Aynur R. AHMEDOVA

SPECTRAL CHARACTERISTICS OF STARK'S FINITE-PERTURBED OPERATOR

Abstract

Consider a boundary value problem of the form

$$-y'' - [x - p(x)]y' = \lambda y, \quad 0 \le x < \infty, \tag{1}$$

$$y\left(0\right) = 0,\tag{2}$$

where p(x) is a real continuous function and $p(x) \equiv 0$ for $x \geq a > 0$.

Let the functions $\varphi_0(x,\lambda)$, $\theta_0(x,\lambda)$ be the solutions of equation (1) with the following initial conditions:

$$\varphi_0(0,\lambda) = 0, \quad \varphi_0'(0,\lambda) = 1,$$
 (3)

$$\theta_0(0,\lambda) = 1, \quad \theta_0'(0,\lambda) = 0,$$
 (4)

By K^2 denote a set of finite functions from the space $L_2[0,+\infty)$, by $\widetilde{f}(\lambda) - \varphi(x,\lambda)$ a Fourier transformation $f(x) \in K^2$

$$\hat{f}(\lambda) = \int_{-\infty}^{+\infty} f(x) \varphi(x, \lambda) dx.$$

It is known that for any λ with Im $\lambda \neq 0$ equation (1) has a unique solution,

$$\psi_0(x,\lambda) = \theta_0(x,\lambda) + m_0(\lambda) \varphi_0(x,\lambda) \in L_2,$$

moreover, if $f(x) \in K^2$, then

$$\int_{0}^{+\infty} f(x) g(x) dx = \frac{1}{\pi} \int_{x}^{+\infty} \hat{f}(\lambda) \hat{g}(\lambda) dM_0(\lambda),$$

where the spectral function

$$M_0(\lambda) = \lim_{\sigma \to 0} \int_0^{+\infty} \left[-\operatorname{Im} m_0(\lambda) (S + i\sigma) d\sigma, [1] \right].$$

Investigate some special solutions of the equation

$$-y'' - xy' = \lambda y. (5)$$

It is known that [2] the solution of the equation of the form

$$y'' + \left[\frac{1}{2} \frac{g'''}{g'} - \frac{3}{4} \left(\frac{g''}{g'} \right)^2 + \left(\frac{1}{4} - \nu^2 \right) \left(\frac{g'}{g} \right)^2 + g'^2 \right] y = 0$$
 (6)

10

[A.R.Ahmedova]

is the function

$$y = \sqrt{\frac{g}{g'}} H_{\nu} \left(g \right) \tag{7}$$

 $H_{\nu}\left(g\right)$ are the cylindric functions. Take $g\left(x\right)=\frac{2}{3}\left(x+\lambda\right)^{\frac{3}{2}}$, then

$$g^{\prime 2} = (x + \lambda). \tag{8}$$

Consequently

$$\frac{1}{2}\frac{g'''}{g'} = \frac{1}{2}\left[\frac{-\frac{1}{4}(x+\lambda)^{-\frac{3}{2}}}{(x+\lambda)^{-\frac{1}{2}}}\right] = -\frac{1}{8}(x+\lambda)^{-2}$$
(9)

$$-\frac{3}{4} \left(\frac{g'''}{g'} \right)^2 = -\frac{3}{4} \left[\frac{\frac{1}{2} (x+\lambda)^{-\frac{1}{2}}}{(x+\lambda)^{-\frac{1}{2}}} \right]^2 = -\frac{3}{16} (x+\lambda)^{-2}.$$
 (10)

Then,

$$\left(\frac{1}{4} - \nu^2\right) \left(\frac{g'}{g}\right)^2 = \left(\frac{1}{4} - \nu^2\right) \left[\frac{(x+\lambda)^{\frac{1}{2}}}{\frac{2}{3}(x+\lambda)^{\frac{3}{2}}}\right]^2 = \left(\frac{1}{4} - \nu^2\right) \cdot \frac{9}{4}(x+\lambda)^{-2}.$$
(11)

Substituting (8) (11) in (6), we get

$$-\frac{1}{8}(x+\lambda)^{-2} - \frac{3}{16}(x+\lambda)^{-2}\left(\frac{1}{4} - \nu^2\right)\frac{9}{4}(x+\lambda)^{-2} = 0.$$

