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MECHANICS

Ali B. ALIYEV, Telman K. RAMAZANOV

ON INFLUENCE OF WALL LAYER OF SEDIMENT

ON THE MOTION OF SUSPENSION IN PIPE

Abstract

We generalize Poiseuille formula in a pipe on whose walls sediment layer

with di�erent rheological properties is generated when inhomogeneous liquid

�ows. The relation between the values of mean in section concentration of

particles < α > and mean consumption concentration αf by the quantity α0,

used in constructing the pro�le α and dimensionless velocity of �ows, is established.

One dimensional method for describing the process of liquid and suspension
mixture pumping in pipe has a great application in engineering practice. Therewith
the mixture �ow is considered with velocity, temperature, pressure and density
constant in section. Change of parameter data may occur only in one direction along
the pipeline [1,2]. However, change of mixture �ow on radius of pipeline may in�uence
on the character and intensity of �ow. Very often occurrence of relative velocity of
phases reduces to particles deposition (depending on relation of liquid and material
densities of hard or high molecular combinations) on the walls of a pipe in gravity
�eld. This phenomenon reports itself on hydraulic characteristics of �ows and may
reduce to partial or total plugging of channels and also to catastrophic pressure
build-up.

Lateral displacement e�ect of single spherical particles of overdiluted suspension
in laminar �ows in capillaries was �rst investigated in [3]. Afterwards this e�ect
called the Segre-Silberberg e�ect was theoretically and experimentally investigated
in a great number of papers. Some of them are in the references of [4,5]. Discovery
and investigation of this e�ect stimulated to study lateral forces acting on a small
partiecle in inhomogeneous one-dimensional �ow.

Sedimentary layer of hard particles on the pipe walls, unlike the mixture itself
may behave as rheological, viscoelastic, viscoplastic medium and decreasing the pipe
radius it creates additional hydraulic resistance. Therefore a problem on simulation
of processes of mixture �ow in a pipeline must include the properties of a layer arising
in deposition of hard and high molecular combinations on the pipe wall [6].

1. Let's consider the motion of mono-dispersible suspension of small particles in
a pipe of radius R0. Assume that stationary distribution of concentration is achieved
as the result of the fact that convective migration �ow of particles in lateral direction
stipulated by volume force is compensated by contrariwise directed di�usion �ow in
inhomogeneous �eld of concentration. Here thermo dynamical force is determined
from the classic condition that a convective �ow of particles generated by it were
exactly equal to di�usive one [9]. Gravity and buoyancy forces don't reduce to
appearance of phase sliding in equidense suspensions, therefore, they may be included
into e�ective pressure by a standard way. If sliding velocity is considerably less by
modulus than mean velocities of the both phases, that is typical for the considered
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suspensions, then we can write the equation of pulse preservation of suspension in
the whole provided phase incompressibility, on the form [6-11]

µ0
1

r

d

dr

(
rM(α)

dυ

dr

)
=
dP

dz
,

dP

dr
= 0; P 6= f(r), (1.1)

where r, z are longitudinal and lateral coordinates, α is volume concentration of
dispersed phase, M(α) is an increasing function of α, M(0) = 1, υ is the mean
velocity of liquid, P is mean pressure, µ0 is dynamical viscosity of single liquid.

Only Stock's viscous force Fs and Faxen force Ff [9,10] act on the particle from
the side of liquid in longitudinal direction

Fs =
9αµ0
2a2

M(α)(υ − w), Ff =
3αµ0

4
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)
, (1.2)

where w is average velocity of particles, a is its spherical radius. In longitudinal
direction these forces compensate each other. Then for the velocity of sliding we get:

υ − w = − a2

6M(α)

1

r

d

dr

(
rM(α)

dυ

dr

)
. (1.3)

We determine the lift acting on all particles in the unit volume in the same way
using the expression for this force obtained in [8] for a unit particle, we have

FM =
3 · 6, 46αρf

4πa

[
ν0M(α)

∣∣∣∣dυdr
∣∣∣∣]1/2 (u− υ) sign

(
dυ

dr

)
, ν0 = µ0/ρf . (1.4)

This force calls migration of particles in longitudinal direction of �ow and as a
result, the inhomogeneity stipulates initiation of thermodynamical force [9]

FT = − 3α

4πa3

(
∂π

∂α

)
P,T

dα

dr
, (1.5)

where π is a chemical potential of particles, and di�erentiation (1.5) is conducted
under constant pressure and temperature. Then, preservation of transverse component
of dispersed phase pulse gives(

∂π

∂α

)
P,T

dα

dr
= 6, 46α2ρf

[
v0M(α)

∣∣∣∣dυdr
∣∣∣∣]1/2 (u− w) sign

(
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)
. (1.6)

For the given π and P the equations (1.1), (1.3) and (1.6) is a closed system of
equations for the unknown functions υ, α and w. Substituting (1.3) into (1.6), we get(
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)
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sign

(
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)
.

(1.7)

For the equations (1.1) and (1.7) the boundary conditions on υ and α follow from
the symmetry condition of �ow on the boundary of suspension and sedimentary layer
generated on the walls.
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A) Determine stationary equation of motion of suspension by the transverse alive
section of a pipe: S = πR2; R = R0 − h; h << R0 (h is thickness of a layer)

−dP
dZ
− 2

R
M(α)τ(R) = 0. (1.8)

Determine tangent stress on the boundary of suspension and layer by the Darcy-
Weissbach formula [6,10]

τ(R) =
λ

8
ρfυ

2
1(R), (1.9)

where λ is a resistance coe�cient for friction head loss.

