(A,) =0 # @' (\y). Mg is a double eigenvalue if

@A) = @' () = 0 # @ (M), (1.2)
and triple eigenvalue if
w(A) = @' (M) = @" (M) = 0 # @' (M) (1.3)

We note also that y(z, A) — y(z, \,,), uniformly, according to = € [0,1], as A —
An, and the function y, () = y(x, A,) is an eigenfunction of (0.1)-(0.3) corresponding
to eigenvalue A, (see [5, Sect. 10.72]). By (0.1)-(0.3) we have,

—Yn + ¢(@)Yn = Aa¥n,

Y, (0) sin 8 = y,,(0) cos 3,
yiz(l) = (aXy + b)yn(1).
Throughout this paper we denote by (-,-) the scalar product in Ly(0,1).

Lemma 1.1. Let yn,ym be eigenfunctions corresponding to eigenvalues An, Ay
(A # Am). Then following equality holds:

(Yns Ym) = —ayn(1)ym(1). (1.4)
Proof. To begin we note that
Lyl N ) — 9, N, 9) = 8 = By(ar Vs ).

By integrating this identity from 0 to 1, we obtain

A=)y (A, y( ) = (Y, Ny (2, 1) — ' (@, Ny, 1)) (1) (1.5)

From (0.2), we obtain

y(0, M)y (0, ) — 4/ (0, \)y(0, ) = 0. (1.6)
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By (1.1),

y(l, A)y'(l, ﬂ) - y,(la A)y(lv 'u) = _a()‘ - ﬁ)y(la A)y(lv 'u)

+y(L, Nw(p) —y(1, pw(X). (1.7)
From (1.5)-(1.7), it follows that for A # 1,

(0 X)) = =L T ) + (1 N

w@(})

y(lvﬂ))\fa (18)

=

which is the generalization of analogous formula in [5, Sect. 10.72].

We obtain (1.4) from (1.8) by substituting parameters A, u respectively by A, A,
where we use the fact that w(\,) = w(\y,) = 0.

Since A, A, are eigenvalues of (0.1)-(0.3) then w()\,) = @w(Ay) = 0, hence by
tending A — A\, (& # A,) and then tending p — A, we obtain (1.4). O

Now we collect some easy facts about inner products of eigenfunctions.

Lemma 1.2. If )\, is a real eigenvalue then

lyalls = (Un, 4n) = —ayn(1)* = yu (D)@' (An). (1.9)
Proof. Since w(\,) = 0 then w(X)/(A — A\p) = @w'(A\n) as A = A,. Therefore,
by tending p — A, (A # A\) and then tending A — A, in (1.8) we obtain (1.9). O
Corollary 1.1. If \; is a multiple eigenvalue then

lyilly = (Yrs yi) = —ayr(1)*. (1.10)

An immediate corollary of (1.4) is the following.

Corollary 1.2. If )\, is a non-real eigenvalue then

2 2
lyrllz = —aly- (D[ (1.11)

Proof. Since A\, # A, then (1.11) follows at once from (1.4) by replacing A, A,
by A-. O
For the eigenfunction y, define

By = ||ynll3 + alya(1)[*. (1.12)

The following corollary of (1.9) and (1.11) will be useful (cf. [1, Theorem 4.3]).

Corollary 1.3. B, # 0 if and only if the corresponding eigenvalue A, s real
and simple.
We conclude this section with the following

Lemma 1.3. If A\, and \; = A, are a conjugate pair of non-real eigenvalues
then
(yrrys) = —ayr(1)* = yr (@' (Ar) (1.13)
The proof is similar to the proof of (1.9).

We note also that since all non-real eigenvalues of (0.1)-(0.3) are simple then
@' (Ar) # 0 in (1.13).
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2. Inner products and norms of associated functions. We need to estab-
lish some facts about eigenfunctions and associated functions corresponding to real
eigenvalues. So in this and subsequent sections we consider only real eigenvalues.