Hence

$$\left(-\frac{1}{8} - \frac{3}{16} + \frac{9}{16} - \frac{9}{4}\nu^2\right)(x+\lambda)^{-2} = 0,$$
$$\frac{9}{4}\nu^2 = \frac{1}{4} \Rightarrow \nu = \pm \frac{1}{3}.$$

Taking into account these reasonings, from formula (7) we get

$$\psi_0(x,\lambda) = y(x,\lambda) = \sqrt{\left[\frac{\frac{2}{3}(x+\lambda)^{\frac{3}{2}}}{(x+\lambda)^{\frac{1}{2}}}\right]} H_{\frac{1}{3}} \sqrt{\frac{2}{3}(x+\lambda)^{\frac{3}{2}}} =$$

$$= \sqrt{\frac{2}{3}(x+\lambda)} H_{\frac{1}{3}} \sqrt{\frac{2}{3}(x+\lambda)^{\frac{3}{2}}}.$$
(12)

Thus, (12) is a special solution of equation (15)

$$H_{\nu}(x) = J_{\nu}(x) + iY_{\nu}(x).$$

Theorem 1. For any λ from the upper half-plane the function $\psi_0(x,\lambda)$ belongs to the space $L_2[0,\infty)$.

Proof. Above we proved that the solution of equation (5) is the function

$$\psi_{0}\left(x,\lambda\right)=\sqrt{\frac{2}{3}\left(x+\lambda\right)}H_{\frac{1}{3}}\sqrt{\frac{2}{3}\left(x+\lambda\right)^{\frac{3}{2}}},$$

 $\frac{Proceedings\ of\ IMM\ of\ NAS\ of\ Azerbaijan}{[Spectral\ characteristics\ of\ Stark's...]}11$

the function $H_{\nu}(x)$ is called Henkel's cylindrical function $\left(H_{\nu}^{(1)}, H_{\nu}^{(2)}\right)$, moreover,

$$H_{\nu}^{(1)}(x) = J_{\nu}(x) + iY_{\nu}(x), \quad H_{\nu}^{(2)} = J_{\nu}(x) - iY_{\nu}(x).$$
 (13)

In the given case, the functions

$$\theta_1(x,\lambda) = \sqrt{\frac{2}{3}(x+\lambda)} J_{\frac{1}{3}} \left\{ \frac{2}{3}(x+\lambda)^{\frac{3}{2}} \right\},$$
 (14)

$$\theta_2(x,\lambda) = \sqrt{\frac{2}{3}(x+\lambda)}Y_{\frac{1}{3}}\left\{\frac{2}{3}(x+\lambda)^{\frac{3}{2}}\right\}$$
 (15)

are linear independent solutions of equation (5).

 $(J_{\nu}(x))$ is Bessel's function of first kind, $Y_{\nu}(x)$ a second kind).

Asymptotics of these functions

$$J_{\nu}\left(z\right) \sim \sqrt{\frac{2}{\pi z}} \cos\left(z - \frac{\nu\pi}{2} - \frac{\pi}{4}\right),$$
 (14')

$$Y_{\nu}\left(z\right) \sim \sqrt{\frac{2}{\pi z}} \sin\left(z - \frac{\nu\pi}{2} - \frac{\pi}{4}\right),$$
 (15')

for fixed ν and $|z| \to \infty$ is known.

Notice that the asymptotics of the function

$$H_{\frac{1}{3}}^{(1)} \left\{ \frac{2}{3} \left(x + \lambda \right)^{\frac{3}{2}} \right\} = J_{\frac{1}{3}} \left(x \right) + i Y_{\frac{1}{3}} \left(x \right)$$

as $|x + \lambda| \to \infty$ contains a multiplier $e^{iX} \left(X = \frac{2}{3} (x + \lambda)^{\frac{3}{2}} \right)$

$$e^{iX} = e^{i\left[\frac{2}{3}(x+\lambda)^{\frac{3}{2}}\right]} = e^{i\frac{2}{3}x^{\frac{3}{2}}\left(1+\frac{3}{2}\frac{\lambda}{x}+\dots\right)} \sim e^{i\lambda\sqrt{x}},$$

that for $Jm\lambda > 0$ exponentially decreases as $x \to \infty$, so that the function

$$\psi_0(x,\lambda) = Y_{\frac{2}{3}} \sqrt{(x+\lambda)} H_{\frac{1}{3}}^{(1)} \left\{ \frac{2}{3} (x+\lambda)^{\frac{3}{2}} \right\}$$
 (16)

belongs to $L_2[0,\infty)$. The theorem is proved.

