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ON THE BASIS PROPERTIES OFSTURM-LIOUVILLE PROBLEMS WITHDECREASING AFFINE BOUNDARY CONDITIONS
AbstractWe consider Sturm-Liouville problems with a boundary condition linearlydependent on the eigenparameter. We study the decreasing a�ne case wherenon-real or non-simple (multiple) eigenvalues are possible. We prove that thesystem of root (i.e. eigen and associated) functions of the corresponding opera-tor, with arbitrary function removed, form a basis in L2(0; 1), except some caseswhere this system is neither complete nor minimal. The method used is basedon the determination of the explicit form of the biorthogonal system. For thebasisness in L2 we prove that the part of the system of root functions is quadrat-ically close to sine or cosine systems. We also consider these basis propertiesin the context of general Lp. For this we use F. Riesz's theorem.

Consider the following spectral problem
�y00 + q(x)y = �y; 0 < x < 1; (0:1)

y0(0) sin� = y(0) cos�; 0 � � < �; (0:2)y0(1) = (a�+ b)y(1); (0:3)where a; b are real constants and a < 0, � is the spectral parameter, q(x) is a realvalued and continuous function over the interval [0; 1].The present article is about the basis properties in Lp(0; 1); 1 < p < 1 of thesystem of root functions of the boundary value problem (0.1)-(0.3).It was proved in [2] (see also [1]) that the eigenvalues of the boundary valueproblem (0.1)-(0.3) form an in�nite sequence accumulating only at +1 and onlyfollowing cases are possible: (a) all the eigenvalues are real and simple; (b) all theeigenvalues are real and all, except one double, are simple; (c) all the eigenvaluesare real and all, except one triple, are simple; (d) all the eigenvalues are simple andall, except a conjugate pair of non-real, are real.The eigenvalues �n (n � 0) will be considered to be listed according to non-decreasing real part and repeated according to algebraic multiplicity. Asymptoticsof eigenvalues and oscillation of eigenfunctions of the boundary value problem (0.1)-(0.3), with linear function in the boundary condition, replaced by general rationalfunction, were studied in a recent paper [3]. For a�ne (linear) decreasing case thisasymptotics is as follows [2]:
�n = � �n� 1

2
�2 �2 +O(1); � 6= 0;n2�2 +O(1); � = 0: (0:4)

The case a > 0 in our problem is considerably simpler and can be found as aspecial case in papers [10,11]. In paper [15] the following boundary value problemwas considered: �y00 = �y; 0 < x < 1; (0:5)
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y0(0) = 0; y0(1) = a�y(1); a 6= 0: (0:6)For this problem only cases (a) and (b) are possible and in [15] a complete solutionof the problem on the basis properties in Lp(0; 1) (1 < p <1) of the system of rootfunctions, was given. We shall discuss this problem further in the last section. Thesituation in problem (0.1)-(0.3) is much more complicated, with the possibility ofnon-real eigenvalues and of eigenvalues with algebraic multiplicity 3 being present.There is a vast literature on the boundary value problems with a spectral param-eter in the boundary conditions (see e.g. [7,17]). We mention also [4,12] as recentcontributions in this area.

1. Inner products and norms of eigenfunctions. Let y(x; �) be a non-zerosolution of (0.1), (0.2), and we write the characteristic equation
$(�) = y0(1; �)� (a�+ b)y(1; �): (1:1)

By (0.3), �n is an eigenvalue of (0.1)-(0.3) if $(�n) = 0. �n is a simple eigenvalueif $(�n) = 0 6= $0(�n). �k is a double eigenvalue if
$(�k) = $0(�k) = 0 6= $00(�k); (1:2)

and triple eigenvalue if
$(�k) = $0(�k) = $00(�k) = 0 6= $000(�k): (1:3)

We note also that y(x; �) ! y(x; �n), uniformly, according to x 2 [0; 1], as �!�n, and the function yn(x) = y(x; �n) is an eigenfunction of (0.1)-(0.3) correspondingto eigenvalue �n (see [5, Sect. 10.72]). By (0.1)-(0.3) we have,
�y00n + q(x)yn = �nyn;
y0n(0) sin� = yn(0) cos�;y0n(1) = (a�n + b)yn(1):Throughout this paper we denote by (�; �) the scalar product in L2(0; 1).Lemma 1.1. Let yn; ym be eigenfunctions corresponding to eigenvalues �n; �m(�n 6= �m). Then following equality holds:

(yn; ym) = �ayn(1)ym(1): (1:4)
Proof. To begin we note that

ddx(y(x; �)y0(x; �)� y0(x; �)y(x; �)) = (�� �)y(x; �)y(x; �):
By integrating this identity from 0 to 1, we obtain

(�� �)(y(�; �); y(�; �)) = (y(x; �)y0(x; �)� y0(x; �)y(x; �))���1
0
: (1:5)

