Mehdi K. BALAYEV

ON UNBOUNDED POLYNOMIAL OPERATOR AND DIFFERENTIAL PENCILS

Abstract

The present work is dedicated to the investigation in Banach space of unbounded polynomial operator pencils that are not of Keldysh form. There has been found sufficien condition for operator coefficients under which in Banach space coercive solvability in the spectral parameter of the considered pencils is proved. Futher, using the known abstract result obtained by S.Y.Yakubov, n-fold completeness of root vectors of a polynomial operator pencil is established. This abstract results are applied to proving coercive solvability and n-fold completeness of eigenfunctions and associated functions of principally boundary value problem for ordinary differential equations with a spectral parameter. Earlie the analogous results were established for the square pencils

In [5], published in 1951, M.V. Keldysh introduced the important notion of n -fold completeness of root vectors and proved a fundamental theorem on n -fold completeness for a polynomial operator pencil with principal part generaled by a single self adjoint operator. Later, these results were extended in [1], [9], [10] and [12].

At present there are a lot of works dedicated to the fold completeness of root vectors for operator pencils. However, all these investigations were carried out for the special class of operator pencils, namely for the pencils that is of Keldysh form or self adjoint pencils in a Hilbert spece. A detailed bibliography may be found, e.g. in the monographs of F.G. Maksudov [7], A.S. Markus [8] and G.V. Radzievsky's article [10].

In contrast to the existed results for the first time the S.Y. Yakubov's and M.K. Balaev's work [17] has proved coercive solvability in the spectral parameter and twofold completeness of root vectors for square operator pencils in Banach space that are not of Keldysh form.

In the present paper there has been found sufficient conditions for the operator coefficients under which in Banach space coercive solvability in the spectral parameter of polynomial operator, pencils that are not of Keldysh form is proved.

Further, applying the known abstract results obtained by S.Y. Yakubov [13] we establish n-fold competeness of root vectors of a polynomial operator pencil. The got abstract results are applied to the investigation of n-fold completeness of root functions of a principally boundary value problem for ordinary differential equation with a polynomial parameter.

Consider in the Banach spave E the operator pencil

$$
\begin{equation*}
L(\lambda)=\lambda^{n} I+\lambda^{n-1} A_{1}+\ldots+A_{n}, \tag{0.1}
\end{equation*}
$$

where the $A_{k}, k=1+n$, are given, generally unbounded, operator. Clearly, $D(L(\lambda))=\bigcap_{1}^{n} D\left(A_{k}\right)$ for $\lambda \neq 0$.

The number λ_{0} is called an eigenvalue of the pencil $L(\lambda)$ if the equation $L\left(\lambda_{0}\right) u=0$ has a nontrivial solution $u \in D\left(L\left(\lambda_{0}\right)\right)$. A vector $u_{0} \neq 0$ satisfying the
[M.K.Balayev]
equation $L\left(\lambda_{0}\right) u=0$ is called an eigenvector of the pencil $L(\lambda)$ corresponding to the eigenvalue λ_{0}.

The vector u_{1}, \ldots, u_{k} of E that are connected by the relations

$$
L\left(\lambda_{0}\right) u_{p}+\frac{1}{1!} L^{\prime}\left(\lambda_{0}\right) u_{p-1}+\ldots+\frac{1}{p!} L^{(p)}\left(\lambda_{0}\right) u_{0}=0, p=0 \div k
$$

are called the associated vectors for eigenvector u_{0} of the pencil $L(\lambda)$.
The associated vectors and eigenvectors of a pencil are combined under the general name of root vectoras of the pencil.

A point μ of the complex plane is called a regular point of the pencil $L(\lambda)$, if the operator $L(\mu)$ has a bounded inverse $L^{-1}(\mu)$ defined on the whole space.

The complement of the set of regular points in the complex plane is called the spectrum of the pencil $L(\lambda)$.

The spectrum of the pencil $L(\lambda)$ is said to be disctere if:
a) all the points λ that are not eigenvalues of the pencil $L(\lambda)$ are regular points of $L(\lambda)$;
b) the eigenvalues are isolated and have finite algebtaic multiplicity;
c) infinity is the uniqur limit point of the set of eigenvalues of $L(\lambda)$.

Below $L^{-1}(\lambda)$ will be written only at the regular points or the pencil $L(\lambda)$.
Consider in the Banach space E the Cauchy problem

$$
\begin{gather*}
L\left(D_{t}\right) u=u^{(n)}(t)+A_{1} u^{(n-1)}(t)+\ldots+A_{n} u(t)=0, \tag{0.2}\\
u^{(k)}(t)=u_{k+1}, \quad k=0 \div(n-1), \tag{0.3}
\end{gather*}
$$

where u_{k+1} are given vectors in E.
A function $u(t)$ of the form

$$
\begin{equation*}
u(t)=\exp \left(\lambda_{0} t\right)\left(\frac{t^{k}}{k!} u_{0}+\frac{t^{k-1}}{(k-1)!} u_{1}+\ldots+\frac{t}{1!} u_{k-1}+u_{k}\right) \tag{0.4}
\end{equation*}
$$

is a solution of equation (0.2) if and only if $u_{0}, u_{1}, \ldots, u_{k}$ is a chain of root vectors corresponding to an eigenvalue λ_{0} of the pencil (0.1). A solution of the form (0.4) is called an elementary solution of equation (0.2).

The natural desire to approximate a solution of the problem (0.2), (0.3) by linear combinations of elementary solution (0.4) leads to necessity of approximating the vector (v_{1}, \ldots, v_{n}) by linear combinations of vectors of the form

$$
\begin{equation*}
\left(u(0), u^{\prime}(0), \ldots, u^{(n-1)}(0)\right) . \tag{0.5}
\end{equation*}
$$

A system of vectors (0.5) is called a Keldysh system of the pencil (0.1).
Let $E_{k}, k=1+n$, be Banach space continuously imbedded in E. A system of root vectors of the pencil $L(\lambda)$ is said to be n-fold complete in $E_{1} \times \ldots \times E_{n}$ if the Keldysh system of the pencil $L(\lambda)$ is complete in $E_{1} \times \ldots \times E_{n}$.