Remark 1. If by $\psi(x,\lambda)$ we denote the solution of problem (1)-(2) coinciding with $\psi_0(x,\lambda)$ for $x\geq a>0$, theorem 1 remains valid for $\psi(x,\lambda)$ as well. Further, there exists a kernel K(x,t) such that (see [3])

$$\psi\left(x,\lambda\right) = \psi_{0}\left(x,\lambda\right) + \int_{x}^{2a-x} K\left(x,t\right) \psi_{0}\left(t,\lambda\right) dt.$$

We proved that the solutions of the equations $y'' + (x + \lambda)y = 0$ are

$$\theta_1(x,\lambda) = \sqrt{(x+\lambda)} J_{\frac{1}{3}} \left\{ \frac{2}{3} (x+\lambda)^{\frac{3}{2}} \right\},$$
 (17)

[A.R.Ahmedova

$$\theta_2(x,\lambda) = \sqrt{(x+\lambda)}Y_{\frac{1}{3}} \left\{ \frac{2}{3} (x+\lambda)^{\frac{3}{2}} \right\}.$$
 (18)

Calculate their wronskain introducing the denotation

$$X = \frac{2}{3} (x + \lambda)^{\frac{3}{2}}, \quad T = \frac{2}{3} (t + \lambda)^{\frac{3}{2}}$$

$$W \left[\theta_{1}(x, \lambda); \theta_{2}(x, \lambda)\right] = \theta_{1}(x, \lambda) \theta'_{2}(x, \lambda) - \theta'_{1}(x, \lambda) \theta_{2}(x, \lambda) =$$

$$= \left\{ (x + \lambda)^{\frac{1}{2}} J_{\frac{1}{3}}(X_{1}) (x + \lambda)^{\frac{1}{2}} Y'_{\frac{1}{3}}(X_{1}) - \left((x + \lambda)^{\frac{1}{2}} J'_{\frac{1}{3}}(X_{1}) \right) \cdot \left((x + \lambda)^{\frac{1}{2}} Y_{\frac{1}{3}}(X_{1}) \right) \right\} =$$

$$= \left\{ (x + \lambda)^{\frac{1}{2}} J_{\frac{1}{3}}(X_{1}) \left[\frac{1}{2} (x + \lambda)^{-\frac{1}{2}} Y_{\frac{1}{3}}(X_{1}) + (x + \lambda)^{\frac{1}{2}} Y_{\frac{1}{3}}(X_{1}) \cdot X'_{1} \right] \right\} =$$

$$= \left[\frac{1}{2} (x + \lambda)^{-\frac{1}{2}} J_{\frac{1}{3}}(X_{1}) + (x + \lambda)^{\frac{1}{2}} J_{\frac{1}{3}}(X_{1}) \cdot X'_{1} \right] \frac{1}{2} (x + \lambda)^{\frac{1}{2}} Y_{\frac{1}{3}}(X_{1}) =$$

$$= \left\{ (x + \lambda) X'_{1} \left[J_{\frac{1}{3}}(X_{1}) \cdot Y_{\frac{1}{3}}(X_{1}) - J'_{\frac{1}{3}}(X_{1}) \cdot Y_{\frac{1}{3}}(X_{1}) \right] \right\} =$$

$$= (x + \lambda)^{\frac{1}{2}} X'_{1}(x) W \left[J_{\frac{1}{3}}(X_{1}) ; Y_{\frac{1}{3}}(X_{1}) \right]_{x=0} = \left\{ (x + \lambda) \frac{2}{3} \cdot \frac{3}{2} (x + \lambda)^{\frac{3}{2} - 1} \right\} \times$$

$$\times W \left[J_{\frac{1}{3}}(X_{1}) ; Y_{\frac{1}{3}}(X_{1}) \right]_{x=0} = \left\{ (x + \lambda)^{\frac{3}{2}} \cdot \frac{2}{3} - \frac{3}{4\pi} \right\}_{x=0} = \frac{3}{4\pi}$$

Consequently,

$$W\left[\theta_1; \theta_2\right] = \frac{3}{4\pi}.\tag{19}$$

Here we take into account that $W[J_{\nu}(z); Y_{\nu}(z)] = \frac{2}{\pi z}$.

