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ON EXISTENCE IN LARGE FOR ALMOST
EVERYWHERE SOLUTION OF
ONE-DIMENSIONAL MIXED PROBLEM FOR A
CLASS OF KORTEWEG-DE VRIES-BURGERS
TYPE NONLINEAR EQUATIONS

Abstract

This work presents a study of one-dimensional mized problem with Riquier
type homogenous boundary conditions for a class of Korteweg-de Vries-Burgers
type semilinear differential equations. The concept of almost everywhere solu-
tion for the given mixed problem is introduced. The almost everywhere solution
u(t,x) of mized problem under consideration is sought in the form of Fourier
series

u(t,z) = Zun(t) sinnz (0<t<T,0<z<m).
n=1

After applying Fourier method, the problem of finding unknown Fourier coeffi-
cients uy, (t) (n = 1,2, ...) of sought almost everywhere solution u(t, ) is reduced
to solving some countable system of nonlinear integral equations. Then, the a
priori estimate in C ([O, T); Wi (0, 7r)) is obtained for all the possible almost ev-
erywhere solutions of mized problem under consideration, which, in turn, helps
to prove ezistence in large theorem for almost everywhere solution.

This work is devoted to the study of existence in large for almost everywhere
solution of the following one-dimensional mixed problem:

Ut(ty 33) + Oéut:cwzz(ty 37) = F(t, z, u<t7 x)u ua?(t7 x)a um:(ta :L'), Uz <t7 .%'), ua::v:c;r(t7 x))

0<t<T,0<z<m), (1)
u(0,2) = plx) (0 < < ), )
u(t,0) = u(t,m) = ugy(t,0) = Uy (t, 1) =0 (0 <t <T), (3)

where o > 0 is a fixed constant; 0 < T' < +o00; F' and ¢ are the given functions, and
u(t, z) is a sought function. We make a definition of an almost everywhere solution
of problem (1)-(3) as follows:

Definition. We define an almost everywhere solution of problem (1)-(3) as a
function u(t,x) with the following properties:

a) u(t,x), uzp(t, ), g (t, ), Ugge(t, ), ur(t, ), g (t, T), Utgz(t, ), Utpea(t,x) €
C([0,T) x[0,7]); Ugzwe(t, ), Utgaze(t,2) € C([0,T]; L2(0,7));

b) equation (1) is satisfied almost everywhere in (0,1 x (0,7);

¢) all the conditions (2) and (3) are satisfied in ordinary sense.

Note that in [1] and [2], existence in small theorem and uniqueness in large
theorem for almost everywhere solution of problem (1)-(3) are proved. And in this
work, using results of [1], we prove by means of a priori estimates method existence
in large theorem for almost everywhere solution of problem (1)-(3).
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As the system {sinnz}, ., forms a basis in the space La(0, ), then it is obvious
that every almost everywhere solution of problem (1)-(3) has the following form:

= Z U (t) sinnx, (4)
n=1

where
i

un(t) = i/u(t,x) sinnzdr (n=1,2,...;t € [0,T]). (5)
0
In the next, after applying Fourier method, the finding of functions u,(t) (n =
1,2,...) is reduced to solving the following countable system of nonlinear integral
equations:

s

t
un(zf):g0n+7T 1+om4 //f 7,2))sinnzdrdr (n=1,2,..;t €[0,T]) (6)
0

where
0 = i/cp(:v) sinnxdr (n=1,2,...), (7)
0
F(u(t,x)) = F(t,x,u(t,z), us(t, ), uys (t, ), Urgs (t, ), Ugzrs (t, T)). (8)

Using the definition of almost everywhere solution of problem (1)-(3), it is easy
to prove the following

Lemma. If u(t,x) = Y uy(t)sinnz is any almost everywhere solution of prob-
n=1
lem (1)-(3), then functions u,(t) (n =1,2,...) satisfy the system (6).
We denote by nggllT a totality of all the functions u(t,z) of the form (4)
considered in [0, 7] x [0, 7] for which all the functions u,(t) € C® ([0,T]) and

Jr(u) = zl: {ni.él (nai - max ’ug)(t)DBi}ﬁi < +o00, 9)

1=0

where [ > 0 is an integer, a; > 0(i = 0,1), 1 < 8, <2 (i = 0,1). We define the
norm in this set as ||u|| = Jr(u). It is known (see [4] or [5]) that all these spaces are
Banach spaces.

Throughout this paper we will use the following notations for functions u(t, z) €
QQ,...,0

ﬁ07"'7/8l7T:

1
l 00 B:) B:
— Qg (4)
el oo g;yt—Z{Zl@ mas |uf (r)() } (0<t<T).  (10)

n=

In [1], by combining the generalized contracted mappings principle and Schauder’s
fixed point principle the following existence in small theorem (that is, true for suf-
ficiently small values of T') for almost everywhere solution of problem (1)-(3) is
proved:
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Theorem 1. Let

1. p(x) € C¥ ([0, 7)), () € La(0,m) and (0) = p(7) = ¢"(0) = ¢ (w) = 0.
2. F(t,z,uy,...,us) € C ([O,T] x [0, 7] x (—00,00)5).

