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SPECTRAL CHARACTERISTICS OF STARK’S
FINITE-PERTURBED OPERATOR

Abstract

Consider a boundary value problem of the form
_y”_[m_p(x)]y/:)‘yv 0§£L’<OO7 (1)

y(0) =0, (2)

where p (x) is a real continuous function and p (x) =0 for x > a > 0.

Let the functions ¢ (x,A), 0 (z,\) be the solutions of equation (1) with the

following initial conditions:

Yo (07)‘) = 07 @6 (07 )‘) = 17

90 (07)‘) = 17 06 (07 )‘) = 07

(3)
(4)

By K2 denote a set of finite functions from the space Ls [0, +00), by f () —

¢ (2, ) a Fourier transformation f (x) € K?

+o00
fo) = /f(x)cp(z,)\) dz.

It is known that for any A with Im A\ # 0 equation (1) has a unique solution,
Yy (l’, )‘) = 0o ('7;7 )‘) +mo (/\) Yo (:L’, )‘) € Ly,

moreover, if f (z) € K2, then

+o0o +oo
[r@g@ar=1 [ F0a ).
0 T

where the spectral function

+o00
My (\) = ;13%) [—Immg (A) (S +io]do, [1].

0
Investigate some special solutions of the equation
_y// . :Cy, _ )\y'
It is known that [2] the solution of the equation of the form
1 " 3 N\ 2 1 I\ 2
t9 2 (9 4 2 9 +Q/2
2qg 4\ 4 4 g

y' + y=0
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is the function

y= g/Hl/ (g)
H, (g) are the cylindric fuglctions.
Take g (z) = 2 (x 4+ A)?, then
9% = (z+2)
Consequently
3
1g” 1 |—3@+A)"2 1 -
=5 | =gt
g (x+A)"2
e 2 1 —172
_3<g> 3 lg@+A) —i(:v—l—)\)_Q
4\ ¢ 4 (x—l—)\)fé 16
Then,
1 J\> /1 (z+ )2 1 9 )
G=2)(5) =G || ~ (G- e
g 2(z+MN)2
3
Substituting (8) (11) in (6), we get
1 2 3 o (1 2\ 9 -2 _
S(x—i-)\) 16(3@—1—)\) (4 y>4($+/\) =0.

Hence

1 3 9 9, 2
<_8_16+16_4y>(x+)\) =0,
9 1, 41
4 4 3

Thus, (12) is a special solution of equation (15)

H, (z) = J, (z) + Y, (z).

(7)

(12)

Theorem 1. For any A from the upper half-plane the function g (x, \) belongs

to the space Ly [0,00).

Proof. Above we proved that the solution of equation (5) is the function

Njw

o (2, )) = \/g (x+)\)Hé\/§ (24 )%,
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the function H, (x) is called Henkel’s cylindrical function (Hﬁl), Hg) ), moreover,

HWY (2) = J, () +1iY, (z), HP =J,(z)—iY, (). (13)

v v

In the given case, the functions

2
1(z, A) \/ (x+XN) ;{3 x—i—)\g} (14)

9 (z, \) :1:—1—)\ {; x—i—)\g} (15)

are linear independent solutions of equation (5).
(Jy (x) is Bessel’s function of first kind, Y, () a second kind).
Asymptotics of these functions

2 T

~ -2z 14/
7rz Z 4)’ (14)
2 T

~ - 15
7rz 4)’ (15)

for fixed v and |z| — oo is known.
Notice that the asymptotics of the function

N|w

H<1> {3 (z 4 A) } = J1 () +iY1 (x)

as |z + A| — oo contains a multiplier X (X =2(z+ )\)%>
X _ 3] _ izedagael) | e

that for JmA > 0 exponentially decreases as © — 00, so that the function

| (16)

Remark 1. If by ¢ (x, ) we denote the solution of problem (1)-(2) coinciding
with v (z,A) for z > a > 0, theorem 1 remains valid for ¢ (z, \) as well.Further,
there exists a kernel K (z,t) such that (see [3])

-

N

o (2,0) = Y2 /(e + N HY ){g(ﬂﬁ—/\)

belongs to L [0,00). The theorem is proved.