By $\varphi_0(x,\lambda)$, $\theta_0(x,\lambda)$ we denote the solutions of equation (1) (p(x) = 0, x > a) with initial conditions

$$\varphi_0'(0,\lambda) = 0, \quad \varphi_0'(0,\lambda) = 1,$$
 (20)

$$\theta_0(0,\lambda) = 1, \quad \theta_0'(0,\lambda) = 0.$$
 (21)

Obviously,

$$\varphi_0(x,\lambda) = a(\lambda)\,\theta_1(x,\lambda) + b(\lambda)\,\theta_2(x,\lambda)\,. \tag{22}$$

Taking into account (20), we have

$$\varphi_0'(0,\lambda) = a(\lambda)\theta_0'(0,\lambda) + b(\lambda)\theta_2'(0,\lambda) = 1,$$

$$\varphi_0(0,\lambda) = a(\lambda)\theta_1(0,\lambda) + b(\lambda)\theta_2(0,\lambda) = 0.$$

Hence

$$a\left(\lambda\right) = \frac{\left|\begin{array}{cc} 0 & \theta_{2}\left(0,\lambda\right) \\ 1 & \theta_{2}'\left(0,\lambda\right) \end{array}\right|}{W\left[\theta_{1},\theta_{2}\right]} = -\frac{4\pi}{3}\theta_{2}\left(0,\lambda\right),$$

$$b(\lambda) = \frac{\begin{vmatrix} \theta_1(0,\lambda) & 0 \\ \theta'_1(0,\lambda) & 1 \end{vmatrix}}{W(\lambda)} = \frac{4\pi}{3}\theta_1(0,\lambda).$$

Substituting these values in (22), we get

$$\varphi_0(x,\lambda) = \frac{4\pi}{3} \left[-\theta_1(x,\lambda)\theta_2(0,\lambda) + \theta_2(x,\lambda)\theta_1(0,\lambda) \right]. \tag{23}$$

Taking into attention formulae (17) and (18), we get

$$\varphi_{0}(x,\lambda) = \frac{4\pi}{3} \left[\sqrt{(x+\lambda)} Y_{\frac{1}{3}} \left(\frac{2}{3} (x+\lambda)^{\frac{3}{2}} \right) \cdot \sqrt{\lambda} J_{\frac{1}{3}} \left(\frac{2}{3} \lambda^{\frac{3}{2}} \right) - \right. \\
\left. - \sqrt{(x+\lambda)} J_{\frac{1}{3}} \left(\frac{2}{3} (x+\lambda)^{\frac{3}{2}} \right) \cdot \sqrt{\lambda} Y_{\frac{1}{3}} \left(\frac{2}{3} \lambda^{\frac{3}{2}} \right) \right] = \\
= \frac{4\pi}{3} \sqrt{\lambda (x+\lambda)} \left[Y_{\frac{1}{3}} \left(\frac{2}{3} (x+\lambda)^{\frac{3}{2}} \right) \cdot J_{\frac{1}{3}} \left(\frac{2}{3} \lambda^{\frac{3}{2}} \right) - \right. \\
\left. - Y_{\frac{1}{3}} \left(\frac{2}{3} (x+\lambda)^{\frac{3}{2}} \right) \cdot \sqrt{\lambda} Y_{\frac{1}{3}} \left(\frac{2}{3} \lambda^{\frac{3}{2}} \right) \right]. \tag{23'}$$

Introducing the denotation $Z = \frac{2}{3}\lambda^{\frac{3}{2}}$, we can write the last one in the form

$$\varphi_0(x,\lambda) = \frac{4\pi}{3} \sqrt{\lambda} \sqrt{(x+\lambda)} \left[Y_{\frac{1}{3}}(X) \cdot J_{\frac{1}{3}}(Z) - J_{\frac{1}{3}}(X) \cdot Y_{\frac{1}{3}}(z) \right]. \tag{23''}$$

We can calculate the asymptotics $\varphi_0(x,\lambda)$. To this end we use the asymptotics of the functions $\theta_1(x,\lambda)$, $\theta_2(x,\lambda)$.