If \; is a multiple eigenvalue (A\y = Ar11) then for the first order associated
function yg 1 corresponding to eigenfunction y, following relations hold [16, p. 28]:

—Ypr1 + (@) Yk1 = AeYrt1 + Yk

Yi11(0) sin B = yp11(0) cos B,
Yrs1(1) = (aXg + b)yer1(1) + ayp(1).

If A\; is a triple eigenvalue (Ax = Ag+1 = Ag12) then together with the first order
associated function yy 1 there exists the second order associated function gy, o for
which following relations hold:

—yg+2 + q(2) Y12 = MeYht2 + Ykt1,

Yr42(0) sin B = yp12(0) cos S,
Yer2(1) = (aXp + D)yri2(1) + ayr1(1).

Following well known properties of associated functions play an important role
in our investigation. The functions yxy+1 + cyr and ygyo + dyg, where ¢ and d
are arbitrary constants, are also associated functions of the first and second order
respectively. Next we observe that replacing the associated function yg+1 by yr+1 +
cyr, the associated function yy o changes to yiyo + cyriq-

By differentiating (0.1), (0.2) and (1.1) with respect to A we obtain

_yl)((ajv )‘) + Q("L‘)y)\(xa >‘) = >\y>\($, >‘) + y(:l?, >‘)7

yl)\(oa >‘) Sinﬂ = y)\(oa >‘) Cos /87
wl()‘) = yl)\(la >‘) - (a>‘ + b)y/\(l, >‘) - ay(la >‘)a

where the suffix denotes differentiation with respect to .

Let A be a multiple (double or triple) eigenvalue of (0.1)-(0.3). Since w(\g) =
@' (Ak) = 0 then y(z, \) = yg, ya(z, \) = k11, uniformly according to z € [0, 1],
as A — Ak, where g1 is one of the associated functions of the first order, and it is

obvious that g1 = Yg+1 + Cyk, where ¢ = (Jg+1(1) — yr+1(1))/yx(1).
Similarly, with the index notation introduced above, we may write

=y (2, A) + q(@)yan(z, N) = Ay, A) + 2ya(z, A),

yg\)\(07 >‘) Sinﬁ = y)\)\(()? >‘) Cos ﬁa
WH(A) = yi\)\(la >‘) - (a’>‘ + b)y)\)\(la >‘) - ZG'y)\(la >‘)
We note again that if Ay is a triple eigenvalue of (0.1)-(0.3) then w”(\;) = 0,
hence yyxn — 2¢k+o, uniformly according to = € [0,1], as A — Ag, where g0

is one of the associated functions of the second order corresponding to the first
associated function gx.1, and it is obvious that ygio = yr+o + Cyr+1 + dyg, and

d = (rs2(1) — yer2(1) — Eypsa (1)) /ye(1).
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Lemma 2.1. If \; is a multiple eigenvalue and A, # A\ then

(Y115 Yn) = —ayr1(Dyn(1). (2.1)

Proof. Differentiating (1.8) with respect to A we obtain

(G 0) = e (L) + a1 ) T2
(s /(3 o)
—y(l,A)m—y(laM)A_M +y(1aﬂ)m- (2.2)

Tending pr — Ay, (A # Ap) and then tending A — \i in (2.2) we obtain (Jx.1,yn) =
—aPk+1(1)yn(1). We note that g1 = yg+1 + ¢yg. Therefore,

(Yk+1,Yn) + E(Yk> yn) = —ayrs1(D)yn(1) — ayr(1)yn(1).

From this and the equality (yx,yn) = —ayr(1)y,(1) it follows that (2.1) is true. We
note that legality of differentiation and subsequent passage to limit within integrals
is based on [8, Ch.3, §4, Theorems 1, 2]. [

Lemma 2.2. If Ay is a multiple eigenvalue then

wll()\k)
9 .