The infimum of numbers η satisfying the setimate

$$
\sum_{k=0}^{n}|\lambda|^{n-k-\eta}\left\|L^{-1}(\lambda)\right\|_{B\left(E, E_{k}\right)} \leq C, \quad \lambda \in G(a, \varphi), \quad|\lambda| \rightarrow \infty
$$

where the $G(a, \varphi)$ is an angle in the complex plane with the center in a and angle value φ, is called a defect of coerciveness of the pencil $L(\lambda)$ in the angle $G(a, \varphi)$.

1. Coersive Solvability in the Spectral Parameter of Polynomial Operator Pencils

Consider the polynomial operator pencil

$$
\begin{equation*}
L(\lambda)=\lambda^{n} I+\lambda^{n-1}\left(A_{1}+B_{1}\right)+\ldots+\left(A_{n}+B_{n}\right) \tag{1.1}
\end{equation*}
$$

with unbounded operator coefficients A_{k}, B_{k} acting in a Banach space E.
Theorem 1. Assume that the following conditions hold:

1) The operators $A_{k}, k=1+n-1$ are closed and have everywhere dense range of definition and bounded inverse.
2) The closed operators $N_{k}=-A_{k} A_{k-1}^{-1}, k=1 \div n, A_{0} \equiv I$ have everywhere dense range of definition in E and at some $\sigma_{k} \in(0,1], k=1 \div n$

$$
\left\|R\left(\lambda,-N_{k}\right)\right\| \leq C|\lambda|^{-\sigma_{k}}, \lambda \in S,|\lambda| \rightarrow \infty
$$

where $j-p<\delta_{p j}=\sum_{k=p}^{j} \sigma_{k} \leq n, 1 \leq p \leq j \leq n ; \sigma_{k} \leq \delta_{1 n}-(n-1)$, S is a set in the complex plane which goes to infinity.
3) For any $\varepsilon>0$ and $u \in D\left(N_{k}\right) \subset D\left(N_{k+1}\right), k=1 \div n-1$,

$$
\left\|N_{k+1} u\right\| \leq \varepsilon\left\|N_{k} u\right\|^{\sigma_{k}+\sigma_{k+1}-1}\|u\|^{2-\sigma_{k}+\sigma_{k+1}}+C(\varepsilon)\|u\| .
$$

4) For any $\varepsilon>0$ and $u \in D\left(A_{k}\right) \subset D\left(B_{k}\right), k=1 \div n$

$$
\left\|B_{k} u\right\| \leq \varepsilon\left\|A_{k} u\right\|^{\sigma_{k}+\sigma_{k+1}-1}\|u\|^{2-\sigma_{k}+\sigma_{k+1}}+C(\varepsilon)\|u\|
$$

5) For $n \leq 3$ the operator $N_{1}=A_{1}$ commutes the operators $N_{k}, k=2 \div n$.

Then for all $\lambda \in S,|\lambda| \rightarrow \infty$ the operator

$$
L(\lambda)=\lambda^{n} I+\sum_{k=1}^{n} \lambda^{n-k}\left(A_{k}+B_{k}\right)
$$

is invertible in E and the following estimate takes place:

$$
\begin{gathered}
|\lambda|^{\delta_{1 n}}\left\|L^{-1}(\lambda)\right\|+|\lambda|^{\delta_{1 n}-1}\left\|A_{1} L^{-1}(\lambda)\right\|+|\lambda|^{\delta_{1 n}-2}\left\|A_{2} L^{-1}(\lambda)\right\|+\ldots \\
\ldots+|\lambda|^{\delta_{1 n}-n}\left\|A_{n} L^{-1}(\lambda)\right\| \leq C, \quad \lambda \in S, \quad|\lambda| \rightarrow \infty
\end{gathered}
$$

Proof. We will show at first that for the pencil

$$
\begin{gather*}
L_{0}(\lambda)=\left(\lambda I+N_{n}\right)\left(\lambda I+N_{n-1}\right) \ldots\left(\lambda I+N_{1}\right)= \\
=\lambda^{n} I+\lambda^{n-1} \sum_{k=1}^{n} N_{k}+\lambda^{n-2} \sum_{1 \leq i_{1} \leq i_{2} \leq n} N_{i_{1}} N_{i_{2}}+\ldots+N_{n} N_{n-1} \ldots N_{1} \tag{1.2}
\end{gather*}
$$

the following estimate is true:

$$
|\lambda|^{\delta_{1 n}}\left\|L_{0}^{-1}(\lambda)\right\|+|\lambda|^{\delta_{1 n}-1}\left\|A_{1} L_{0}^{-1}(\lambda)\right\|+\ldots
$$

$$
\begin{equation*}
\ldots+|\lambda|^{\delta_{1 n}-n}\left\|A_{n} L_{0}^{-1}(\lambda)\right\| \leq C, \quad \lambda \in S, \quad|\lambda| \rightarrow \infty . \tag{1.3}
\end{equation*}
$$

By virtue of the condition 2) and the representation

$$
L_{0}^{-1}(\lambda)=\left(\lambda I+N_{1}\right)^{-1}\left(\lambda I+N_{2}\right)^{-1} \ldots\left(\lambda I+N_{n}\right)^{-1}=R_{1}(\lambda) R_{2}(\lambda) \ldots R_{n}(\lambda)
$$

the first two summand in (1.3) are easily estimated. Indeed, for sufficiently large $|\lambda|$ it follows the inequality:

$$
\begin{gather*}
\left\|A_{1} R_{1}(\lambda) R_{2}(\lambda) \ldots R_{n}(\lambda)\right\| \leq \\
\leq\left\|\left[I-\lambda R_{1}(\lambda)\right] R_{2}(\lambda) \ldots R_{n}(\lambda)\right\| \leq C|\lambda|^{1-\delta_{1 n}} . \tag{1.4}
\end{gather*}
$$