2a—x
b (2, 0) = o (2, 0) + /K(rc,t)wo(t,A)dt

We proved that the solutions of the equations y” + (x + \)y = 0 are

\/mjl{ x+A3} (17)
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\/:cﬂyl{ m+A3} (18)
Calculate their wronskain introducing the denotation
2 2
X = 3(:c+A)% T = 3(t+A)%

W (01 (z,\) ;02 (2, \)] = 01 (x,\) 0 (2, \) — 0] (2, ) O (2, ) =

= {027 (X)) @+ )2 Y] () -

~(@+ N2 (X)) - (@ N2y () | =

3

(z + )\)_% Y% (X1)+ (z+ )\)2 Y1 (X1) - Xl]} =

={@+ N X[ (X)) v (x0) - I (X)) Vs (X)] | =

1 1
3 3 3

— N X W [ vy o] = {eenE et
- [J% o (XI)L”:O B {(HA)S 7 ( +2)\)3 } B 4?;
v : =0
Consequently,
W (015 6] = 4?; (19)

Here we take into account that W [J, (z);Y, (2)] = 2.

By ¢o (z,A), 0o (x, \) we denote the solutions of equation (1) (p(z) =0,z > a)
with initial conditions

906 (O> >‘) =0, ‘106 (Oa )‘) =1, (20)
0o (0,\) =1, 6;(0,)\) =0. (21)

Obviously,
0o (x,A\) =a(X) 01 (x,\) +b(N\) 02 (x,N). (22)

Taking into account (20), we have
©0 (0,X) = a(X) 05 (0, ) +b(X) 05 (0, ) =1,

0 (0,A) =a(A)01(0,A) +b(2)62(0,A) = 0.

Hence
0 62(0,))

1 ‘9/2 (07)‘) 47

a(A) = CWi0h,0s] —392 (0,7),
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6:(0,\) 0
01(0,A) 1 4dm
b(A) = =—0:(0,N).
Substituting these values in (22), we get
4
20 (@, 0) = = [0 (2, 1) 02 (0, 1) + 02 (2,3) 01 (0, M) (23)

Taking into attention formulae (17) and (18), we get
4 2 2 3
2 2
—V(@+ N (3 (z + A)Z’) VAY: (3/\3)} =
4 2 2

vy (2 (x+A)3> VAV <§>\ ﬂ . (23)

3
Introducing the denotation Z = %)\%, we can write the last one in the form

(S

w|

e

oo (o) = VWG AN [V () 0y (2) - 7 (0 vy )] e

3

We can calculate the asymptotics ¢ (x,A). To this end we use the asymptotics
of the functions 01 (z, ), 02 (z, A).

2 2 3 bm
0> (2. 0) ~ ) 'sin{(x+)\)2—}:
Xlmoo @V N[220 4 0)3 3

[NIE
8
_|_
>

SR e L ECR VR

——2 an{ieeni-I (26)
T (x4 )2 3
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2
02 (0, A) ~ 5 . 'sin{)\g—m}

27
T \2 3 12 ( )
Substituting (24)-(27) in (23), we get
4 2
300(1"’)‘):1 - 33COS{(ZE—|—)\)3_57T}X
3 (x4 A)2 3 1
2 2
X 3 . sln{)\g—m}—}— 3 _ Sm{(x+)\)§_57r}x
Y 12 T (x4 03 3 12
2
X 5 T cos{)\d—gm =
T A2 3 12
= sind = (z4+ N2 — = V.cosd Nz — =%
3\ @+ 222 {3( P } {3 12}
2.3 bmw 2 3 bmw
—sm{3)\ —12}008{3($+)\)2 1}_
1
an? [sin{2(;p+)\)g _ 2)\3}} ,
[N 3 3
V3\/ (@ +A)2 A2
i.e. )
472 2 )

Similarly we find

B0 (2, A) = a(N) 0y (z,A) +b(N) b (2, ),

00 (0,A) =@ (A) 65 (0,A) +b(N) & (z,\) =1,
0 (0,A) =@ (A) 6, (0,A) +b(X) 8 (z,\) =0,
1 65(0,\)
~ 06050, | 7 ™
a(A) an 502 (0,0),  b(A) = —501(0,2),
0o (z,\) = g (65 (0, ) 61 (2, ) — 6 (0, ) 02 (z, \)] .