(Ye+15 k) = —ayer1(1)yr(1) — ye(1) (2.3)

Proof. Tending 1 — A; (A # Ag) and then tending A — Ay in (2.2) we obtain

wll()\k)

(Tk+1,yk) = —afr+1(1)yr(1) — yr(1) 5

In analogy with previous lemma, noting (1.10) we obtain (2.3). OJ

Lemma 2.3. If \; is a multiple eigenvalue then

lyks1lls = Vet Yrs1) = —aygsr (1)°
. w// A w/// A
e () Ty ) T, (2.4)

where Y1 = Yr+1 — CYk-
Proof. Differentiating (2.2) with respect to u we obtain

~—

@' (u
—p

(y)\('v )‘)ayu('hu)) = _ay)\(la A)y#(lvﬂ) + y)\(la >‘)

>

g

(V)
—p

o 1)

(102 —y(l,»w'(“’) Y

(A—n)
w () 2w ()

_y(lau)(;vi(i;))Q +yu(17/~L) ()\ _/1')2 +y(1’p)m'

Tending 1 — A\ (A # Ag) and then tending A — Ay we obtain

wll()\k) w”l(>\k) ‘

(Tk415 Tk+1) = —afp+1(1)? — Grr1 (1) 5 yr(1) 6



40 Proceedings of IMM of NAS of Azerbaijan
[Ya.N.Aliyev]

As in previous lemmas substituting 4511 = yr11 + Cyx, after some computations we
prove (2.4). O

Lemma 2.4. If \; is a triple eigenvalue and A\, # A\ then

(Yk+2>Yn) = —ayrr2(1)yn(1). (2.6)

Proof. Differentiating (2.2) with respect to A we obtain

(U (5 A); y(5 ) = —ayan (L, Ay (L, ) + yan(l, A)M — (LA T3

NG (1) 5 1) S~ () G

Tending A — A; (u # A\i) we obtain

(Gr+2,9 (s 1)) = —agi+2(y(L, p) + §k+2(1)>:(f)u
5 @ (p) w ()
_y’““(l)m +yk(1)m- (2.7)

Tending p1 — A, we obtain (§x12,yn) = —aPk+2(1)yn(1), from which noting k12 =
Ykr2 + CYkr1 + dyk, (Yk,Yn) = —ayr(1)yn(1) and (2.1) we obtain (2.6). O
Lemma 2.5. If \; is a triple eigenvalue then

wlll ()\k:)
6 .

(Yk+2, Yk) = —ayrr2(D)ye(1) — yr(1)

Proof. Tending p — Ay in (2.7) and noting (1.3) we obtain

wlll ()\k:)

(Tk+2, Yk) = —afrkr2(D)ye(1) — yp(1) 6

Similar to previous lemma, using (2.3) and noting (1.3) we prove (2.8). O

Lemma 2.6. If \; is a triple eigenvalue then

. o' )\k: wIV >\k
(Yka2, Yka1) = —ayra2(D)yra1(1) — Yra1 (1) 6( ) - yk(l)gz(l)'
Proof. Differentiating (2.7) with respect to p we obtain

(k425 Yu (5 1) = —afk12(1)yu (1, 1)

@'(p) | - @ (p)
e — + yk-l—?(]-) (Ak — ’u)g

@' (1) 2w ()

—?Jkﬂ(l)m - ﬂkﬂ(l)m

Tending p — Ak, after simplifications we obtain (2.9). O

+0k42(1)

(2.10)
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Lemma 2.7. If \; is a triple eigenvalue then

[Yit2lls = Y2, Yoso) = —aypi2(1)?
R ///()\k) R wIV(Ak) wV(}\k)
— 1 — 1 — 1 2.11

where Gy ya = Y12 — 11 — dys-
Proof. Differentiating (2.10) with respect to u we obtain

(k12 Yup (s 1) = —aTry2(1)Ypupu (1, 1)

i w" 5 @’ - 2w
) I g 4 a5
. w" ~ 4o’ ) 6o

) e~ i

Tending pr — Mg, after elementary but lengthy computations we obtain (2.11). O

3. Existence of auxiliary associated functions. In this section we shall
prove the existence of some special associated functions which have the properties
of an eigenfunction in inner products with original associated functions. In the
proof of these results we shall require some facts about the inner products of root
functions, which have been gathered in sections 1, 2.