From (0.2), we obtain
y(0; �)y0(0; �)� y0(0; �)y(0; �) = 0: (1:6)
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By (1.1),

y(1; �)y0(1; �)� y0(1; �)y(1; �) = �a(�� �)y(1; �)y(1; �)
+y(1; �)$(�)� y(1; �)$(�): (1:7)From (1.5)-(1.7), it follows that for � 6= �,

(y(�; �); y(�; �)) = �ay(1; �)y(1; �) + y(1; �)$(�)�� � � y(1; �)$(�)�� �; (1:8)
which is the generalization of analogous formula in [5, Sect. 10.72].We obtain (1.4) from (1.8) by substituting parameters �; � respectively by �n; �m,where we use the fact that $(�n) = $(�m) = 0.Since �n; �m are eigenvalues of (0.1)-(0.3) then $(�n) = $(�m) = 0, hence bytending �! �n (� 6= �n) and then tending �! �m we obtain (1.4). �Now we collect some easy facts about inner products of eigenfunctions.Lemma 1.2. If �n is a real eigenvalue then

kynk22 = (yn; yn) = �ayn(1)2 � yn(1)$0(�n): (1:9)
Proof. Since $(�n) = 0 then $(�)=(� � �n) ! $0(�n) as � ! �n. Therefore,by tending �! �n (� 6= �n) and then tending �! �n in (1.8) we obtain (1.9). �Corollary 1.1. If �k is a multiple eigenvalue then

kykk22 = (yk; yk) = �ayk(1)2: (1:10)
An immediate corollary of (1.4) is the following.Corollary 1.2. If �r is a non-real eigenvalue then

kyrk22 = �ajyr(1)j2: (1:11)
Proof. Since �r 6= �r then (1.11) follows at once from (1.4) by replacing �n; �mby �r. �For the eigenfunction yn de�ne

Bn = kynk22 + ajyn(1)j2: (1:12)
The following corollary of (1.9) and (1.11) will be useful (cf. [1, Theorem 4.3]).Corollary 1.3. Bn 6= 0 if and only if the corresponding eigenvalue �n is real

and simple.We conclude this section with the followingLemma 1.3. If �r and �s = �r are a conjugate pair of non-real eigenvalues

then (yr; ys) = �ayr(1)2 � yr(1)$0(�r): (1:13)The proof is similar to the proof of (1.9).We note also that since all non-real eigenvalues of (0.1)-(0.3) are simple then$0(�r) 6= 0 in (1.13).
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2. Inner products and norms of associated functions. We need to estab-lish some facts about eigenfunctions and associated functions corresponding to realeigenvalues. So in this and subsequent sections we consider only real eigenvalues.If �k is a multiple eigenvalue (�k = �k+1) then for the �rst order associatedfunction yk+1 corresponding to eigenfunction yk, following relations hold [16, p. 28]:

�y00k+1 + q(x)yk+1 = �kyk+1 + yk;
y0k+1(0) sin� = yk+1(0) cos�;y0k+1(1) = (a�k + b)yk+1(1) + ayk(1):If �k is a triple eigenvalue (�k = �k+1 = �k+2) then together with the �rst orderassociated function yk+1 there exists the second order associated function yk+2 forwhich following relations hold:

�y00k+2 + q(x)yk+2 = �kyk+2 + yk+1;
y0k+2(0) sin� = yk+2(0) cos�;y0k+2(1) = (a�k + b)yk+2(1) + ayk+1(1):Following well known properties of associated functions play an important rolein our investigation. The functions yk+1 + cyk and yk+2 + dyk, where c and dare arbitrary constants, are also associated functions of the �rst and second orderrespectively. Next we observe that replacing the associated function yk+1 by yk+1+cyk, the associated function yk+2 changes to yk+2 + cyk+1.By di�erentiating (0.1), (0.2) and (1.1) with respect to � we obtain

�y00�(x; �) + q(x)y�(x; �) = �y�(x; �) + y(x; �);
y0�(0; �) sin� = y�(0; �) cos�;$0(�) = y0�(1; �)� (a�+ b)y�(1; �)� ay(1; �);where the su�x denotes di�erentiation with respect to �.Let �k be a multiple (double or triple) eigenvalue of (0.1)-(0.3). Since $(�k) =$0(�k) = 0 then y(x; �) ! yk, y�(x; �) ! ~yk+1, uniformly according to x 2 [0; 1],as �! �k, where ~yk+1 is one of the associated functions of the �rst order, and it isobvious that ~yk+1 = yk+1 + ~cyk, where ~c = (~yk+1(1)� yk+1(1))=yk(1).Similarly, with the index notation introduced above, we may write