8. VR >0in [0,T] x [0,7] x [-R, R]* x (—o0,0)

|F(t,x,u1, ...,U4,U5) - F(t,x,Uh ...,U4,"L~L5)| < CR : "LL5 - ﬂ5| )

where Cr > 0 is a constant.

Then there exists in small an almost everywhere solution of problem (1)-(3).

Remark 1. As seen from the proof of Theorem 1 (available in [1]), to prove
the existence in large for almost everywhere solution of problem (1)-(3) under the
conditions of Theorem 1, it suffices to show that all the possible almost everywhere
solutions of problem (1)-(3) belonging to B;{T are a priori bounded in B;{T. With
this aim, we prove the following two theorems of a priori boundedness (in a certain
sense) of almost everywhere solutions of problem (1)-(3).

Theorem 2. Let the right side of equation (1) be as follows:

F(t, Ly Uy Ugy Ugyy Uz, u:ca;a:x) = f(t, Ty Uy Ugy Uy s Uz, ua:xzx)+

+fo(t, z,u)-u fi(t, u)-ug+(fot, x, U, Up, Uga, Ugaz)) .+ (f3(E, T, U, Ug, Uga)) s (11)
where

a) f(t,x,uy,...,us) € C([O,T] x [0, 7] x (—oo,oo)5), and in [0,T] x [0,7] x
(_00700)5

ft,z,ug, . us) - up < C- (14 u? + us + ul); (12)
b) fo(t,z,u) € C([0,T] x [0,7] X (—o0,00)), and in [0,T] x [0, 7] X (—00, 0)
fo(t,l’,u) < C; (13)
c)
fi(t,u) € C([0,T] x (—00,00)); (14)

d) fot,z, ur, .oua), foe, (8, €0, &1, -, €4) (0 =0,4) € C ([0,T] x [0, 7] x (=00, 00)%),
and in [0, T] x [0,7] x (—o00,00)*

—fQ(t,x,ul, ...,U4) cug < c- (1 + U% + U% + U%), (15)

6) f3<t7x7u17u27u3)7f3,§i(t7€07§17§2753)(i = 0773)7 f3,§i§j(t7€07€17§2753)(i7j =

0,3) € C ([0,T] x [0,7] x (—00,00)?), and in [0,T] x [0, 7] x (—o0,c0)?
falts @ un, ug,uz) - ug < C - (14 uf + 43 + u3); (16)
besides,
f3(t,0,0,u2,0) = f3(t,m,0,u2,0) =0 ¥Vt € [0,T],uz € (—00,00), (17)

where C' > 0 is a constant.
Then the following a priori estimate holds for all the possible almost everywhere
solutions u(t,x) of problem (1)-(3):

/uix(t,x)dw <Cp Vte|0,T]. (18)
0
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Proof. Let u(t,z) be any almost everywhere solution of problem (1)-(3). Then,
according to the definition of almost everywhere solution of problem (1)-(3), the
equation (1) is satisfied almost everywhere in (0,7) x (0,7). On multiplying both
sides of equation (1) by the function 2u(t, x), integrating the obtained equality over
[0,t] x [0, 7] and using relation (11), we get V¢ € [0, T]:

™

¢ ¢
2 //UT(T,JJ) cu(T,x)drdr + 2 //uTmm(T,x) U (T, x)dxdr =
0 0 0

0

™

flryx,u(r, @), ug(T,2), Upg (T, ), Upgw (T, ), Uz (T, X)) - u(T, x)dxdT+

t
-/
0

m t m

%Qj/thUT@) v@mm+g//ﬁ7u7@)%ux)(fmﬁm+
0 0

0

St~

™

+2// fo(m,zyu(T,2), up (T, ), Ug (T, )y Ugoa (T, X)) g - u(T, x)dxdT+
0

t
+2//(fg(T,m,u(T,a:),ux(T,x),um(T,:U)))m ~u(T, x)dxdr. (19)
00

Next, as u(t,0) = u(t,m) (0 < t < T), then Vt € [0,7] I = & € (0,m) that
uz(t,&,) = 0. Then it is obvious that V¢t € [0,T] and = € [0, 7]:

xT

U (t, ) Z/U&(taf)di,lux(t,x) S/IUss(taé)ldfz/um(tvw)ld:m
0 0

&t
ui(t,r) <m- /uix(t,a?)d@/ui(t,x)dw <72 /uix(t,m)dx; (20)
0 0 0
u(t.o) = [ uelt. )i, |utx</|ugts|ds</|uztx|dx
0
u?(t,z) < - /ui(t,:n)dx <m-m? /uil,(t,x)dx =3, /ufw(t,x)dw, (21)
0 0 0
/uQ(t,x)dx <zt /uiw(t,x)dx. (22)
0 0