Lemma 3.1. If \; is a double eigenvalue then there exists associated function
Ypy1 = Yk+1 T+ C1Yk, where c1 is a constant, for which

(Yra1> Y1) = =y (Dypg1(1). (3.1)

Proof. Summing (2.4) with (2.3) multiplied by ¢; we obtain

(Yk+1 + c1¥r, Yry1) = —a(yps1(1) + crye (1)) yr41(1)

wll()\k) wl”()\k)

5 — k(1) 6

—(Uk+1(1) + cry(1))

The equality (3.1) holds exactly if we take

Ye(D)@" (M) + 3Uk+1 (1) @" (A)
3yr (D" (Ak)

It should be pointed out here that y;, (1) = 0 if and only if @"' (A) = 3¢ (Ag).
Before proceeding, we note also that for A, # A,

.0

Ccl — —

(Y15 Yn) = —ayper1 (Dyn (1), (3-2)

(1 98) =~ (D) — () T, (3.3

We shall now concentrate more on the study of triple eigenvalue case.
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Lemma 3.2. If \; is a triple eigenvalue then there exist associated functions
Ypi1 = Ykl + C2Yk, Yito = Yk+2 + C2Yky1, where cg is a constant, for which

(Y1 Ykt2) = —aypis (Dyes2(1), (3.4)

(k2 vk t1) = —ayiia(Dyeia (1) (3.5)

Proof. The proof in this case is very similar to the proof of Lemma 3.1, so we only
indicate the main steps. Summing (2.9) with (2.8) multiplied by ¢, and (2.9) with
(2.4) multiplied by co, where

yr (D)@' (M) + 40k11 (1)@ (Ar)
4y (1)@ (M) ’

Cy) = —

we obtain (3.4) and (3.5) correspondingly. O
We shall now indicate some relations between y;% ,, ", and other root func-
tions:

10 9m) = —oui (Do (1), (0 # k41, K -+2); (3.6)
1) = ity Dy (1) — (1) =, 3.7
(Wito,Un) = —ayita(Wyn(1), (n# K, k41, k+2); (3.8)
(i) = Lo (Dy(1) — () T, (3.9)

(Yri2s Ykt2) = —ayi o (1) yrg2(1) — Q,

where

P (M) @V (k) @ (Ak)
Qr = Yrt2(1) s yk“(l)T + yr(1) 120
. wlll A wIV A
+co <yk+1(1) é ‘) +yk(1)2ik)> .

It is worthwhile to note that ;% (1) = 0 if and only if @' (A\y) = 4éw™ ().
Lemma 3.3. If \; is a triple eigenvalue then there exists associated function
y,i_z = Ypyo + d1yg, where dy is a constant, for which

(y]jé+2ayk+2) = —G?J;iz(l)ykw(l)- (3.10)

Proof. Summing (2.11) with (2.8) multiplied by d;, where

g = _ye(M) @ (M) + 581 (D@’ (M) + 20342(1) @ (k)
' 20yx (1)@ (Ak) ’

we obtain (3.10). O
With the above notations we also have

Wi oo un) = —ayf s (Dyn(1), (n#£k, k+1, k+2); (3.11)

() = e, (1) — ) =, (3.12)
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R () oV ()
Wi 2 k1) = —ayfl 5 (Dyer1 (1) = G (1) é B _ yk(1)24(lk)

We observe also that for the function y,ﬁé = Ypio t day, where

Qk

= D@ W6

both of the following equalities hold:
(y;ﬁé,ykﬂ) = _ay]ffé(l)yk-&-l(l)a (3.13)

(y;ﬁ;,ymz) = —ayﬁ;(l)ykﬁ(l)- (3.14)
Note also that for the function y;ié, equalities like (3.11), (3.12) are also true:
(Wi wn) = —ayi o (Dyn(1), (n# K, k+1, k+2); (3.15)

i #H

W ) = —ay (1) — (1) T,

6

(3.16)

We remark that y,ff’;(l) = 0 if and only if

. (wW(Ak) 6@,,,0%)) _ " (A1) (wV(‘Ak) JW"'('M))

41 41 3! 31

4. Asymptotic formulas for eigenfunctions.
Lemma 4.1. Following asymptotic formula is true:

= { V2 cos (n— %)7(1174-0(1/’]’),

3 , B#0,
ﬁsinmrx—i—O(l/n), B=0. (4.1)