�y00��(x; �) + q(x)y��(x; �) = �y��(x; �) + 2y�(x; �);
y0��(0; �) sin� = y��(0; �) cos�;$00(�) = y0��(1; �)� (a�+ b)y��(1; �)� 2ay�(1; �):We note again that if �k is a triple eigenvalue of (0.1)-(0.3) then $00(�k) = 0,hence y�� ! 2~yk+2, uniformly according to x 2 [0; 1], as � ! �k, where ~yk+2is one of the associated functions of the second order corresponding to the �rstassociated function ~yk+1, and it is obvious that ~yk+2 = yk+2 + ~cyk+1 + ~dyk, and~d = (~yk+2(1)� yk+2(1)� ~cyk+1(1))=yk(1).
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Lemma 2.1. If �k is a multiple eigenvalue and �n 6= �k then

(yk+1; yn) = �ayk+1(1)yn(1): (2:1)
Proof. Di�erentiating (1.8) with respect to � we obtain

(y�(�; �); y(�; �)) = �ay�(1; �)y(1; �) + y�(1; �)$(�)�� �
�y(1; �) $(�)(�� �)2 � y(1; �)$0(�)�� � + y(1; �) $(�)(�� �)2 : (2:2)

Tending �! �n (� 6= �n) and then tending �! �k in (2.2) we obtain (~yk+1; yn) =�a~yk+1(1)yn(1). We note that ~yk+1 = yk+1 + ~cyk. Therefore,
(yk+1; yn) + ~c(yk; yn) = �ayk+1(1)yn(1)� a~cyk(1)yn(1):

From this and the equality (yk; yn) = �ayk(1)yn(1) it follows that (2.1) is true. Wenote that legality of di�erentiation and subsequent passage to limit within integralsis based on [8, Ch.3, x4, Theorems 1, 2]. �Lemma 2.2. If �k is a multiple eigenvalue then

(yk+1; yk) = �ayk+1(1)yk(1)� yk(1)$00(�k)2 : (2:3)
Proof. Tending �! �k (� 6= �k) and then tending �! �k in (2.2) we obtain

(~yk+1; yk) = �a~yk+1(1)yk(1)� yk(1)$00(�k)2 :
In analogy with previous lemma, noting (1.10) we obtain (2.3). �Lemma 2.3. If �k is a multiple eigenvalue then

kyk+1k22 = (yk+1; yk+1) = �ayk+1(1)2
�byk+1(1)$00(�k)2 � yk(1)$000(�k)6 : (2:4)

where byk+1 = yk+1 � ~cyk.Proof. Di�erentiating (2.2) with respect to � we obtain
(y�(�; �); y�(�; �)) = �ay�(1; �)y�(1; �) + y�(1; �)$0(�)�� �

+y�(1; �) $(�)(�� �)2 � y(1; �) $0(�)(�� �)2 � y(1; �) 2$(�)(�� �)3 � y�(1; �)$0(�)�� �
�y(1; �) $0(�)(�� �)2 + y�(1; �) $(�)(�� �)2 + y(1; �) 2$(�)(�� �)3 : (2:5)

Tending �! �k (� 6= �k) and then tending �! �k we obtain
(~yk+1; ~yk+1) = �a~yk+1(1)2 � ~yk+1(1)$00(�k)2 � yk(1)$000(�k)6 :
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As in previous lemmas substituting ~yk+1 = yk+1 + ~cyk, after some computations weprove (2.4). �Lemma 2.4. If �k is a triple eigenvalue and �n 6= �k then

(yk+2; yn) = �ayk+2(1)yn(1): (2:6)
Proof. Di�erentiating (2.2) with respect to � we obtain

(y��(�; �); y(�; �)) = �ay��(1; �)y(1; �) + y��(1; �)$(�)�� � � y�(1; �) 2$(�)(�� �)2
+y(1; �) 2$(�)(�� �)3 � y(1; �)$00(�)�� � + y(1; �) 2$0(�)(�� �)2 � y(1; �) 2$(�)(�� �)3 :Tending �! �k (� 6= �k) we obtain

(~yk+2; y(�; �)) = �a~yk+2(1)y(1; �) + ~yk+2(1) $(�)�k � �
�~yk+1(1) $(�)(�k � �)2 + yk(1) $(�)(�k � �)3 : (2:7)

Tending �! �n we obtain (~yk+2; yn) = �a~yk+2(1)yn(1), from which noting ~yk+2 =yk+2 + ~cyk+1 + ~dyk, (yk; yn) = �ayk(1)yn(1) and (2.1) we obtain (2.6). �Lemma 2.5. If �k is a triple eigenvalue then

(yk+2; yk) = �ayk+2(1)yk(1)� yk(1)$000(�k)6 : (2:8)
Proof. Tending �! �k in (2.7) and noting (1.3) we obtain

(~yk+2; yk) = �a~yk+2(1)yk(1)� yk(1)$000(�k)6 :
Similar to previous lemma, using (2.3) and noting (1.3) we prove (2.8). �Lemma 2.6. If �k is a triple eigenvalue then

(yk+2; yk+1) = �ayk+2(1)yk+1(1)� byk+1(1)$000(�k)6 � yk(1)$IV (�k)24 : (2:9)
Proof. Di�erentiating (2.7) with respect to � we obtain