Calculate 0 (z, ), 02 (z,\)

0, (z,\) = {m@ {§ (z+ A)SHI

R {§ (z + /\)3} - (3 (a:—i—)\)g)/
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= l(x—l—)\)%_lJ% {2(3:—1—)\)3} +VE AT {g(:cﬂ) }w(:vﬂ)g‘l =

N

37
}(x+/\)

i

N
D=

:1(x+/\)‘5J§{2(x+/\)3}+\/ﬁJ’ { (@ + )

njw

(:L‘+)\)3}+(:E+)\)Jé{§(x+)\)

Thus,
, 1 _1 2 3 /
3

Hence we have

Similarly we get

0, (2, )) = ;(x—ir)\) é{g(x—i—)\)g} (:v—i—)\)Yg{;(x—i—)\)g} (32)

Substituting (30)-(33) in formula (29), we get
3 1. 1 2 3 , [2.3
0 ( ) \/ﬂ:"‘ Jl (.'1:‘”)\)2 2A 2Y% §>\2 +)\Yl g)\Q —
2 1 2
—VEH A {3 (z + )\)3} [2>\§J§ {Ai

2
3
1 2 : 2
T [2¢m.AéJ§ {3 (x+>\)§}Y1 {BAS’} n

+\Wzx + J1{ (x—i—)\)

o
H,_/
ol
[CIN )
>
wlw
——
|

SN EY {3 (x—i—)\)g}Jé {z)\i}_
—VZEA- )\Yl{3(x+)\)g}J3{§)\§}:

=3 {;\/m (Jé @ (x+A)3> vi (gﬁ) -
—Y;’{g(er)\)g}Jé(g >+AW[J1{3(33+A)3} i{gxi}—
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Taking into account the denotation reduced above, we can rewrite:

8o (,\) = g {2\/3: A (J% (X) Y (Z) - Y1 (X) ]y (Z)) +

IDNVZ T <J; (X)- Y1 (2) =V, (X)), (X)) } . (34)

1 1
Then, as is known [1], the derivative from the spectral function of the boundary
value problem (1)-(2) (p(z) =0 for > a) is determined as:

Yo (0,07 1 [wh(0,0) ¥ (0,))
7/]0 (07 )‘) P,

Ko(A\) = —Im [] 2 |1y (0, ) o (0, A)

_l w [¢0 (0’ >‘) @O (07 A)] x=0
2 [0 (0, M) ‘

Taking into account [5]

therefore, the expansion formula looks like

+oo
/ 0 (2. \) 9o (1, X) Ko (\) dA = 5 (2,1

—0o0

So, we proved the theorem.

Theorem 2. The derivative Ko (\) of the spectral function of the operator
generated by boundary value problem (1)-(2) is determined by formula (35).

By remark (1), the solution % (z, A) belongs to the space L3 [0,00) for Im > 0.
_ (0,
(0,0
K (\) from the spectral function of the operator generated by problem (1)-(2) is

Therefore, the Weyl function m () is of the form: m (\) . The derivative

determined as is known, in the following way
K (A) =Imm (X +10)

for real A [1].
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Therefore,

¥'(0,4)
¥ (0, X

r=a

/(0,)\)] _ W [@ZJ(%A)HU(%)‘)}

_ ! Y
K(\) =~ [ " 2 g (0,N) (0,0

(0, )
P Wo o @Vt @] gy
204 (0,A) o (2 N (Vme (A) 1 (W) 12 (V)
where W [w (z,A) ;0 (=, )\)} : W [wo (x, ) ;¢ (x, )\)} is a Wronskian of the solutions

Y (2, \), ¥ (2, \), g (2, M), ¥ (x, \), respectively.
Thus,

~—

I
1 (A) g (A)
1 Wo [0 (2, 2) g (@, 3)

A R TSV (B

KO =

z=0

9

m(A) = 1+/K (0,8) Fy (£, A) dt, Fy(t,\) = ;ﬁs((é i))

for real A, ny (A) =1y (N).
Theorem 3. If for © — a, p(z) ~ Co (a — z), (A) where | > 0', then

K(0,s) = % (a- %)Hl +0 [(a - ;)Hl] (36)
for S — 2a [3].