Proof. From (0.4) it follows that

[ r(n=34)+0(/n), B#£0,
\/E_{ 7m(,+02(i/n), 3=0. (4.2)

Denote by 9 (z, 1) and 1y (z, 1) a fundamental system of solutions of the differential
equation v’ — q(x)u + p?u = 0, with initial conditions

100, 11) = ho (0, ) = 1, 3 (0, ) = i, b5(0, ) = —ipu. (4.3)

As is well known (see [13] or [16, Ch.II, §4.5]), for sufficiently large p,

$j(e, p) = exp(pdjz)(L+O(1/p) (7 =1,2), (4.4)

where 01 = —09 = 1.
We seek the eigenfunction y,(z) corresponding to the eigenvalue A, in the form

1/’1(5137\/2) Yoz, \/E)
U

Un(@) = Pall 1 (2 /on)) U (o /)

; (4.5)
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where
 (iv2xasing) ', i B#£0;
Fa _{ (iv2) ", it 0. (4.6)
and
U(y(x)) = 1(0) cos 8 — 9'(0) sin 3, (4.7)

for arbitrary function ¢ (z) € C'[0,1]. From relations (4.2)-(4.7) we easily obtain
(4.1). O
We shall need later the following estimates, which follows at once from (4.1).
Lemma 4.2. Following asymptotic formulas are true:

[ynll, =1+ O(1/n), (4.8)
yn(z) = O(1), (4.9)
yn(1) = O(1/n), (4.10)
B, =1+0(1/n). (4.11)

After these preliminaries, we may study the basis properties of root functions.
For this purpose we need to establish theorems on minimality.

5. Minimality of the system of root functions. We discuss the various
cases. In each case we determine the explicit form of the biorthogonal system.
Case (a).
Theorem 5.1. If all the eigenvalues of (0.1)-(0.3) are real and simple then the
system
{yn} (n=0, 1,...5n #1), (5.1)

where | is a non-negative integer, is minimal in L,(0,1), 1 < p < oo.
Proof. It suffices to show the existence of the system

{up} (n=0, 1,...;n#1), (5.2)

biorthogonal to the system (4.1). Noting the relation B,, # 0 we define elements of
the system (5.2) by

) — yn(1) T
i () = Yn(7) Byl(l) yi( ) (5.3)

It remains to see, noting (1.4), (1.9) and (1.12), that

(Uny Ym) = Onm, (5.4)

where 6, (n, m =0, 1,...; n, m # [) denotes as usually, Kronecker’s symbol:
Opm =0if n# m and §,, = 1. O

Case (b).

Theorem 5.2. If A\ is a double eigenvalue then the system

{yn} (n=0, 1,...;n#k+1), (5.5)

is minimal in Ly(0,1), 1 < p < oc.
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Proof. In this case the biorthogonal system is defined by

n(1)
Yn(z) — 2pyyn(@)
() = =2 (n £ by k+1); (5.6)
Yr+1(z) — Myk(l’)
ug(z) = — (1) (5.7)
—yr(1)@" (Ax)/2
Using formulas (1.4), (1.9), (1.10), (1.12), (2.1), (2.3) the relation (5.4) for n, m =
0, 1,...; n, m # k41 can easily be verified. [J
Theorem 5.3. If \; is a double eigenvalue, and if y;__,(1) # O then the system
{yn} (n=0, 1,...5n #k), (5.8)
is minimal in Ly(0,1), 1 < p < oo.
Proof. The elements of the biorthogonal system are defined as follows
n(l) |«
yn(@) = Y (2)
() = Ve Ak, k1), (5.9)
yi (@) = 250 (o)
uk+1(x) = +1// (5]‘0)
—yi(1)@" (Ak) /2

The relation (5.4) for n, m =0, 1,...; n, m # k follows from (1.4), (1.9), (1.12),
(2.1), (2.3), (3.1), (3.2). O

Before proceeding we comment on the above condition y; (1) # 0. Let y;_ (1) =
0, then by (3.1), (3.2) the function yj_ , is orthogonal to all the elements of the sys-
tem (5.8). Therefore the system (5.8) is not complete (cf. [15, Theorem 3]) in
Ly(0.1). In the next section we shall prove that the condition y;_ (1) # 0 is also
necessary for the minimality of the system (5.8).