(~yk+2; y�(�; �)) = �a~yk+2(1)y�(1; �)
+~yk+2(1) $0(�)�k � � + ~yk+2(1) $(�)(�k � �)2
�~yk+1(1) $0(�)(�k � �)2 � ~yk+1(1) 2$(�)(�k � �)3
+yk(1) $0(�)(�k � �)3 + yk(1) 3$(�)(�k � �)4 : (2:10)

Tending �! �k, after simpli�cations we obtain (2.9). �
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Lemma 2.7. If �k is a triple eigenvalue then

kyk+2k22 = (yk+2; yk+2) = �ayk+2(1)2
�byk+2(1)$000(�k)6 � byk+1(1)$IV (�k)24 � yk(1)$V (�k)120 ; (2:11)

where byk+2 = yk+2 � ~cbyk+1 � ~dyk.Proof. Di�erentiating (2.10) with respect to � we obtain
(~yk+2; y��(�; �)) = �a~yk+2(1)y��(1; �)

+~yk+2(1)$00(�)�k � � + ~yk+2(1) 2$0(�)(�k � �)2 + ~yk+2(1) 2$(�)(�k � �)3
�~yk+1(1) $00(�)(�k � �)2 � ~yk+1(1) 4$0(�)(�k � �)3 � ~yk+1(1) 6$(�)(�k � �)4

+yk(1) $00(�)(�k � �)3 + yk(1) 6$0(�)(�k � �)4 + yk(1) 12$(�)(�k � �)5 :Tending �! �k, after elementary but lengthy computations we obtain (2.11). �
3. Existence of auxiliary associated functions. In this section we shallprove the existence of some special associated functions which have the propertiesof an eigenfunction in inner products with original associated functions. In theproof of these results we shall require some facts about the inner products of rootfunctions, which have been gathered in sections 1, 2.Lemma 3.1. If �k is a double eigenvalue then there exists associated functiony�k+1 = yk+1 + c1yk, where c1 is a constant, for which

(y�k+1; yk+1) = �ay�k+1(1)yk+1(1): (3:1)
Proof. Summing (2.4) with (2.3) multiplied by c1 we obtain

(yk+1 + c1yk; yk+1) = �a(yk+1(1) + c1yk(1))yk+1(1)
�(byk+1(1) + c1yk(1))$00(�k)2 � yk(1)$000(�k)6 :

The equality (3.1) holds exactly if we take
c1 = �yk(1)$000(�k) + 3byk+1(1)$00(�k)3yk(1)$00(�k) : �

It should be pointed out here that y�k+1(1) = 0 if and only if $000(�k) = 3~c$00(�k).Before proceeding, we note also that for �n 6= �k,
(y�k+1; yn) = �ay�k+1(1)yn(1); (3:2)

(y�k+1; yk) = �ay�k+1(1)yk(1)� yk(1)$00(�k)2 : (3:3)
We shall now concentrate more on the study of triple eigenvalue case.
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Lemma 3.2. If �k is a triple eigenvalue then there exist associated functionsy��k+1 = yk+1 + c2yk, y��k+2 = yk+2 + c2yk+1, where c2 is a constant, for which

(y��k+1; yk+2) = �ay��k+1(1)yk+2(1); (3:4)
(y��k+2; yk+1) = �ay��k+2(1)yk+1(1): (3:5)Proof. The proof in this case is very similar to the proof of Lemma 3.1, so we onlyindicate the main steps. Summing (2.9) with (2.8) multiplied by c2, and (2.9) with(2.4) multiplied by c2, where

c2 = �yk(1)$IV (�k) + 4byk+1(1)$000(�k)4yk(1)$000(�k) ;
we obtain (3.4) and (3.5) correspondingly. �We shall now indicate some relations between y��k+1, y��k+2 and other root func-tions: (y��k+1; yn) = �ay��k+1(1)yn(1); (n 6= k + 1; k + 2); (3:6)

(y��k+1; yk+1) = �ay��k+1(1)yk+1(1)� yk(1)$000(�k)6 ; (3:7)
(y��k+2; yn) = �ay��k+2(1)yn(1); (n 6= k; k + 1; k + 2); (3:8)

(y��k+2; yk) = �ay��k+2(1)yk(1)� yk(1)$000(�k)6 ; (3:9)
(y��k+2; yk+2) = �ay��k+2(1)yk+2(1)�Qk;where Qk = byk+2(1)$000(�k)6 + byk+1(1)$IV (�k)24 + yk(1)$V (�k)120
+c2�byk+1(1)$000(�k)6 + yk(1)$IV (�k)24

� :
It is worthwhile to note that y��k+1(1) = 0 if and only if $IV (�k) = 4~c$000(�k).Lemma 3.3. If �k is a triple eigenvalue then there exists associated functiony#k+2 = yk+2 + d1yk, where d1 is a constant, for which