Since, from that we have

$$
\begin{gathered}
A_{2} L_{0}^{-1}(\lambda)=A_{2} A_{1}^{-1}\left(R_{2}(\lambda) \ldots R_{n}(\lambda)-\lambda L_{0}^{-1}(\lambda)\right)=R_{3}(\lambda) \ldots R_{n}(\lambda)- \\
- \\
-\lambda R_{2}(\lambda) \ldots R_{n}(\lambda)-\lambda A_{2} A_{1}^{-1} L_{0}^{-1}(\lambda),
\end{gathered}
$$

then under all $\lambda \in S, \quad|\lambda| \rightarrow \infty$

$$
\left\|A_{2} L_{0}^{-1}(\lambda)\right\| \leq|\lambda|^{-\delta_{3 n}}+|\lambda|^{\delta_{2 n}-1}+|\lambda|\left\|A_{2} A_{1}^{-1}\right\|\left\|A_{1} L_{0}^{-1}(\lambda)\right\| \leq C|\lambda|^{2-\delta_{1 n}} .
$$

By virtue of the condition 2) the rest summand of (1.3) are estimated analogically. Thus, the estimate (1.3) is proved.

As the perturbed operator pencil is of the form

$$
\begin{equation*}
L_{1}(\lambda)=L(\lambda)-L_{0}(\lambda)=\sum_{k=1}^{n} \lambda^{n-k} B_{k}-\sum_{m=1}^{n} \lambda^{n-m} \sum_{i_{1}>m} N_{i_{1}} N_{i_{2}} \ldots N_{i_{m}}, \tag{1.5}
\end{equation*}
$$

where the latter sum applies to the indices satisfying the inequality $i_{1}>i_{2}>\ldots>i_{m}$, so by virtue of the conditions 2)-4) and estimate (1.3) for all $\lambda \in S, \quad|\lambda| \rightarrow \infty$ and any $\varepsilon>0$ we have

$$
\begin{gathered}
\left\|\lambda^{n-k} B_{k} L_{0}^{-1}(\lambda)\right\| \leq \varepsilon|\lambda|^{n-k}\left\|A_{k} L_{0}^{-1}(\lambda)\right\|^{\sigma_{k}+\sigma_{k+1}-1}\left\|L_{0}^{-1}(\lambda)\right\|^{2-\sigma_{k}+\sigma_{k+1}}+ \\
+C(\varepsilon)|\lambda|^{n-k}\left\|L_{0}^{-1}(\lambda)\right\| \leq \varepsilon+C(\varepsilon)|\lambda|^{-\alpha_{k}},
\end{gathered}
$$

where $\alpha_{k}=\alpha_{k}\left(\sigma_{1}, \ldots, \sigma_{k}\right)>0$.
From (1.4) for any $i_{1}>1$ we get the following estimate

$$
\begin{gather*}
\left\|\lambda^{n-k} N_{i_{1}} L_{0}^{-1}(\lambda)\right\| \leq \varepsilon|\lambda|^{n-1}\left\|N_{1} L_{0}^{-1}(\lambda)\right\|^{\beta_{i_{1}}}\left\|L_{0}^{-1}(\lambda)\right\|^{\beta_{i_{1}}}+ \\
+C(\varepsilon)|\lambda|^{n-1}\left\|L_{0}^{-1}(\lambda)\right\| \leq \varepsilon+|\lambda|^{-\gamma_{i}}, \tag{1.6}
\end{gather*}
$$

where $\beta_{i_{1}}, \beta_{i_{1}}^{\prime}$ and γ_{i} are some functions of $\sigma_{1}, \ldots, \sigma_{i}$.
On the analogy the operator $N_{i_{1}} N_{i_{2}} L_{0}^{-1}(\lambda)\left(i_{1}>2\right)$ is estimated through the operator

$$
\begin{gathered}
N_{2} N_{1} R_{1}(\lambda) R_{2}(\lambda) \ldots R_{n}(\lambda)=R_{3}(\lambda) \ldots R_{n}(\lambda)-\lambda R_{2}(\lambda) R_{3}(\lambda) \ldots R_{n}(\lambda)- \\
\lambda N_{2} R_{1}(\lambda) R_{2}(\lambda) \ldots R_{n}(\lambda) .
\end{gathered}
$$

With the help of the estimate (1.6) we come to the inequality

$$
|\lambda|^{n-2}\left\|N_{i_{1}} N_{i_{2}} L_{0}^{-1}(\lambda)\right\| \leq \varepsilon+C(\varepsilon)|\lambda|^{-\delta_{1 n}} .
$$

All summands condidted in the operator

$$
K(\lambda)=\sum_{m=1}^{n} \lambda^{n-m} \sum_{i_{1}>m} N_{i_{1}} N_{i_{2}} \ldots N_{i_{m}} L_{0}^{-1}(\lambda)
$$

are estimated analogically. So, for $\lambda \in S,|\lambda| \rightarrow \infty$ we have

$$
\begin{equation*}
\left\|L_{1}(\lambda) L_{0}^{-1}(\lambda)\right\| \leq\left\|\sum_{k=1}^{n} \lambda^{n-k} B_{k} L_{0}^{-1}(\lambda)\right\|+\|K(\lambda)\| \leq q<1 . \tag{1.7}
\end{equation*}
$$

Then, from (1.4) it follows that under all $\lambda \in S,|\lambda| \rightarrow \infty$ the operator $L(\lambda)$ is invertible in E and

$$
L^{-1}(\lambda)=L_{0}^{-1}(\lambda)\left[I+L_{1}(\lambda) L_{0}^{-1}(\lambda)\right] .
$$

Hence, by virtue of (1.3) and (1.7) we have

$$
\sum_{k=0}^{n}|\lambda|^{\delta_{1 n}-k}\left\|A_{k} L^{-1}(\lambda)\right\| \leq C, \quad A_{0} \equiv I
$$