Theorem 5.4. If \; is a double eigenvalue then the system

{yn} (n=0, 1,...;n#1), (5.11)

where l # k, k+ 1 is a non-negative integer, is minimal in L,(0,1), 1 <p < oo.
Proof. The biorthogonal system is given by the formula (5.3) for n # k, k+ 1,
and

) — ),

= (1
B Yo (T) — y;;(ll()) ()

) = e ()2
The relation (5.4) for n, m =0, 1,...; n, m # [ follows from (1.4), (1.9), (1.12),
(2.1), (2.3), (3.1)-(3.3). O
Case (c).
Theorem 5.5. If \; is a triple eigenvalue then the system

(5.13)

{yn} (n=0, 1,...5n#k+2), (5.14)
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is minimal in Ly(0,1), 1 < p < oc.
Proof. The biorthogonal system is given by the formula (5.6) for n # k, k +
1, K+ 2, and

Yky1(z) — %yk(ﬂﬁ)

= 5.15
Kk yltiz(l)
Yito(2) — v (1) Y ()
= 5.16
k) = e ()6 (010
The relation (5.4) forn, m =0, 1, ...; n, m # k + 2 follows from the mentioned

results of sections 1, 2 and formulas (3.5), (3.8), (3.9). O
Theorem 5.6. If A, is a triple eigenvalue, and if y;7 (1) # 0 then the system

{yn} (n=0, 1,..;n#k+1), (5.17)

is minimal in L,(0,1), 1 < p < o0.
Proof. In this case the elements of the biorthogonal system are

yn(l) sk

Yn(z) — 7 (D Yk 1 ()
U () = ykg() + C(n#k, k+1, k+2); (5.18)
n
_ ()
tiorn(z) = Yi(z) v (1 )yk+1( z) (5.19)
—yr(D@"”(A)/6
YD) oo
B y}?:-z( ) — ygf(l)ykﬁ-l( ) £ 90
) = e ()6 (5:20)
The relation (5.4) for n, m =0, 1,...; n, m # k + 1 can be verified using the

mentioned results of sections 1, 2 and formulas (3.4), (3.6), (3.10)-(3.12). O

In analogy with theorem 5.3, we may show that if y;* | (1) = 0 then the function
yih 1 (z) is orthogonal to all the elements of the system (5.17); hence the system
(5.17) is not complete.

Theorem 5.7. If A is a triple eigenvalue, and if yk+2( ) # 0 then the system

{yn} (n=0, 1,...;n#k), (5.21)

is minimal in Ly(0,1), 1 < p < oc.
Proof. We define the elements of the biorthogonal system by

un () — vl ()
Uun (z) = y’“; L (n#k, k+1, k+2); (5.22)
ue(o) = B UL @)
w2 ) = T e e (>:23)
Y1 (z) — yk+1() ##(x)

A0k
—yi(1 )w”’(A )/6

ug1(z) = (5.24)



Proceedings of IMM of NAS of Azerbaijan 47
[On the basis prop.of Sturm-Liouville prob.]

The relation (5.4) forn, m =0, 1,...; n, m # k follows from the mentioned results
of sections 1, 2 and formulas (3.13)-(3.15). O
It yk+2( ) = 0 then the system (4.21) is not complete.

Theorem 5.8. If \; is a triple eigenvalue then the system

{yn} (n=0, 1,...;n #1), (5.25)

where l # k, k+1, k+2 is a non-negative integer, is minimal in L,(0,1), 1 < p < oo.
Proof. The elements of the biorthogonal system can be represented in the form

yn () — 228l ()
un(z) = Byl(” L (n#Ek k+1, k+2, 1) (5.26)
n
yr(z) — 2y ui(e)
U T 5.27
weole) = 2w "'(Ak)/e’ (520
yk+1
Y (@) — v (1) yi(z)
U T , 5.28
Hl®) = D ()6 (0:28)
##
#H# yk+2(1)
i (z) = yk+2( T) — v (1) yi(z) (5.29)
—yk(1)@" (Ar)/6
The relation (5.4) for n, m =0, 1,...; n, m # [ follows from the mentioned results
of sections 1, 2 and formulas (3.4), (3.6), (3.7), (3.13)-(3.16). O