$$\theta_{1}(x,\lambda) \sim_{(x+\lambda)^{\frac{1}{2}}} \sqrt{\frac{2}{\pi \cdot \frac{2}{3}(x+\lambda)^{\frac{3}{2}}} \cdot \cos\left\{\frac{2}{3}(x+\lambda)^{\frac{3}{2}} - \frac{\pi}{6} - \frac{\pi}{4}\right\}} =$$

$$= (x+\lambda)^{\frac{1}{2}} \sqrt{\frac{3}{\pi \cdot (x+\lambda)^{\frac{3}{2}}} \cdot \cos\left\{\frac{2}{3}(x+\lambda)^{\frac{3}{2}} - \frac{5\pi}{12}\right\}} =$$

$$= \sqrt{\frac{3}{\pi \cdot (x+\lambda)^{\frac{1}{2}}} \cdot \cos\left\{\frac{2}{3}(x+\lambda)^{\frac{3}{2}} - \frac{5\pi}{12}\right\}} \qquad (24)$$

$$\theta_{1}(0,\lambda) \sim \sqrt{\frac{3}{\pi \cdot \lambda^{\frac{1}{2}}} \cdot \cos\left\{\frac{2}{3}\lambda^{\frac{3}{2}} - \frac{5\pi}{12}\right\}} \qquad (25)$$

$$\theta_{2}(x,\lambda) \sim_{(x+\lambda)^{\frac{1}{2}}} \sqrt{\frac{2}{\pi \cdot \frac{2}{3}(x+\lambda)^{\frac{3}{2}}} \cdot \sin\left\{\frac{2}{3}(x+\lambda)^{\frac{3}{2}} - \frac{5\pi}{12}\right\}} =$$

$$= (x+\lambda)^{\frac{1}{2}} \sqrt{\frac{3}{\pi \cdot (x+\lambda)^{\frac{3}{2}}} \cdot \sin\left\{\frac{2}{3}(x+\lambda)^{\frac{3}{2}} - \frac{5\pi}{12}\right\}} =$$

$$= \sqrt{\frac{3}{\pi \cdot (x+\lambda)^{\frac{1}{2}}}} \cdot \sin\left\{\frac{2}{3}(x+\lambda)^{\frac{3}{2}} - \frac{5\pi}{12}\right\} =$$

$$= \sqrt{\frac{3}{\pi \cdot (x+\lambda)^{\frac{1}{2}}}} \cdot \sin\left\{\frac{2}{3}(x+\lambda)^{\frac{3}{2}} - \frac{5\pi}{12}\right\} =$$

$$= \sqrt{\frac{3}{\pi \cdot (x+\lambda)^{\frac{1}{2}}}} \cdot \sin\left\{\frac{2}{3}(x+\lambda)^{\frac{3}{2}} - \frac{5\pi}{12}\right\} \qquad (26)$$

[A.R.Ahmedova]

$$\theta_2(0,\lambda) \sim \sqrt{\frac{3}{\pi \cdot \lambda^{\frac{1}{2}}}} \cdot \sin\left\{\frac{2}{3}\lambda^{\frac{3}{2}} - \frac{5\pi}{12}\right\}$$
 (27)

Substituting (24)-(27) in (23), we get

$$\varphi_{0}(x,\lambda) = \frac{4\pi}{3} \left[-\sqrt{\frac{3}{\pi(x+\lambda)^{\frac{3}{2}}}} \cdot \cos\left\{\frac{2}{3}(x+\lambda)^{\frac{3}{2}} - \frac{5\pi}{12}\right\} \times \right]$$

$$\times \sqrt{\frac{3}{\pi \cdot \lambda^{\frac{1}{2}}}} \cdot \sin\left\{\frac{2}{3}\lambda^{\frac{3}{2}} - \frac{5\pi}{12}\right\} + \sqrt{\frac{3}{\pi \cdot (x+\lambda)^{\frac{3}{2}}}} \cdot \sin\left\{\frac{2}{3}(x+\lambda)^{\frac{3}{2}} - \frac{5\pi}{12}\right\} \times \left[-\frac{3}{\pi \cdot \lambda^{\frac{1}{2}}} \cdot \cos\left\{\frac{2}{3}\lambda^{\frac{3}{2}} - \frac{5\pi}{12}\right\} - \frac{3}{\pi \cdot (x+\lambda)^{\frac{1}{2}}\lambda^{\frac{3}{2}}} \cdot \sin\left\{\frac{2}{3}(x+\lambda)^{\frac{3}{2}} - \frac{5\pi}{12}\right\} - \frac{3}{\pi \cdot (x+\lambda)^{\frac{1}{2}}\lambda^{\frac{3}{2}}} \cdot \sin\left\{\frac{2}{3}(x+\lambda)^{\frac{3}{2}} - \frac{5\pi}{12}\right\} - \frac{3}{\pi \cdot (x+\lambda)^{\frac{3}{2}}} \cdot \cos\left\{\frac{2}{3}(x+\lambda)^{\frac{3}{2}} - \frac{5\pi}{12}\right\} = \frac{4\pi^{\frac{1}{2}}}{\sqrt{3}\sqrt{(x+\lambda)^{\frac{1}{2}}\lambda^{\frac{3}{2}}}} \left[\sin\left\{\frac{2}{3}(x+\lambda)^{\frac{3}{2}} - \frac{2}{3}\lambda^{\frac{3}{2}}\right\} \right],$$

i.e.