Theorem is proved.
Remark. The assertion of theorem 1 remains to be true if we substitute the condition 2) by the following condition: at some $c>0$ and $\beta<\beta_{0}=\delta_{1 n}-(n-1)$ and under any $u \in D\left(N_{k}\right) \cap D\left(N_{k+1}\right), k=1 \div n-1$, the following inequalities are true:

$$
\left\|N_{k+1} u\right\| \leq C\left\|N_{k} u\right\|^{\beta}\|u\|^{1-\beta} .
$$

2. Multiple Completeness of Root Vectors of Unbounded Polynomial Operator Pencil

Let operator A acts in a Hilbert space with the range of definition $D(A)$. Convert $D(A)$ into Hilbert space $H(A)$ by the norm

$$
\|u\|_{N(A)}=\left(\|u\|^{2}+\|A u\|^{2}\right)^{1 / 2}
$$

where $\|\cdot\|$ is a norm in H. Denote by J the embedding operator from one Hilbert space to another.

Now let us give one theorem from [13].
Theorem 2. [13, p.430]. Let the following conditions be satisfied:

1) There exist Hilbert spaces $H_{k}, k=0 \div 0$, for which the compact imbeddings $H_{n} \subset H_{n-1} \subset \ldots \subset H_{0}=H$ hold.
2) $\left.\bar{H}_{k}\right|_{H_{k-1}}=H_{k-1}, k=1 \div n$.
3) $J \quad \sigma_{p}\left(H_{k}, H_{k-1}\right), k=1 \div n$, for $p>0$.
4) The operators $A_{k}, k=1 \div n$, act boundedly from H_{k} to H.
[M.K.Balayev]
5) There exist rays i_{k} with angles between neighboring rays of at most π / p and an integer m such that

$$
\left\|L^{-1}(\lambda)\right\|_{B\left(H, H_{n-1}\right)} \leq c|\lambda|^{m}, \lambda \quad i_{k},|\lambda| \rightarrow \infty
$$

Then the spectrum of the pencil (0.1) is discrete, and the system root vectors of the pencil (0.1) is n-fold compete in $H_{n} \times \ldots \times H_{1}$.

Theorem 3. Let the following condition be satisfied:

1) The operators $A_{k}, k=1 \div n$, are closed in H and have everywhere dense range of definition and bounded inverse; the operator A_{n} is closed in H.
2) $D\left(A_{n}\right) \subset \ldots \subset D\left(A_{1}\right),\left.\overline{H\left(A_{k+1}\right)}\right|_{H\left(A_{k}\right)}=H\left(A_{k}\right), k=1 \div n-1$, and at some $p>0 J \in \sigma_{p}\left(H\left(A_{1}\right), H\right), \ldots, J \in \sigma_{p}\left(H\left(A_{n-1}\right), H\left(A_{n}\right)\right)$.

The closed operators $-A_{k} A_{k-1}^{-1}, k=1 \div n-1, A_{0} \equiv I$ have everywhere dense range of definition in H and there exist rays i_{k} with angles between adjacent rays at most π / p and numbers $\sigma_{k} \in(0,1]$ such that

$$
\begin{gathered}
\left\|R\left(\lambda,-A_{k} A_{k-1}^{-1}\right)\right\| \leq C|\lambda|^{-\sigma_{k}}, \lambda \in i_{k}(a), \quad|\lambda| \rightarrow \infty \\
j-k<\sigma_{k}<\sum_{k=p}^{j} \sigma_{k} \leq n ; \quad 1 \leq p \leq j \leq n ; \sigma_{k} \leq \delta_{1 n}-(n-1)
\end{gathered}
$$

4) For any $\varepsilon>0$ and $u \in D\left(A_{k} A_{k-1}^{-1}\right) \subset D\left(A_{k+1} A_{k}^{-1}\right), k=1 \div n-1$,

$$
\left\|A_{k+1} A_{k}^{-1} u\right\| \leq \varepsilon\left\|A_{k} A_{k-1}^{-1}\right\|^{\sigma_{k}+\sigma_{k+1}-1}\|u\|^{2-\sigma_{k}+\sigma_{k+1}}+C(\varepsilon)\|u\|
$$

5) For any $\varepsilon>0$ and $u \in D\left(A_{k}\right) \subset D\left(B_{k}\right), k=1 \div n-1$,

$$
\left\|B_{k} u\right\| \leq \varepsilon\left\|A_{k} u\right\|^{\sigma_{k}+\sigma_{k+1}-1}\|u\|^{2-\sigma_{k}+\sigma_{k+1}}+C(\varepsilon)\|u\|
$$

6) For $n \geq 3$ the operator A_{1} commutes the operators $A_{k} A_{k-1}^{-1}, k=1 \div n-1$.

Then the spectrum of the pencil (1.1) is discrete and the system of root vectors of the pencil (1.1) is n-fold complete in

$$
H\left(A_{n}\right) \times H\left(A_{n-1}\right) \times \ldots \times H\left(A_{1}\right)
$$

Proof. Let us show that theorem 2 can be applied to the pencil (1.1). By virtue of the conditions 1) and 2) of the theorem under $H_{k}=H\left(A_{k}\right), k=1 \div n-1$, $H_{0}=H\left(A_{n}\right) \equiv H$ the conditions 1-3 of the theorem 2 are satisfied. by virtue of theorem 1 the condition 4 and 5 of theorem 2 are also satisfied. So all the conditions of theorem 2 are satisfied and consequently the system of root vectors of the pencil (1.1) is n-fold complete in

$$
H\left(A_{n}\right) \times H\left(A_{n-1}\right) \times \ldots \times H\left(A_{1}\right)
$$