(y#k+2; yk+2) = �ay#k+2(1)yk+2(1): (3:10)
Proof. Summing (2.11) with (2.8) multiplied by d1, where

d1 = �yk(1)$V (�k) + 5byk+1(1)$IV (�k) + 20byk+2(1)$000(�k)20yk(1)$000(�k) ;
we obtain (3.10). �With the above notations we also have

(y#k+2; yn) = �ay#k+2(1)yn(1); (n 6= k; k + 1; k + 2); (3:11)
(y#k+2; yk) = �ay#k+2(1)yk(1)� yk(1)$000(�k)6 ; (3:12)
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(y#k+2; yk+1) = �ay#k+2(1)yk+1(1)� byk+1(1)$000(�k)6 � yk(1)$IV (�k)24 :

We observe also that for the function y##k+2 = y��k+2 + d2yk, where
d2 = � Qkyk(1)$000(�k)=6 ;both of the following equalities hold:

(y##k+2; yk+1) = �ay##k+2(1)yk+1(1); (3:13)
(y##k+2; yk+2) = �ay##k+2(1)yk+2(1): (3:14)

Note also that for the function y##k+2, equalities like (3.11), (3.12) are also true:
(y##k+2; yn) = �ay##k+2(1)yn(1); (n 6= k; k + 1; k + 2); (3:15)

(y##k+2; yk) = �ay##k+2(1)yk(1)� yk(1)$000(�k)6 : (3:16)
We remark that y##k+2(1) = 0 if and only if

$IV (�k)4!
�$IV (�k)4! � ~c$000(�k)3!

� = $000(�k)3!
�$V (�k)5! � ~d$000(�k)3!

� :
4. Asymptotic formulas for eigenfunctions.Lemma 4.1. Following asymptotic formula is true:

yn = � p2 cos �n� 1
2
��x+O(1=n); � 6= 0;p2 sinn�x+O(1=n); � = 0: (4:1)

Proof. From (0.4) it follows that
p�n = � � �n� 1

2
�+O(1=n); � 6= 0;�n+O(1=n); � = 0: (4:2)

Denote by  1(x; �) and  2(x; �) a fundamental system of solutions of the di�erentialequation u00 � q(x)u+ �2u = 0, with initial conditions
 1(0; �) =  2(0; �) = 1;  01(0; �) = i�;  02(0; �) = �i�: (4:3)

As is well known (see [13] or [16, Ch.II, x4.5]), for su�ciently large �,
 j(x; �) = exp(��jx)(1 +O(1=�)) (j = 1; 2); (4:4)

where �1 = ��2 = i.We seek the eigenfunction yn(x) corresponding to the eigenvalue �n in the form
yn(x) = Pn



  1(x;p�n)  2(x;p�n)U( 1(x;p�n)) U( 2(x;p�n))





; (4:5)
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where Pn = ( �ip2�n sin���1 ; if � 6= 0;�ip2��1 ; if � = 0; (4:6)
and U( (x)) =  (0) cos� �  0(0) sin�; (4:7)for arbitrary function  (x) 2 C1[0; 1]. From relations (4.2)-(4.7) we easily obtain(4.1). �We shall need later the following estimates, which follows at once from (4.1).Lemma 4.2. Following asymptotic formulas are true:

kynk2 = 1 +O(1=n); (4:8)
yn(x) = O(1); (4:9)yn(1) = O(1=n); (4:10)Bn = 1 +O(1=n): (4:11)After these preliminaries, we may study the basis properties of root functions.For this purpose we need to establish theorems on minimality.

5. Minimality of the system of root functions. We discuss the variouscases. In each case we determine the explicit form of the biorthogonal system.Case (a).Theorem 5.1. If all the eigenvalues of (0.1)-(0.3) are real and simple then the

system fyng (n = 0; 1; : : : ;n 6= l); (5:1)
where l is a non-negative integer, is minimal in Lp(0; 1); 1 < p <1.Proof. It su�ces to show the existence of the system

fung (n = 0; 1; : : : ;n 6= l); (5:2)
biorthogonal to the system (4.1). Noting the relation Bn 6= 0 we de�ne elements ofthe system (5.2) by

un(x) = yn(x)� yn(1)yl(1) yl(x)Bn : (5:3)
It remains to see, noting (1.4), (1.9) and (1.12), that

(un; ym) = �nm; (5:4)
where �nm (n; m = 0; 1; : : : ; n; m 6= l) denotes as usually, Kronecker's symbol:�nm = 0 if n 6= m and �nn = 1. �Case (b).Theorem 5.2. If �k is a double eigenvalue then the system

fyng (n = 0; 1; : : : ;n 6= k + 1); (5:5)
is minimal in Lp(0; 1); 1 < p <1.
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Proof. In this case the biorthogonal system is de�ned by

un(x) = yn(x)� yn(1)yk(1)yk(x)Bn ; (n 6= k; k + 1); (5:6)
uk(x) = yk+1(x)� yk+1(1)yk(1) yk(x)�yk(1)$00(�k)=2 : (5:7)