Case (d). -
Theorem 5.9. If \,. and A; = A\, are a conjugate pair of non-real eigenvalues
then each of the systems

{yn} (n=0, 1,...;n#7r), (5.30)

{yn} (n=0, 1,...5n#1), (5.31)

where I # 1, s is a non-negative integer, is minimal in Ly(0,1), 1 < p < oo.
Proof. The biorthogonal system of (5.30) is as follows

) — yn(1) T
un(z) = o é’;(”%( ! (n#r, s); (5.32)
T — yr(1) T
us(1) = urlo) ~ ¥ () (5.33)

—yr(D)@'(Ar)
The equality (5.4) for n, m =0, 1,...; n, m # r can be verified using (1.4), (1.9),
(1.11)-(1.13).

The biorthogonal system of (5.31) is defined by (5.3) for n # r,s; (5.33) and

ys () — L83y, (v)
—ys(1)@’(As)

up(x) = (5.34)
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6. Basisness of the system of root functions. We shall use a method
somewhat similar to the one of [10].

Theorem 6.1. FEach of the systems in theorems 5.1-5.9 is a basis of Ly(0,1),
1 < p < oco. Moreover if p =2 then this basis is unconditional.

Proof. We shall give the details only for the system (5.1). The proofs for other
systems are similar. First we prove that the system (5.1) is an unconditional basis
of Ly(0,1). For this we compare the system (5.1) with the system

{(,Dn(.’L‘)}(TL: 172737“')a (6.1)

where

o = { V2cos (n—3) mz, B#0, (6.2)

V2sinnrz, f=0.

This system is a basis of L,(0,1) 1 < p < oo (see e.g. [14]), and in particular an
orthonormal basis of L5(0,1). By (4.1), for sufficiently large n we have

lyn () = @ ()l < const - n~". (6.3)

This inequality implies that the series

l
D llyn-1(2) = u(@)]15 + Z [yn (2 ()13, (6.4)
n=1

n=Il+1

is convergent, hence the minimal system (5.1) is quadratically close to the system

(6.1), which is an orthonormal basis of Ly(0,1) as mentioned above. Therefore the

system (5.1) is a basis of L2(0,1) (see Section 9.9.8 of the Russian transl. of [6]).
By (4.8)-(4.11) and (5.3), we have

un(z) = yn(z) + O(1/n). (6.5)
From (6.5) and (4.1) it follows that

yn () = ¢p(z) + O(1/n), (6.6)

() = () + O(1/). (6.7)

Let 1 < p < 2 and p is fixed. Below we denote by |-[|, the norm in L,(0,1).
It was proved above that the system (5.1) is a basis of L9(0,1). Consequently, this
system is complete in L,(0,1). Then for basisness of the system (5.1) in L,(0, 1) it
is sufficient to prove the existence of a constant M > 0, for which the inequality

N
Z (frun)yn| <M-|fll,, (N=1,2..), (6.8)
n=1;n
P

is true for arbitrary function f from L,(0,1) (see [9, Chapter I}).
N
By (6.6)-(6.7) (below X' denotes > ),
n=1;n#l



Proceedings of IMM of NAS of Azerbaijan 49
[On the basis prop.of Sturm-Liouville prob.]