3. Coercive Problem for Ordinary

Differential Equations with a Parameter

3.1. Coerciveness of the problem. Consider the problem with a polynomial spectral parameter

$$
\begin{gather*}
L(\lambda) \equiv \lambda^{n} u(x)+\lambda^{n-1} a_{1} u^{\left(2 p_{1}\right)}(x)+\ldots+a_{n} u^{\left(2 p_{1}\right)}(x)+ \\
+\lambda^{n-1} \sum_{\alpha=0}^{2 p_{1}-1} b_{1 \alpha}(x) u^{(\alpha)}(x)+\ldots+\sum_{\alpha=0}^{2 p_{n}-1} b_{n \alpha}(x) u^{(\alpha)}(x)=f(x) \tag{3.1}
\end{gather*}
$$

and the functional conditions

$$
\begin{equation*}
L_{\nu} u=\alpha_{\nu} u^{\left(q_{\nu}\right)}(0)+\beta_{\nu} u^{\left(q_{\nu}\right)}(1)+T_{\nu} u=0 \tag{3.2}
\end{equation*}
$$

under $p_{1} \geq \ldots \geq p_{n}$, where $\left|\alpha_{\nu}\right|+\left|\beta_{\nu}\right| \neq 0, \nu=1 \div 2 p_{1}, 0 \leq q_{\nu} \leq q_{\nu+1}, q_{\nu}<q_{\nu+2}$, T_{ν} is a linear continuous functional in $W_{q}^{q_{\nu}}(0,1)$ and under $p_{1}<p_{2}<2 p_{1}, p_{2} \geq$ $p_{3} \geq \ldots \geq p_{n}$ with the additional conditions

$$
\begin{align*}
L_{2 p_{1}+s} u=L_{n_{s}} u^{\left(2 p_{1}\right)}= & a_{n_{s}} u^{\left(a_{n_{s}}+2 p_{1}\right)}(0)+\beta_{n_{s}} u^{\left(a_{n_{s}}+2 p_{1}\right)}(1)+ \\
& +T_{n_{s}} u^{\left(2 p_{1}\right)}(\cdot)=0 \tag{3.3}
\end{align*}
$$

where $s=1 \div 2\left(p_{2}-p_{1}\right), 1 \leq n_{s} \leq 2 p_{1}, k=1 \div n$.
Theorem 4. Suppose that the following conditions hold:

1. $a_{k} \neq 0, k=1 \div n, p_{1} \geq 1, q_{\nu} \leq 2 p_{1}-1$.
2. Under $p_{1} \geq p_{2} \geq \ldots \geq p_{n}$

$$
\theta_{1}=\left|\begin{array}{c}
\alpha_{1} \omega_{1}^{q_{1}} \ldots \alpha_{1} \omega_{1}^{q_{1}} \beta_{1} \omega_{k+1}^{q_{1}} \ldots \beta_{1} \omega_{2 k}^{q_{1}} \tag{3.4}\\
\ldots \\
\alpha_{2 k} \omega_{1}^{q_{2 k}} \ldots \alpha_{2 k} \omega_{k}^{q_{2 k}} \beta_{2 k} \omega_{k+1}^{q_{2 k}} \ldots \beta_{2 k} \omega_{2 k}^{q_{2 k}}
\end{array}\right| \neq 0
$$

where $\omega_{1}, \ldots, \omega_{2 k}$ are roots of the equation $a_{1} \omega^{2 k}+1=0$ number such that $\operatorname{Re} \omega_{j}<0$ at $j=1, . ., k$ and $\operatorname{Re} \omega_{j}>0$ at $j=k+1, \ldots, 2 k$.
3. Under $p_{1}<p_{2}<2 p_{1}, p_{2} \geq \ldots \geq p_{n}$ let $\theta_{1} \neq 0$ and
where $S_{1}, \ldots, S_{2\left(p_{2}-p_{1}\right)}$ are roots of the equation $\alpha_{2} S^{2\left(p_{2}-p_{1}\right)}+a_{1}=0$ such that $\operatorname{Re} S_{j}<0$ at $j=1, \ldots, p_{2}-p_{1}$, and $\operatorname{Re} S_{j}>0$ at $j=p_{2}-p_{1}+1, \ldots, 2\left(p_{2}-p_{1}\right)$.
4. $b_{k \alpha}(x) \in L_{q}(0,1), k=1 \div n, f(\cdot) \in L_{q}(0,1)$.
5. At some $\eta \in[1, \infty)$ functionals T_{ν} are continuous in $W_{\eta}^{m_{\nu}}(0,1)$.

Then for any $\varepsilon>0$ there is $R_{\varepsilon}>0$ such that at all complex λ for which $|\lambda|>R_{\varepsilon}$ and

$$
\lambda \in G\left(0 ; p_{1} \pi-\pi+\arg a_{1}+\varepsilon, p_{1} \pi+\pi+\arg a_{1}-\varepsilon\right)
$$

under $p_{1} \geq p_{2} \geq \ldots \geq p_{n}$ and

$$
\lambda \in G\left(0 ; p_{1} \pi-\pi+\arg a_{1}+\varepsilon, p_{1} \pi+\pi+\arg a_{1}-\varepsilon\right) \cap
$$

$$
\cap G\left(0 ;\left(p_{2}-p_{1}\right) \pi-\pi+\arg a_{2}+\arg a_{1}+\varepsilon,\left(p_{2}-p_{1}\right) \pi+\pi+\arg a_{2}-\arg a_{1}-\varepsilon\right)
$$

under $p_{1}<p_{2}<2 p_{1}$ the problem (3.1) - (3.3) has a unique solution $u \in W_{q}^{\max \left(2 p_{1}, 2 p_{2}\right)}(0,1)$ and at those λ for a solution of the problem (3.1) - (3.3) the following estimate is true:

$$
|\lambda|^{n}\|u\|_{L_{q}(0,1)}+|\lambda|^{n-1}\|u\|_{W_{q}^{2 p_{1}}(0,1)}+\ldots+\|u\|_{W_{q}^{2 p_{n}}(0,1)} \leq C\|f\|_{L_{q}(0,1)} .
$$