Using formulas (1.4), (1.9), (1.10), (1.12), (2.1), (2.3) the relation (5.4) for n; m =0; 1; : : : ; n; m 6= k + 1 can easily be veri�ed. �Theorem 5.3. If �k is a double eigenvalue, and if y�k+1(1) 6= 0 then the system

fyng (n = 0; 1; : : : ;n 6= k); (5:8)
is minimal in Lp(0; 1); 1 < p <1.Proof. The elements of the biorthogonal system are de�ned as follows

un(x) = yn(x)� yn(1)y�
k+1

(1)y�k+1(x)Bn ; (n 6= k; k + 1); (5:9)
uk+1(x) = yk(x)� yk(1)y�

k+1
(1)y�k+1(x)�yk(1)$00(�k)=2 : (5:10)

The relation (5.4) for n; m = 0; 1; : : : ; n; m 6= k follows from (1.4), (1.9), (1.12),(2.1), (2.3), (3.1), (3.2). �Before proceeding we comment on the above condition y�k+1(1) 6= 0. Let y�k+1(1) =0, then by (3.1), (3.2) the function y�k+1 is orthogonal to all the elements of the sys-tem (5.8). Therefore the system (5.8) is not complete (cf. [15, Theorem 3]) inLp(0:1). In the next section we shall prove that the condition y�k+1(1) 6= 0 is alsonecessary for the minimality of the system (5.8).Theorem 5.4. If �k is a double eigenvalue then the system

fyng (n = 0; 1; : : : ;n 6= l); (5:11)
where l 6= k; k + 1 is a non-negative integer, is minimal in Lp(0; 1); 1 < p <1.Proof. The biorthogonal system is given by the formula (5.3) for n 6= k; k + 1,and

uk+1(x) = yk(x)� yk(1)yl(1) yl(x)�yk(1)$00(�k)=2 ; (5:12)
uk(x) = y�k+1(x)� y�

k+1
(1)yl(1) yl(x)�yk(1)$00(�k)=2 : (5:13)

The relation (5.4) for n; m = 0; 1; : : : ; n; m 6= l follows from (1.4), (1.9), (1.12),(2.1), (2.3), (3.1)-(3.3). �Case (c).Theorem 5.5. If �k is a triple eigenvalue then the system

fyng (n = 0; 1; : : : ;n 6= k + 2); (5:14)
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is minimal in Lp(0; 1); 1 < p <1.Proof. The biorthogonal system is given by the formula (5.6) for n 6= k; k +1; k + 2, and

uk+1(x) = yk+1(x)� yk+1(1)yk(1) yk(x)�yk(1)$000(�k)=6 ; (5:15)
uk(x) = y��k+2(x)� y��

k+2
(1)yk(1) yk(x)�yk(1)$000(�k)=6 : (5:16)

The relation (5.4) for n; m = 0; 1; : : : ; n; m 6= k + 2 follows from the mentionedresults of sections 1, 2 and formulas (3.5), (3.8), (3.9). �Theorem 5.6. If �k is a triple eigenvalue, and if y��k+1(1) 6= 0 then the system

fyng (n = 0; 1; : : : ;n 6= k + 1); (5:17)
is minimal in Lp(0; 1); 1 < p <1.Proof. In this case the elements of the biorthogonal system are

un(x) = yn(x)� yn(1)y��
k+1

(1)y��k+1(x)Bn ; (n 6= k; k + 1; k + 2); (5:18)
uk+2(x) = yk(x)� yk(1)y��

k+1
(1)y��k+1(x)�yk(1)$000(�k)=6 ; (5:19)

uk(x) = y#k+2(x)� y#
k+2

(1)y��
k+1

(1)y��k+1(x)�yk(1)$000(�k)=6 : (5:20)
The relation (5.4) for n; m = 0; 1; : : : ; n; m 6= k + 1 can be veri�ed using thementioned results of sections 1, 2 and formulas (3.4), (3.6), (3.10)-(3.12). �In analogy with theorem 5.3, we may show that if y��k+1(1) = 0 then the functiony��k+1(x) is orthogonal to all the elements of the system (5.17); hence the system(5.17) is not complete.Theorem 5.7. If �k is a triple eigenvalue, and if y##k+2(1) 6= 0 then the system

fyng (n = 0; 1; : : : ;n 6= k); (5:21)
is minimal in Lp(0; 1); 1 < p <1.Proof. We de�ne the elements of the biorthogonal system by

un(x) = yn(x)� yn(1)y##
k+2

(1)
y##k+2(x)Bn ; (n 6= k; k + 1; k + 2); (5:22)

uk+2(x) = yk(x)� yk(1)y##
k+2

(1)
y##k+2(x)�yk(1)$000(�k)=6 ; (5:23)