Proof.It is known that K (x,t) for t > 0, satisfies the integral equation of the
form

00 a—"55 g
1 1
K($,t)=2/p(5)d8+2 / / p (& mn) K (&,n)dédn+
xTH T t4z—€
LH 2a—¢& a 2a—¢&
// ) K @mm+//a K (€.n)dnds,  (37)
a— t— Cl,t_l’_x f :L+t

where p (&,n) = =£+n+p (&), It is seen from (37) that as ¢t — 2a, K (0,t) tends to
zero more rapidly than [p(s)ds
t

2

K(O,t)~A<a—;> <1+o<a—;>)+

'In sequel, everywhere we’ll assume that condition A is fulfilled.

Now, assume
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+s (a—;>2p(0,t)K(0,t) <1+0<a— ;)) 4

t
where |A| <a — 7
For K (z,t) [4] the following estimates of the form

1 (24t =C"(a—z)™
< 3o () S

are known, where C' = max |[p(&,7n)|, max is taken from the domain of definition
e.)
K (z,t), b(z) = [|p(s)|ds. It is seen from this estimate that |K (§,2a —&)| <

(A)C(a—¢€) ie. K(&2a—E&+A) tends to zero as t — 2a more rapidly than

(a — %)Hl. Dividing the both hand sides of equality (38) by % (a — %) and

passing to limit as ¢t — 2a, we get

. 2(1+1
th(O,t) % = ].,
t—2a CO (a_ §)

. I+1
e K(0,) ~ 5 (a— &)Y,

Consider the solution ¢, (z,\) of the equation y” + (z + \) y = 0 satisfying the
conditions

Yo (07 )‘) =0, 906 (07 )‘) =1 (39)

Noticing that for real A, the v, (z,)) is a linear independent solution with
Yo (x, ), we have

Yo (QS‘, )‘) =a ()‘) ¥y (l’, )‘) + b()‘) EO (1‘, )‘) )

where a (\), b(\) are the unknown constants.
Taking into account condition (), by the method of variation of constants we get

1

vo (z,A) = —m [1/10 (z,7) Eo (0,A) =1y (0, N) Eo (z, )\)} ) (40)

where
Wo (A) = 1o (0,A) g (0, A) = 5 (0, 4) By (0, A).
Let ¢ (x,\) be a solution of the equation
y'+lz+p(@)]y =Ny

(p(z) =0, for x > a) with conditions (39).
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Noticing that for real A the 1 (2, \), is a linear independent solution with 1 (x, ),
we have ¢ (z,A) = a (\) ¥ (z,\) + b(N\) ¥ (z,\), where a (\),b()\) are the unknown

constants.

From condition (40) we have:

— —

- ¥ (0,)) _ ¥ (0, ) _
a(A) = — = e =
%% [w (a:,/\),z/J(:U,)\]xZO %% [w (m,/\),w(ar,)\]x:a
_ (0,2 by = 20N
Wo [t (,0), 9o (2, A],_, Wo (A)
where
W[ (2,0), 0 (2,A] =9 (2,0), 6 (2,0) = ¢/ (2,1), (2, 1)
Then,
0 @) =~y @) T @) =0 (0,07 (.1). (a1)

From the last one we have

1

Ve == W

1

=~y [ @V T (028 () = .3 (0. 1)], (42)

Taking into account that ¢ (0, \) = ¢ (0, \) n; (A), where

U= EEN -

S (A) is called the S - function of problem (1)-(2) (the sceattering function) It is
abvious from (42) that the asymptotics of the normed eigen functions of boundary

value problem (1)-(2) is determined by the function S (\) as z — 0.
Notice that the S-function will play an important part in deriving the basic
integral equation.
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