Besides, using conditions (2) and (3), V¢ € [0,T] we have:

™ m

2]/%@@%@@%%—/2]Mmﬁmﬁ@& do —
00 0

0
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] e

m m

/{u (t,x) — u?(0,z }da:—/ (t x)dw—/g02(x)dx, (23)
0 0

™

Q/t/umm(T,x) u(T, x)dedr = 2/t {/ﬂummm(ﬂx).u(ﬂx)dx} dr —
00 ¥
= 2/ {Umm(ﬂx) u(T, @)= /Urzxx(T,x) : um(r,x)dx} dr =
0 0
= —2/ {/ﬂumm(ﬂx)-uz(nm)dz} dr =

0 0
2/ {um 7,2) - ua (7, @) ;25 — /ﬁum(ﬂw) -um(ﬂw)dw} dr =
0 0
2//ﬂum (T,2)  Uge (T, x)dwdT = i {/;T [u2, (7, 2)] dT}dx
0 0 0
- / {u2,(t ) — w2, (0,2)} do = / w2, (b )de / (¢" (@) . (21)
0 0 0

Next, using conditions (12), (13), (3), (15), (16), (17) and estimates (22), (20),
we get Vt € [0,T):

t m

//f(T,x,u(T,x),um(T,:r),um(T,x),umx(T,:r),umm(T,x)) cu(T,x)dxdr <

0 0

t m
gC-// 1+u (1,2) + us (TIE)JrquT.T}dCL'<
0

<C-aT+C-(nt+72 +1) /{/ 2 (7, x)dx}dT (25)
0

0

m m

t t
fo(r,z,u(r,x)) - v?(r,z)dzdr < C - u?(r, x)dzdr <
[l [l
t iy
<C-7t. { u?, (T, x)da:} dr; (26)
i

0
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j]f1 (1, u(r, ) uy (7, ) u(r,x)dedr = /t {/ﬂ{ig |:“(/T7ar)f1(7_7€) -§d§} dx} dr —
00 5| )
t u(T,m) u(r,0)
/{ | neo-ce- | f1<T,£>-§d§}dTo; (21)
0 0 ;

(fo(r, z,u(T, 2), Uz (T, T), Upe (T, ), Uzwa (T, X)), - (T, x)dadT =

O\ﬁ

¢
/
= /{fg T, 2, u(T, &), Up (T, T), Uge (T, T), U (T, X)) - (T, 2)|5—( —

/f2 T, 2, u(T, @), Ug (T, ), U (T, )y Uy (T, T)) -ux(T,x)dx} dr =

0
t

0

<C- /{/1+u )+ ul(T, :E)+u92&w(7,:c)]dx}d7'<
<C-aT+C- (7t +72+1)- { uix(T,x)dCE}dT; (28)
I

0

/ {/ fa(7, @, u(T, @), s (7, @), s (T, @), Ugaa (7, 2)) - alT, x)dx} dr <
0

(fs(r,x,u(T, ), up (T, ), Upe (T, ) g - u(T, x)dxdT =

o _
Ot — . Ty

{ (f3(7—7 z, U(Ta .%'), uﬂU(Tv x)v uém(7-7 x))):p ’ U(T, x)‘;zﬂ -

=0
—f3(T,z,u(T, @), U (T, @), Uge (T, @) “up(T, )50 +

* / f?,(T, s U(T’ z)’ ux(T’ ‘T)7 u$$(7_7 x)) : uwz(Ta x)dx} e
0

T

/fg Ty X, u(T, @), Uy (T, ), Uy (T, T)) * Uy (T, ) ddT <
0

o\#

™

t
gC-//{1+u2(7,a:)+u§(7,m)+u§x(7,m)}da;d7g
0
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t by
<C-aT+C-(nt+ 72 +1)- / /uix(T,x)dx dr. (29)
0 0

Now, using relations (23), (24) and estimates (25)-(29), from (19) we obtain that
vt € [0,T]:

/uZ(t,x)d:c + a/uix(t,x)da: < /@2(a:)da: + a/(gp”(az))de + 67T - C+
0 0 0 0
t (o«
+2(3 + 372 + 47ty . C - / /uix(ﬂ z)dzx 3 dr,
o \o
consequently,
[tmar< 23 [ Padea [ () der oo+
0 0 0
t(
+§(3 + 372 +47Y) . C - / /ufm(T,x)dac dr. (30)
o \o

Applying Bellman’s inequality, from (30) we obtain that the a priori estimate
(18) is true. Theorem is now proved.