Proof. To reduce the problem $(3.1)-(3.3)$ to the operator pencil for which we will able to apply results of $\S 1$ let us introduce the operators $A_{k}, B_{k}, k=1 \div n$ by the equals

$$
\begin{gathered}
D\left(A_{k}\right)=W_{q}^{2 p_{1}}\left((0,1) ;\left.L_{\nu} u\right|_{\nu=1} ^{2 p_{k}}=0\right), A_{k} u=a_{k} u^{2 p_{k}}(x)+\omega_{k} u(x), \\
k=1 \div n, D\left(B_{k}\right)=D\left(A_{k}\right), \quad B_{k} u=\sum_{\alpha=0}^{2 p_{k}-1} b_{k \alpha} u^{(\alpha)}(x)-\omega_{k} u(x) .
\end{gathered}
$$

Then the problem (3.1) - (3.3) is reduced in $L_{q}(0,1)$ to the equation

$$
\begin{equation*}
L(\lambda) u=\lambda^{n} u+\lambda^{n-1}\left(A_{1}+B_{1}\right) u+\ldots+\left(A_{n}+B_{n}\right) u=f . \tag{3.6}
\end{equation*}
$$

From conditions 1,2 and 5 by virtue of theorem 2 [14] it follows that the operators $A_{k}, k=1 \div n-1$ at some $\omega_{k} \in C$ are invertible, i.e. they satisfy the condition 1 of theorem 1. From theorem 2 [14] it also follows that at $\lambda \in S_{1}=$ $G\left(0 ; p_{1} \pi-\pi+\arg a_{1}+\varepsilon, p_{1} \pi+\pi+\arg a_{1}-\varepsilon\right),|\lambda| \rightarrow \infty$

$$
\begin{equation*}
\left\|R\left(\lambda,-A_{1}\right)\right\| \leq C|\lambda|^{-1} \tag{3.7}
\end{equation*}
$$

i.e. the operator A_{1} satisfies in S_{1} the condition 2 of the theorem 1. Under $p_{1} \geq$ $p_{2} \geq \ldots \geq p_{n}$ the operator $A_{k} A_{k-1}^{-1}$ is bounded in $L_{q}(0,1)$.

So, at all $|\lambda| \rightarrow \infty$

$$
\left\|R\left(\lambda,-A_{k} A_{k-1}^{-1}\right)\right\| \leq C|\lambda|^{-1},
$$

i.e. the operator $A_{k} A_{k-1}^{-1}$ in $S_{2}=C$ satisfies the condition 2 of theorem 1.

Now, consider the case of $p_{1}<p_{2}<2 p_{1}$. Since under $2 p_{1} \leq k$ and $u \in W_{q}^{2 p_{n}}(0,1)$ the following correlation takes place
$D^{k} A_{1}^{-1} u=a_{1}^{-1} D^{k-2 p_{1}}\left[\left(a_{1} D^{2 p_{1}}+\omega_{1}\right)-\omega_{1}\right] A_{1}^{-1} u=a_{1}^{-1} D^{k-2 p_{1}} u-\omega_{1} D^{k-2 p_{1}} A_{1}^{-1} u$, then for $u \in D\left(A_{k} A_{1}^{-1}\right) \subset W_{q}^{2 p_{2}-2 p_{1}}(0,1)$ we have

$$
\begin{equation*}
A_{k} A_{1}^{-1} u=a_{2} a_{1}^{-1} D^{2 p_{2}-2 p_{1}} u-a_{2} \omega_{1} D^{2 p_{2}-2 p_{1}} A_{1}^{-1} u \tag{3.8}
\end{equation*}
$$

and for $s=1 \div\left(2 p_{2}-2 p_{1}\right)$

$$
\begin{gathered}
L_{2 p_{1}+s} A_{1}^{-1} u=a_{1}^{-1}\left(\alpha_{\nu_{s}} u^{\left(q_{\nu_{s}}\right)}(0)+\beta_{\nu_{s}} u^{\left(q_{\nu_{s}}\right)}(1)\right)- \\
-\omega_{1}\left(\alpha_{\nu_{s}}\left[D^{q_{\nu_{s}}} A_{1}^{-1} u\right]_{x=0}+\beta_{\nu_{s}}\left[D^{q_{\nu s}} A_{1}^{-1} u\right]_{x=1}\right)+T_{\nu_{s}} A_{1}^{-1} u .
\end{gathered}
$$

Obviously, the functional a $L_{2 p_{1}+s} A_{1}^{-1}$ is of the form

$$
\widetilde{L}_{s} u=a_{1} L_{2 p+s} A_{1}^{-1} u=\alpha_{\nu_{s}} u^{\left(q_{\nu_{s}}\right)}(0)+\beta_{\nu_{s}} u^{\left(q_{\nu_{s}}\right)}(1)+\widetilde{T}_{s} u
$$

where the functional

$$
\widetilde{T}_{s} u=-a_{1} \omega_{1}\left(\alpha_{\nu_{s}}\left[D^{q_{\nu_{s}}} A_{1}^{-1} u\right]_{x=0}+\beta_{\nu_{s}}\left[D^{q_{\nu_{s}}} A_{1}^{-1} u\right]_{x=1}\right)+a_{1} T_{\nu_{s}} A_{1}^{-1} u
$$

is continuous in $L_{q}(0,1)$. Thus, the operator $A_{2} A_{1}^{-1}$ is defined by the equals

$$
D\left(A_{2} A_{1}^{-1}\right)=W_{q}^{2 p_{2}-2 p_{1}}\left((0,1) ; \widetilde{L}_{s} u=0, s=1 \div\left(2 p_{2}-2 p_{1}\right)\right)
$$

and (3.8).
By virtue of the conditions 1,3 and 5 the theorem 2 [4] can be applied to the operator $A_{2} A_{1}^{-1}$ from which it follows that at

$$
\begin{gather*}
\lambda \in S_{2}=G\left(0 ;\left(p_{2}-p_{1}\right) \pi-\pi+\arg a_{2}-\arg a_{1}+\varepsilon,\right. \\
\left.\left(p_{2}-p_{1}\right) \pi+\pi+\arg a_{2}-\arg a_{1}-\varepsilon\right),|\lambda| \rightarrow \infty \\
\left\|R\left(\lambda,-A_{2} A_{1}^{-1}\right)\right\| \leq C|\lambda|^{-1}, \tag{3.9}
\end{gather*}
$$

i.e. the operator $A_{2} A_{1}^{-1}$ satisfies in S_{2} the condition 2 of theorem 1.