$$\varphi_0(x,\lambda) \sim \frac{4\pi^{\frac{1}{2}}}{\sqrt{3(x+\lambda)^{\frac{1}{2}}}} \sin\left\{\frac{2}{3}(x+\lambda)^{\frac{3}{2}} - \frac{2}{3}\lambda^{\frac{3}{2}}\right\}.$$
(28)

Similarly we find

$$\theta_{0}(x,\lambda) = \widetilde{a}(\lambda) \,\theta_{1}(x,\lambda) + \widetilde{b}(\lambda) \,\theta_{2}(x,\lambda) \,,$$

$$\theta_{0}(0,\lambda) = \widetilde{a}(\lambda) \,\theta'_{0}(0,\lambda) + \widetilde{b}(\lambda) \,\theta'_{2}(x,\lambda) = 1,$$

$$\theta'_{0}(0,\lambda) = \widetilde{a}(\lambda) \,\theta'_{1}(0,\lambda) + \widetilde{b}(\lambda) \,\theta'_{2}(x,\lambda) = 0,$$

$$\widetilde{a}(\lambda) = \frac{\begin{vmatrix} 1 & \theta_{2}(0,\lambda) \\ 0 & \theta'_{2}(0,\lambda) \end{vmatrix}}{W[\lambda]} = \frac{\pi}{2} \theta'_{2}(0,\lambda) \,, \qquad b(\lambda) = -\frac{\pi}{2} \theta'_{1}(0,\lambda) \,,$$

$$\theta_{0}(x,\lambda) = \frac{\pi}{2} \left[\theta'_{2}(0,\lambda) \,\theta_{1}(x,\lambda) - \theta'_{1}(0,\lambda) \,\theta_{2}(x,\lambda) \right]. \tag{29}$$

Calculate $\theta'_1(x,\lambda)$, $\theta_2(x,\lambda)$

$$\theta_{1}'(x,\lambda) = \left[\sqrt{x+\lambda}J_{\frac{1}{3}}\left\{\frac{2}{3}(x+\lambda)^{\frac{3}{2}}\right\}\right]' = \left(\sqrt{x+\lambda}\right)'J_{\frac{1}{3}}\left\{\frac{2}{3}(x+\lambda)^{\frac{3}{2}}\right\} + \sqrt{x+\lambda}J_{\frac{1}{3}}'\left\{\frac{2}{3}(x+\lambda)^{\frac{3}{2}}\right\} \cdot \left(\frac{3}{2}(x+\lambda)^{\frac{3}{2}}\right)' =$$

$$\begin{split} &=\frac{1}{2}\left(x+\lambda\right)^{\frac{1}{2}-1}J_{\frac{1}{3}}\left\{\frac{2}{3}\left(x+\lambda\right)^{\frac{3}{2}}\right\}+\sqrt{x+\lambda}J_{\frac{1}{3}}'\left\{\frac{2}{3}\left(x+\lambda\right)^{\frac{3}{2}}\right\}\frac{2}{3}\frac{3}{2}(x+\lambda)^{\frac{3}{2}-1}=\\ &=\frac{1}{2}\left(x+\lambda\right)^{-\frac{1}{2}}J_{\frac{1}{3}}\left\{\frac{2}{3}\left(x+\lambda\right)^{\frac{3}{2}}\right\}+\sqrt{x+\lambda}J_{\frac{1}{3}}'\left\{\frac{2}{3}\left(x+\lambda\right)^{\frac{3}{2}}\right\}\left(x+\lambda\right)^{\frac{1}{2}}=\\ &=\frac{1}{2}\left(x+\lambda\right)^{-\frac{1}{2}}J_{\frac{1}{3}}\left\{\frac{2}{3}\left(x+\lambda\right)^{\frac{3}{2}}\right\}+\left(x+\lambda\right)J_{\frac{1}{3}}'\left\{\frac{2}{3}\left(x+\lambda\right)^{\frac{3}{2}}\right\}. \end{split}$$