uk+1(x) = yk+1(x)� yk+1(1)y##
k+2

(1)
y##k+2(x)�yk(1)$000(�k)=6 : (5:24)
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The relation (5.4) for n; m = 0; 1; : : : ; n; m 6= k follows from the mentioned resultsof sections 1, 2 and formulas (3.13)-(3.15). �If y##k+2(1) = 0 then the system (4.21) is not complete.Theorem 5.8. If �k is a triple eigenvalue then the system

fyng (n = 0; 1; : : : ;n 6= l); (5:25)
where l 6= k; k+1; k+2 is a non-negative integer, is minimal in Lp(0; 1); 1 < p <1.Proof. The elements of the biorthogonal system can be represented in the form

un(x) = yn(x)� yn(1)yl(1) yl(x)Bn ; (n 6= k; k + 1; k + 2; l); (5:26)
uk+2(x) = yk(x)� yk(1)yl(1) yl(x)�yk(1)$000(�k)=6 ; (5:27)

uk+1(x) = y��k+1(x)� y��
k+1

(1)yl(1) yl(x)�yk(1)$000(�k)=6 ; (5:28)
uk(x) = y##k+2(x)� y##

k+2
(1)yl(1) yl(x)�yk(1)$000(�k)=6 : (5:29)

The relation (5.4) for n; m = 0; 1; : : : ; n; m 6= l follows from the mentioned resultsof sections 1, 2 and formulas (3.4), (3.6), (3.7), (3.13)-(3.16). �Case (d).Theorem 5.9. If �r and �s = �r are a conjugate pair of non-real eigenvalues

then each of the systems

fyng (n = 0; 1; : : : ;n 6= r); (5:30)
fyng (n = 0; 1; : : : ;n 6= l); (5:31)

where l 6= r; s is a non-negative integer, is minimal in Lp(0; 1); 1 < p <1.Proof. The biorthogonal system of (5.30) is as follows
un(x) = yn(x)� yn(1)ys(1) ys(x)Bn : (n 6= r; s); (5:32)

us(x) = yr(x)� yr(1)ys(1)ys(x)�yr(1)$0(�r) : (5:33)
The equality (5.4) for n; m = 0; 1; : : : ; n; m 6= r can be veri�ed using (1.4), (1.9),(1.11)-(1.13).The biorthogonal system of (5.31) is de�ned by (5.3) for n 6= r; s; (5.33) and

ur(x) = ys(x)� ys(1)yr(1)yr(x)�ys(1)$0(�s) :� (5:34)
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6. Basisness of the system of root functions. We shall use a methodsomewhat similar to the one of [10].Theorem 6.1. Each of the systems in theorems 5.1-5.9 is a basis of Lp(0; 1);1 < p <1. Moreover if p = 2 then this basis is unconditional.Proof. We shall give the details only for the system (5.1). The proofs for othersystems are similar. First we prove that the system (5.1) is an unconditional basisof L2(0; 1). For this we compare the system (5.1) with the system

f'n(x)g(n = 1; 2; 3; :::); (6:1)
where 'n = � p2 cos �n� 1

2
��x; � 6= 0;p2 sinn�x; � = 0: (6:2)

This system is a basis of Lp(0; 1) 1 < p < 1 (see e.g. [14]), and in particular anorthonormal basis of L2(0; 1). By (4.1), for su�ciently large n we have
kyn(x)� 'n(x)k2 � const � n�1: (6:3)

This inequality implies that the serieslX
n=1

kyn�1(x)� 'n(x)k22 + 1X
n=l+1

kyn(x)� 'n(x)k22; (6:4)
is convergent, hence the minimal system (5.1) is quadratically close to the system(6.1), which is an orthonormal basis of L2(0; 1) as mentioned above. Therefore thesystem (5.1) is a basis of L2(0; 1) (see Section 9.9.8 of the Russian transl. of [6]).By (4.8)-(4.11) and (5.3), we have

un(x) = yn(x) +O(1=n): (6:5)
From (6.5) and (4.1) it follows that

yn(x) = 'n(x) +O(1=n); (6:6)
un(x) = 'n(x) +O(1=n): (6:7)Let 1 < p < 2 and p is �xed. Below we denote by k�kp the norm in Lp(0; 1).It was proved above that the system (5.1) is a basis of L2(0; 1). Consequently, thissystem is complete in Lp(0; 1). Then for basisness of the system (5.1) in Lp(0; 1) itis su�cient to prove the existence of a constant M > 0, for which the inequality







NX
n=1;n 6=l (f; un)yn







p �M � kfkp; (N = 1; 2; : : :); (6:8)
is true for arbitrary function f from Lp(0; 1) (see [9, Chapter I]).By (6.6)-(6.7) (below �0 denotes NPn=1;n6=l),

�0(f; un)yn

p � 

�0(f; 'n)'n

p+
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+

�0(f; un)O(1=n)

p + 

�0(f;O(1=n))'n

p: (6:9)