Let us show that the condition 3 of theorem 1 takes place, i.e. $D\left(A_{2}\right) \supset D\left(A_{1}^{2}\right)$ and for any $\varepsilon>0$

$$
\left\|A_{2} u\right\| \leq \varepsilon\left\|A_{1}^{2} u\right\|+C(\varepsilon)\|u\|, u \in D\left(A_{1}^{2}\right) .
$$

Indeed, from $u \in D\left(A_{1}^{2}\right)$ it follows that $u \in D\left(A_{1}\right)$ and $A_{1} u \in D\left(A_{1}\right)$. Therefore, $L_{\nu} u=0, L_{\nu} A_{1} u=a_{1} L_{\nu} u^{\left(2 p_{1}\right)}+\omega_{1} L_{\nu} u=0, \nu=1 \div 2 p_{1}$. Thus, the function $u(x)$ satisfies both the condition (3.2) and (3.3), i.e. $u \in D\left(A_{2}\right)$.

On the other hand, by virtue of the well-known estimate $[3, p .145]$

$$
\left\|u^{(k)}\right\|_{L_{\infty}(0,1)} \leq \varepsilon\left\|u^{(n)}\right\|_{L_{q}(0,1)}+C(\varepsilon)\|u\|_{L_{q}(0,1)}, k<n
$$

for $u \in D\left(A_{1}^{2}\right)$ we have

$$
\begin{aligned}
& \left\|A_{2} u\right\|_{L_{q}(0,1)} \leq C\left\|u^{\left(2 p_{1}\right)}\right\|_{L_{q}(0,1)} \leq \varepsilon\left\|u^{\left(4 p_{1}\right)}\right\|_{L_{q}(0,1)}+ \\
& +C(\varepsilon)\|u\|_{L_{q}(0,1)} \leq \varepsilon\left\|A_{1}^{2} u\right\|_{L_{q}(0,1)}+C(\varepsilon)\|u\|_{L_{q}(0,1)}
\end{aligned}
$$

Q.E.D.

From condition 4 it follows that

$$
\begin{gathered}
\left\|B_{k} u\right\|_{L_{q}(0,1)} \leq \varepsilon\|u\|_{W_{q}^{2 p_{k}(0,1)}}+C(\varepsilon)\|u\|_{L_{q}(0,1)} \leq \\
\leq \varepsilon\left\|A_{k} u\right\|_{L_{q}(0,1)}+C(\varepsilon)\|u\|_{L_{q}(0,1)},
\end{gathered}
$$

i.e. the operator B_{k} satisfy the condition 4 of theorem 1. Thus, for the problem (3.6) we have verified all the condtions of theorem 1 from which it follows the assertion of theorem 4.
3.2. Multiple Completeness of Root Functions of the Problem (3.1) - (3.3)

Consider under $p_{1}<p_{2}$ the homogeneous equation

$$
\begin{gather*}
L(\lambda) u=\lambda^{n} u(x)+\lambda^{n-1} a_{1} u^{\left(2 p_{1}\right)}(x)+\ldots+a_{n} u^{\left(2 p_{n}\right)}(x)+ \\
+\lambda^{n-1} \sum_{\alpha=0}^{2 p_{1}-1} b_{1 \alpha} u^{(\alpha)} x+\ldots+\sum_{\alpha=0}^{2 p_{n}-1} b_{n \alpha} u^{(\alpha)} x=0 \tag{3.10}
\end{gather*}
$$

with the functional conditions

$$
\begin{equation*}
L_{\nu} u=0, \quad \nu=1 \div 2 p_{1} \tag{3.11}
\end{equation*}
$$

where L_{ν} are defined by the equals (3.2) and (3.3).
Theorem 5. Let the following conditions be satisfied:

1. $a_{k} \neq 0, p_{1} \geq 1, p_{1}<p_{2}<2 p_{1}, p_{2}=p_{3}=\ldots=p_{n} ; q_{v} \leq 2 p_{n}-1, q_{\nu_{s}} \leq$ $2\left(p_{2}-p_{1}\right)-1$;
2. The determinants (3.4) and (3.5) are not equal to zero;
3. $b_{k \alpha}(\cdot) \in L_{2}(0,1), l=1 \div n$.
4. At some $\eta \in[1, \infty)$ the functionals T_{ν} are continuous in $W_{2}^{q_{\nu}}(0,1)$.

Then the spectrum of the problem (3.10) - (3.11) is discrete and the system of the root vectors of the problem $(3.10)-(3.11)$ is n-fold complete in

$$
\begin{gathered}
W_{q}^{2 p_{2}}\left((0,1) ; L_{\nu} u=0, \nu=1 \div 2 p_{2}\right) \times \ldots \times W_{q}^{2 p_{1}}(0,1) ; L_{\nu} u=0 \\
\left.\nu=1 \div 2 p_{2}\right) \times W_{q}^{2 p_{1}}\left((0,1) ; L_{\nu} u=0, \nu=1 \div 2 p_{1}\right)
\end{gathered}
$$