Corollary 1. Under the conditions of Theorem 2, by virtue of a priori estimate
(18) and estimates (21) and (20), the following a priori estimates hold for all the
possible almost everywhere solutions u(t,z)of problem (1)-(3):

[[u(t, $)||c(QT) < Ro, ||Ua:(t7x)Hc(QT) < Ro, (31)

where Qr = [0,T] x [0, 7] and Ry > 0 is a constant independent of w.
Theorem 3. Let
1. All the conditions of Theorem 2 be satisfied;
2. VR >0 in [0,T] x [0,7] x [-R, R]? x (—00,00)3

|F(t, 2, ut, . us)| < Og - (14 uj + |ug| - [ua] + |ua| + |us|) (32)

where Cr > 0 is a constant.
Then for all the possible almost everywhere solutions u(t,x) of problem (1)-(3),
belonging to B;{T, the following a priori estimate holds:

lut,2)l5s., < Co. (33)

Proof. Let u(t,z) be any almost everywhere solution of problem (1)-(3) be-
longing to the space B%T. By virtue of condition 1 of this theorem and according
to Theorem 2, it follows the trueness of a priori estimate (18) for all the possible
almost everywhere solutions of problem (1)-(3). Moreover, it is true for all the pos-
sible almost everywhere solutions u(t,z) of problem (1)-(3) belonging to the space
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B;{T. And from this estimate, as noted above in Corollary 1, it follows the trueness
of a priori estimates (31).
Next, as proved in [2] (see estimate (39)), V¢ € [0,T] we have:

™

t
T
Jullyy, <o+ Ty + [ [ (Futr.a))? duar, (34)
0 0

oo
where ag = 2 Y. (n* - ¢,)%, @ > 0 is a number appearing in equation (1), and
n=1
¢, (n=1,2,...) and F are defined by relations (7) and (8).
Now, using a priori estimates (31) and condition (32) with R = Ry, we obtain
that V7 € [0,7] and z € [0, 7]:

| F(u(r,2))| = |F (1,2, u(T,2), up (T, ), Uge (T, ), Uzae (T, )y Ugpar (7, ) )| <

< CRry - {1 + uiw(Tv ) + [toz (T, 2)| - [Ugea (T, )| + |Ugaa (T, )| + ‘umm(ﬂx”} )

/{]:(U(T,a:))}2 dr < 5C’%30 ST+ 5C%0 . /uim(T,aj)d:c + /uix(T, x) X
0 0 0
xufcm(T,m)dac—i-/ugm(r,x)da:+/uizm(naﬁ)dx ) (35)
0 0

Next, in view of the structure of space Bg’T, V71 € [0,T] we have:

7T
el Dlcqom < ol < lullg, < 2=l (36)
™
szt Dleoy < lollag, < J - lullog. (37)
2 m 2
/U‘:pxmc(Tax)dm < 5 ’ HU’HB§ . (38)
0

Now, using estimates (36), (37) and a priori estimate (18), we obtain that V7 €
[0, T7:

™ iy
2

T
[t ) < fuaa(r,0) gy - [ aa(ri)de < Ty Co (39)
0 0

™

/ U2, (7, 2) - 0 (s ) < it (7, 2) 20 %
0

™

2
™
< [ uutra)de < T ullyy -G (40)
0
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™

3

[ ieatri0)de < uzsalr, o)y 7w < Gy (41)
0

Then, by virtue of estimates (39)-(41) and (38), from (35) we obtain that V7 €
[0, T7]:

7 2 3
/{]:(U(T,IL‘))}2 dx < 57 - C’}ng + 501220 . (2 . % -Co + T4 7r> HUHZB% =
0

6 2
2 o 2 2 2
— 5O, + T (2 Co+ % +8) - Ch, - July (42)
Thus, using estimate (42), from (34) we obtain that V¢ € [0, 7T:
t
5m2T? 5m2T
luldy, < a0+ 2y Chy+ o (27 Co+ 72 +3) - C, / lul%y dr. (43)
0

Applying Bellman’s inequality, from (43) we obtain the trueness of a priori esti-
mate (33). Theorem is now proved.

Thus, by virtue of Remark 1, from Theorems 1 and 3 it follows the trueness of
the following existence in large theorem for almost everywhere solution of problem

(1)-(3)-

Theorem 4. Let
1. All the conditions of Theorem 1 be satisfied.
2. All the conditions of Theorem 2 be satisfied.
3. The condition 2 of Theorem 3 be satisfied.
Then there exists an almost everywhere solution of problem (1)-(3).
Remark 2. In conclusion, we note that (as mentioned in [6]) a special case of
equation (1) with
F = Bug, — (g(u))xaﬁ >0, (44)

is called Korteweg-de Vries-Burgers equation.
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