HIS ()0, + |27, 00 /m)e], (6.9)

Since the system (6.1) is a basis of L,(0, 1) then

Hzl(fa (pn)(anp < const - ||f||p (610)

Applying in succession Holder’s and Minkowsky’s inequalities, and by (6.7),

[9(f,un)O(1 /)], < const - =/|(f,un)n™ |

< const - (2,|(f, un)|q)1/q . (Eln—p)l/P

< const - [(£(f,e)|) "+ (Z'I(f, 0(1/n))7) Y, (6.11)

where 1/p+1/¢g = 1.
Since (6.1) is an orthonormal uniformly bounded function system then by F.
Riesz’s theorem (see Theorem 2.8, Ch.XII from [18]),

(Z'[(f, o)1) /7 < const - |1 1], (6.12)

Using the well known fact that [|f[|, is a non-decreasing function of p, we have

('](f,0(1/n)|) ¢ < const - ||f]]; - (S'n )¢ < const - | £, (6.13)
Similarly, using Parseval’s equality we have,

I=/(f,00/m)e, |, < I='(f,00/n) ¢, = (E’I(f,O(l/n))IQ)l/2 <

< const - [|fIl; - (£'n %) < const - | £, - (6.14)

Finally, (6.8) follows from (6.9)-(6.14). Hence the system (5.1) is a basis of
L,(0,1),1<p<2.

Consider now the case when 2 < p < oco. It is obvious that the system (5.2) is
a basis of L,(0,1). Then this system is complete in L,(0,1), where 1/p +1/q = 1.
Note that 1 < g < 2.

To complete the proof, we note that using the same kind of arguments as above,
one can prove that the system (5.2) is a basis of Ly(0,1). From this it follows that
the system (5.1) is a basis of L,(0,1), 2 < p < co. [

We recall from Theorem 5.3 and subsequent notes that if y;_ (1) # 0 then the
system (5.8) is minimal in L,(0,1), 1 < p < co. Moreover, we have seen in Theorem
6.1 that this system is a basis of L,(0,1). But if y;_,(1) = 0 then this system
is not complete in L,(0,1). As we shall now see the condition y;_ (1) = 0 also
implies that this system is not minimal in Ly (0, 1). Indeed, if this system is minimal
then using the method of the Theorem 6.1 we can prove basisness of this system in
L5(0,1), which contradicts with incompleteness of this system in Ly(0,1). It may
be shown in the same way that the system (5.17) (the system (5.21)) is not minimal
if y;* (1) = 0 (respectively, if yfﬁ(l) =0).
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In conclusion, we note that in some cases it is possible to define the elements of
the biorthogonal system in a different way. For example the element (5.20) of the
biorthogonal system of (5.17) can be replaced by

#t
## Yira (1), s
Yiia(r) — y%{i(l)ykﬁ—l(x)

—yr(L)w@" (A)/6

up(z) =

But using the equality do = di + c3, which is easily verified, we can show that this
representation of the element ug(z) coincide with (5.20). This observation agrees
with the well known fact that the biorthogonal system of a basis is unique.

6. Example. As a complement, we note a special result for the problem (0.5),
(0.6). In particular, as was noted in [15], if a = —1 then A\g = A\; = 0 is a double
eigenvalue and the eigenvalues 0 < Ay < A3 < ... are solutions of the equation
tan vV A = VA Eigenfunctions are yg = 1, y, = cosv/A,z (n > 2) and associated
function corresponding to eigenfunction yg is y; = —%m2 + ¢, where c is an arbitrary
constant. We seek the auxiliary associated function in the form yj = —%xQ +c.
That is ¢; = ¢ —¢. By (3.1),

[ (e (409 ()

From this equality we obtain that ¢’ = —c+ %, soyi(1) =c— %. Therefore the above
condition y}(1) = 0 in Theorem 5.3 is equivalent to ¢ = ;5. This result coincide
with [15, Theorem 3] if we note that the definition of the first associated function
in [15] differs from ours by its sign.

We shall now indicate different approach for this problem. Note that for this

problem y(z,\) = cosvAz, then yy(z,\) = —%. We obtain that ¢, =
limy o ya(z,A) = —%. Let y1 = —%xg 4+ c¢. Then ¢ = —c. Note also that

w(A) = Acos VX —Vsin ﬁ, then

@"(0) = lim w”()\) = —2/3,
A—=0

@"(0) = lim @' ()\) = 1/5.
A—=0
As was pointed out in subsequent remarks of Lemma 3.1, the condition yj (1) =0 is
equivalent to w™” (\) = 3¢w” (), from which we obtain, once again, ¢ = 1. These
calculations confirm our results.
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