Proof. Introducing in $L_{2}(0,1)$ the operators A_{k} and B_{k} by the equals

$$
\begin{gathered}
D\left(A_{1}\right)=W_{q}^{2 p_{1}}\left((0,1) ; L_{\nu} u=0, \nu=1 \div 2 p_{1}\right) \\
A_{1} u=a_{1} u^{\left(2 p_{1}\right)}(x)+\omega_{1} u(x), \omega_{1} \in C, \\
D\left(A_{k}\right)=W_{q}^{2 p_{2}}\left((0,1) ; L_{\nu} u=0, \nu=1 \div 2 p_{2}\right) \\
A_{k} u=a_{k} u^{\left(2 p_{1}\right)}(x)+\omega_{k} u(x), \omega_{k} \in C, k=2 \div n, \\
D\left(B_{k}\right)=D\left(A_{k}\right), k=1 \div n, \\
B_{k} u=\sum_{\alpha=0}^{2 p_{n}-1} b_{k \alpha}(x) u^{(\alpha)} x-\omega_{k} u(x) .
\end{gathered}
$$

On the other hand,

$$
H\left(A_{1}\right)=W_{q}^{2 p_{1}}\left((0,1) ;\left.L_{\nu} u\right|_{\nu=1} ^{2 p_{1}}=0\right)
$$

and

$$
H\left(A_{k}\right)=W_{q}^{2 p_{2}}\left((0,1) ;\left.L_{\nu} u\right|_{\nu=1} ^{2 p_{2}}=0\right)
$$

are subspecies of $W_{q}^{2 p_{1}}(0,1)$ and $W_{q}^{2 p_{2}}(0,1)$ correspondingly.
Then at

$$
\rho>\max \left\{\frac{1}{2 p_{1}}, \frac{1}{2\left(p_{2}-p_{1}\right)}\right\} \quad J \in \sigma_{\rho}\left(H\left(A_{1}\right), H\right)
$$

and $J \in \sigma_{\rho}\left(H\left(A_{2}\right), H\left(A_{1}\right)\right)$. Thus the condition 2 of theorem 3 has been verified.
Since the estimates (3.7) and (3.9) gold everywhere in the complex plane except of two arbitrary small angles

$$
G\left(0 ; p_{1} \pi+\pi+\arg a_{1}-\varepsilon, p_{1} \pi+\pi+\arg a_{1}-\varepsilon,\right)
$$

and

$$
\begin{aligned}
& G\left(0 ;\left(p_{2}-p_{1}\right) \pi+\pi+\arg a_{2}-\arg a_{1}-\varepsilon\right. \\
& \left.\quad\left(p_{2}-p_{1}\right) \pi+\pi+\arg a_{2}-\arg a_{1}-\varepsilon\right)
\end{aligned}
$$

then the condition 3 of theorem 3 hold completely. Thus the theorem 3 can be applied to the problem (3.12) from which it follows the assertion of theorem 5.

References

[1]. Agmon. S., Nirenberg L. Properties of solutions of ordinary differential equations in banach Space. Comm. Pure Appl. Math., 1963, 16, pp. 121-239.
[2]. Allakhverdiev Dzh.E. On the completeness of the system of eigenelemnts and associated elements of nonselfadjoint operators close to normal ones. Dokl.Akad.Nauk SSSR. 1975, 115, pp. 207-210.
[3]. Besov O.V., Ilin V.P., Nikolsky S.M. Integral representation of functions and embedding theorem. Moscow Mir 1975 (Russian).
[4]. Dunford N., Schwarth J.T. Linear operators. Spectral theory. Moscow. Mir 1966.
[5]. Keldysh M.V. On the eigenvalues and eigenfunctions of certain classes of nonselfadjoint equations. Dokl.Akad.Nauk SSSR, 1951,77, pp. 11-14 (Russian).
[6]. Maksudov F.G. Polynomial pencils of operators in the presence of a continuous spectrum. Izv. Akad. Nauk Azerb. SSR, ser. fiz.-tekh. i mat. nauk., 1972, 5, pp. 35-40 (Russian).
[7]. Maksudov F.G. Pencils of operators with a continuous spectrum. Baku. Elm 1992 (Russian).
[8]. Markus A.S. Introduction into the spectral theory of polynomial operator pencils. kishinyov. Shtiintsa 1986.
[9]. Palant Yu.A. A test for completeness of the system of eigenvectors and associated vectors of polynomial operator pencil. Dokl. Akad. Nauk SSSR, 1961, 141, pp. 558-560 (Russian).
[10]. Radzievsky G.V. The problem of the completeness of toot vectors in the spectral theory of operator-valued function. Uspekhi Mat. Nauk, 1982, 37, pp. 81145 (Russian).
[11]. Truebel H. Interpolation theory, function spaces, differential operators. Moscow. Mir 1980 (Russian).
[12]. Yakubov S.Ya., Mamedov K.Sh. Multiple completeness of the system of eigenelements and associated elements of a polynomial opeprator pencil and multiple expansions in that system. Functional Anal. Prilithem. 1975, 9, pp. 91-93 (Russian).
[13]. Yakubov S.Ya. Multiple completeness of root vectors of unbounded polynomial operator pencil. Revue Roumaine Math. Pures Appl. 1986, 31, pp. 423-438.
[14]. Yakubov S.Ya. Unlocal boundary value problem for certain class of wellposed by Petrovsky equations. Matem. sbornik, 1982, 118, pp. 252-261 (Russian).
[15]. Yakubov S.Ya. Multiple competeness in the Keldysh sence for the root function of elliptic bondary value problem with a polynimial spectral parameter. Math. USSR Izv. 1987, 28, pp. 413-420 (Russian).
[16]. Yakubov S.Ya. Multiple completeness for a system of operator pencils and elliptic boundary value problems. Math. USSR Sbornik, 1991, 69, pp. 99-119 (Russian).
[17]. Yakubov S.Ya., Balaev M.K. Unbounded square operator and differential pencils In: Some questions of non-linear analyse theory II. (Eds.: H.N. Agaev and S.Ya. Yakubov) 1990, pp.175-191, Baku, Elm (Russian).

Mehdi K. Balaev
Institute of Mathematics and Mechanics of NAS of Azerbaijan.
9, F. Agayev str., AZ1141, Baku, Azerbaijan.
Tel.: (99412) 4394720 (off.).
Received January 19, 2009; Revised April 29, 2009