It follows from (1.8) and (1.9) that

υ1 (R) =

√
− 4R

λM(α)ρf

dP

dZ
. (1.10)

B) If suspension deposition in wall layers are deformed as viseoplastic liquid, then
for its motion ∆P > ∆P0 is necessary

τn = τ0 + µ′
dυ1
dr

, τn > τ0, (1.11)

where τn is friction stress, τ0 is limit stress, µ′ is dynamical coe�cient of structural
viscosity, ∆P0 is dynamical pressure drop in a pipe.

On the other hand, stationary �ow of viscous liquid in a pipe is determined by
the Poiseuille formula and therefore τn = ∆P · r/2l, l is the length of a pipe.

From the equality of these expressions and adhesion conditions on the walls we
have

υ1 =
∆P

4µ′l
(R2

0 − r21)− τ0
µ′

(R0 − r1), R ≤ r0 ≤ R0, τn > τ0. (1.12)

For ∆P ≤ ∆P0, (dυ1/dr) ≡ 0 a suspension deposition layer behaves as a solid
and a radius of �ow area equals

R =
2lτ0
∆P

; τ ≤ τ0. (1.13)

In the case A) for constant values of volume concentration (α = α0) and pressure
drop (∂P/∂Z = −∆P/l), ∆P = P1−P2 the solution of the problem (1.1) and (1.10)
is of the form

υ =
∆P

4µ0lM(α0)
(R2 − r2) +

√
4R∆P

λM(α0)ρf
, 0 ≤ r ≤ R. (1.14)

It is seen from the expression (1.14) for the velocity that υ increases according to
decrease of resistance coe�cient λ and vice versa, υ decreases according to increase
of λ. As λ → ∞ this formula passes to Pouiselle formula, the velocity and also
suspension consumption decreases in connection with contraction of alive section of
a pipe: πR2 < πR2

0.
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In the case B) under the above-indicated assumptions the solution of problem
(1.1) and (1.19) has the form

υ =
∆P

4µ0lM(α0)
(R2 − r2) +

∆P

4µ′l
(R2

0 −R2)− τ0
µ′

(R0 −R),

0 ≤ r ≤ R, τ > τ0.
(1.15)

Hence it follows that motion of viscoplastic wall layer made of small sedimentary
particles may reduce to increase of suspension velocity on a central axis of a pipe.
However, adhesion of this layer to the pipe wall contracts the alive section of �ow
and lowers its velocity determined by the Poiseuille formula.

2. Using the known formula for chemical potential of particles

π = const+ kTF (α) (2.1)

F (α) = Inα− α+
α(8− 5α)

(1− α)2
.

Introducing ∂P/∂Z = ∆P and denoting x = R it is convenient to pass to
dimensional variables

ξ = x/R, V = µ0ϑ/(∆PR
2).

Then the equations (1.1) and (1.7) are reduced to the system for the unknown
functions V (ξ) and α(ξ)

1

ξ

d

dξ

(
M(α)ξ

dV

dξ

)
= −1

M
dF

dα

dα

dξ
= Γ

∣∣∣∣MdV

dξ

∣∣∣∣1/2 1

ξ

(
M(α)ξ

dV

dξ

)
(2.2)

Γ = (6, 46/6)a4(∆PR)3/2(ρ1/2v0kT ).

The condition for α is determined either by representation of mean in section
concentration of particles < α > or mean consumption concentration αf .

2

1∫
0

α(ξ)ξdξ =< α >

1∫
0

α(ξ)V (ξ)ξdξ/

 1∫
0

V (ξ)ξdξ

 = αf . (2.3)

The function M(α) is determined from numerical representations for the ratio
µ/µ0 and here [11]

M(α) =

(
1− 5

2
α

)−1
. (2.4)

From the �rst equation in (2.2) with boundary condition (dV/dξ) = 0 for ξ = 0.

M
dV

dξ
= −ξ

2
(2.5)
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Substituting (2.5) into (2.2) and integrating it from α0 to α we get

I(α)− I(α0) =
2

3

Γ√
2
ξ3/2, 0 ≤ ξ ≤ 1, (2.6)

for α0 < α∗ where α0 is concentration on the plane or axis of �ow symmetry ξ = 0,
α∗ is concentration in dense packing state,

I(α) =

α·0∫
α

M(α)
dF

dx
dα. (2.7)

In (2.7) allowing for (2.6) and (2.4) the function may be expressed by the knowns.
It is easy to carry out numerical calculations for I(α) and in special case M(α) =
(1− α)−5/2 to integrate it.

It densely packed kernel of particles �lling the domain α = α∗, 0 ≤ ζ ≤ ζ∗ is
generated in the �ow, then the �ow in the domain ζ∗ ≤ ζ ≤ 1 will be of the form

I(α) =
2

3

Γ√
2

(
ζ3/2 − ζ∗3/2

)
. (2.8)

For small α we approximatly have F ≈ Inα, M = 1 and it follows from (2.6)
and (2.7) that

α ≈ α0 exp

(
−2

3

Γ√
2
ζ3/2

)
. (2.9)

Using the found function α(ζ) in the equation (2.5) we �nd the pro�les of
dimensionless velocity of the �ow

V (ζ) =
1

2

1∫
ζ

ζdζ

M(α)
, ζ∗ ≤ ζ < 1; (2.10)

V (ζ) = V (ζ∗) = V ∗, 0 ≤ ζ < ζ ∗ . (2.11)

The function V (ζ) corresponding to pro�les of concentration (2.6) for α0 =
= 0, 3 is represented in �gures 1 and 2.
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