Since the system (6.1) is a basis of Lp(0; 1) then

�0(f; 'n)'n

p � const � kfkp: (6:10)
Applying in succession Holder's and Minkowsky's inequalities, and by (6.7),

�0(f; un)O(1=n)

p � const � �0��(f; un)n�1��

� const � ��0j(f; un)jq�1=q � ��0n�p�1=p
� const � [��0j(f; 'n)jq�1=q + ��0j(f;O(1=n))jq�1=q]; (6:11)

where 1=p+ 1=q = 1.Since (6.1) is an orthonormal uniformly bounded function system then by F.Riesz's theorem (see Theorem 2.8, Ch.XII from [18]),��0j(f; 'n)jq�1=q � const � kfkp: (6:12)
Using the well known fact that kfkp is a non-decreasing function of p, we have

��0j(f;O(1=n))jq�1=q � const � kfk1 � ��0n�q�1=q � const � kfkp : (6:13)
Similarly, using Parseval's equality we have,



�0(f;O(1=n))'n

p � 

�0(f;O(1=n))'n

2 = ��0j(f;O(1=n))j2�1=2 �
� const � kfk1 � ��0n�2�1=2 � const � kfkp : (6:14)

Finally, (6.8) follows from (6.9)-(6.14). Hence the system (5.1) is a basis ofLp(0; 1); 1 < p < 2.Consider now the case when 2 < p < 1. It is obvious that the system (5.2) isa basis of Lp(0; 1). Then this system is complete in Lq(0; 1), where 1=p + 1=q = 1.Note that 1 < q < 2.To complete the proof, we note that using the same kind of arguments as above,one can prove that the system (5.2) is a basis of Lq(0; 1). From this it follows thatthe system (5.1) is a basis of Lp(0; 1); 2 < p <1. �We recall from Theorem 5.3 and subsequent notes that if y�k+1(1) 6= 0 then thesystem (5.8) is minimal in Lp(0; 1); 1 < p <1. Moreover, we have seen in Theorem6.1 that this system is a basis of Lp(0; 1). But if y�k+1(1) = 0 then this systemis not complete in Lp(0; 1). As we shall now see the condition y�k+1(1) = 0 alsoimplies that this system is not minimal in L2(0; 1). Indeed, if this system is minimalthen using the method of the Theorem 6.1 we can prove basisness of this system inL2(0; 1), which contradicts with incompleteness of this system in L2(0; 1). It maybe shown in the same way that the system (5.17) (the system (5.21)) is not minimalif y��k+1(1) = 0 (respectively, if y##k+1(1) = 0).
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In conclusion, we note that in some cases it is possible to de�ne the elements ofthe biorthogonal system in a di�erent way. For example the element (5.20) of thebiorthogonal system of (5.17) can be replaced by

uk(x) = y##k+2(x)� y##
k+2

(1)y��
k+1

(1)y��k+1(x)�yk(1)$000(�k)=6 :
But using the equality d2 = d1 + c22, which is easily veri�ed, we can show that thisrepresentation of the element uk(x) coincide with (5.20). This observation agreeswith the well known fact that the biorthogonal system of a basis is unique.6. Example. As a complement, we note a special result for the problem (0.5),(0.6). In particular, as was noted in [15], if a = �1 then �0 = �1 = 0 is a doubleeigenvalue and the eigenvalues 0 < �2 < �3 < : : : are solutions of the equationtanp� = p�. Eigenfunctions are y0 = 1, yn = cosp�nx (n � 2) and associatedfunction corresponding to eigenfunction y0 is y1 = �1

2x2+ c, where c is an arbitraryconstant. We seek the auxiliary associated function in the form y�1 = �1
2x2 + c0.That is c1 = c0 � c. By (3.1),Z 1

0

��12x2 + c���12x2 + c0� dx = ��12 + c���12 + c0� :
From this equality we obtain that c0 = �c+ 3

5 , so y�1(1) = c� 1
10 . Therefore the abovecondition y�1(1) = 0 in Theorem 5.3 is equivalent to c = 1
10 . This result coincidewith [15, Theorem 3] if we note that the de�nition of the �rst associated functionin [15] di�ers from ours by its sign.We shall now indicate di�erent approach for this problem. Note that for thisproblem y(x; �) = cosp�x, then y�(x; �) = �x sinp�x

2
p� . We obtain that ~y1 =lim�!0 y�(x; �) = �x2

2 . Let y1 = �1
2x2 + c. Then ~c = �c. Note also that$(�) = � cosp��p� sinp�, then

$00(0) = lim�!0
$00(�) = �2=3;

$000(0) = lim�!0
$000(�) = 1=5:

As was pointed out in subsequent remarks of Lemma 3.1, the condition y�1(1) = 0 isequivalent to $000(�k) = 3~c$00(�k), from which we obtain, once again, c = 1
10 . Thesecalculations con�rm our results.Acknowledgement. I thank Professor N.B. Kerimov for proposal of the prob-lem and his attention to this work.
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