Thus,

$$\theta_1'(x,\lambda) = \frac{1}{2} (x+\lambda)^{-\frac{1}{2}} J_{\frac{1}{3}} \left\{ \frac{2}{3} (x+\lambda)^{\frac{3}{2}} \right\} + (x+\lambda) J_{\frac{1}{3}}' \left\{ \frac{2}{3} (x+\lambda)^{\frac{3}{2}} \right\}.$$
 (30)

Hence we have

$$\theta_{1}'\left(0,\lambda\right) = \frac{1}{2}\lambda^{-\frac{1}{2}}J_{\frac{1}{3}}\left\{\frac{2}{3}\lambda^{\frac{3}{2}}\right\} + \lambda J_{\frac{1}{3}}'\left\{\frac{2}{3}\lambda^{\frac{3}{2}}\right\}. \tag{31}$$

Similarly we get

$$\theta_2'(x,\lambda) = \frac{1}{2} (x+\lambda)^{-\frac{1}{2}} Y_{\frac{1}{3}} \left\{ \frac{2}{3} (x+\lambda)^{\frac{3}{2}} \right\} + (x+\lambda) Y_{\frac{1}{3}}' \left\{ \frac{2}{3} (x+\lambda)^{\frac{3}{2}} \right\}, \tag{32}$$

$$\theta_2'(0,\lambda) = \frac{1}{2}\lambda^{-\frac{1}{2}}Y_{\frac{1}{3}}\left\{\frac{2}{3}\lambda^{\frac{3}{2}}\right\} + \lambda Y_{\frac{1}{3}}'\left\{\frac{2}{3}\lambda^{\frac{3}{2}}\right\}. \tag{33}$$

Substituting (30)-(33) in formula (29), we get

$$\begin{split} \theta_0\left(x,\lambda\right) &= \frac{\pi}{2} \left[\sqrt{x + \lambda} J_{\frac{1}{3}} \left\{ \frac{2}{3} \left(x + \lambda\right)^{\frac{3}{2}} \right\} \left[\frac{1}{2} \lambda^{-\frac{1}{2}} Y_{\frac{1}{3}} \left\{ \frac{2}{3} \lambda^{\frac{3}{2}} \right\} + \lambda Y_{\frac{1}{3}}' \left\{ \frac{2}{3} \lambda^{\frac{3}{2}} \right\} \right] - \\ &- \sqrt{x + \lambda} Y_{\frac{1}{3}} \left\{ \frac{2}{3} \left(x + \lambda\right)^{\frac{3}{2}} \right\} \left[\frac{1}{2} \lambda^{-\frac{1}{2}} J_{\frac{1}{3}} \left\{ \frac{2}{3} \lambda^{\frac{3}{2}} \right\} + \lambda J_{\frac{1}{3}}' \left\{ \frac{2}{3} \lambda^{\frac{3}{2}} \right\} \right] \right] = \\ &= \frac{\pi}{2} \left[\frac{1}{2} \sqrt{x + \lambda} \cdot \lambda^{-\frac{1}{2}} J_{\frac{1}{3}} \left\{ \frac{2}{3} \left(x + \lambda\right)^{\frac{3}{2}} \right\} Y_{\frac{1}{3}}' \left\{ \frac{2}{3} \lambda^{\frac{3}{2}} \right\} + \\ &+ \lambda \sqrt{x + \lambda} J_{\frac{1}{3}} \left\{ \frac{2}{3} \left(x + \lambda\right)^{\frac{3}{2}} \right\} Y_{\frac{1}{3}}' \left\{ \frac{2}{3} \lambda^{\frac{3}{2}} \right\} - \\ &- \sqrt{x + \lambda} \cdot \lambda^{-\frac{1}{2}} Y_{\frac{1}{3}} \left\{ \frac{2}{3} \left(x + \lambda\right)^{\frac{3}{2}} \right\} J_{\frac{1}{3}}' \left\{ \frac{2}{3} \lambda^{\frac{3}{2}} \right\} - \\ &- \sqrt{x + \lambda} \cdot \lambda Y_{\frac{1}{3}} \left\{ \frac{2}{3} \left(x + \lambda\right)^{\frac{3}{2}} \right\} J_{\frac{1}{3}}' \left\{ \frac{2}{3} \lambda^{\frac{3}{2}} \right\} - \\ &- \frac{\pi}{2} \left\{ \frac{1}{2} \sqrt{x + \lambda} \left(J_{\frac{1}{3}} \left(\frac{2}{3} \left(x + \lambda\right)^{\frac{3}{2}} \right) Y_{\frac{1}{3}}' \left(\frac{2}{3} \lambda^{\frac{3}{2}} \right) - \\ &- Y_{\frac{1}{3}} \left\{ \frac{2}{3} \left(x + \lambda\right)^{\frac{3}{2}} \right\} J_{\frac{1}{3}}' \left\{ \frac{2}{3} \lambda^{\frac{3}{2}} \right\} \right] - \\ &- Y_{\frac{1}{3}} \left\{ \frac{2}{3} \left(x + \lambda\right)^{\frac{3}{2}} \right\} J_{\frac{1}{3}}' \left\{ \frac{2}{3} \lambda^{\frac{3}{2}} \right\} \right] \right\}. \end{split}$$

[A.R.Ahmedova]

Taking into account the denotation reduced above, we can rewrite:

$$\theta_{0}(x,\lambda) = \frac{\pi}{2} \left\{ \frac{\lambda}{2} \sqrt{x+\lambda} \left(J_{\frac{1}{3}}(X) \cdot Y_{\frac{1}{3}}'(Z) - Y_{\frac{1}{3}}(X) J_{\frac{1}{3}}(Z) \right) + \lambda \sqrt{x+\lambda} \left(J_{\frac{1}{3}}(X) \cdot Y_{\frac{1}{2}}'(Z) - Y_{\frac{1}{3}}(X) \cdot J_{\frac{1}{3}}(X) \right) \right\}.$$
(34)

Then, as is known [1], the derivative from the spectral function of the boundary value problem (1)-(2) $(p(x) \equiv 0 \text{ for } x \geq a)$ is determined as:

$$K_{0}(\lambda) = -\operatorname{Im}\left[\frac{\psi_{0}'(0,\lambda)}{\psi_{0}(0,\lambda)}\right] = \frac{1}{2i}\left[\frac{\psi_{0}'(0,\lambda)}{\psi_{0}(0,\lambda)} - \frac{\overline{\psi}_{0}'(0,\lambda)}{\overline{\psi}_{0}(0,\lambda)}\right] =$$
$$= -\frac{1}{2i}\frac{W\left[\psi_{0}(0,\lambda)\overline{\psi}_{0}(0,\lambda)\right]_{x=0}}{|\psi_{0}(0,\lambda)|^{2}}.$$

Taking into account [5]

$$H_{\nu}^{(1)}(z) = J_{\nu}(z) + iY_{\nu}(z), \quad H_{\nu}^{(2)}(z) = J_{\nu}(z) - iY_{\nu}(z),$$

and the fact that

$$W_0 \left[H_{\frac{1}{3}}^{(1)}(z), H_{\frac{1}{3}}^{(2)}(z) \right] = \frac{4i}{\pi z},$$

from the last formula we get

$$K_0(\lambda) = \frac{2}{\pi \lambda \left| H_{\frac{1}{3}}^{(1)} \frac{2}{3} \lambda^{\frac{3}{2}} \right|^2},\tag{35}$$

therefore, the expansion formula looks like

$$\int_{-\infty}^{+\infty} \varphi_0(x,\lambda) \varphi_0(t,\lambda) K_0(\lambda) d\lambda = \delta(x,t).$$

So, we proved the theorem.

Theorem 2. The derivative $K_0(\lambda)$ of the spectral function of the operator generated by boundary value problem (1)-(2) is determined by formula (35).

By remark (1), the solution $\psi(x,\lambda)$ belongs to the space $L_2[0,\infty)$ for Im > 0. Therefore, the Weyl function $m(\lambda)$ is of the form: $m(\lambda) = \frac{\psi'(0,\lambda)}{\psi(0,\lambda)}$. The derivative $K(\lambda)$ from the spectral function of the operator generated by problem (1)-(2) is determined as is known, in the following way

$$K(\lambda) = \operatorname{Im} m(\lambda + i0)$$

for real λ [1].

Therefore,

$$\begin{split} K\left(\lambda\right) &= -\frac{1}{2} \left[\frac{\psi'\left(0,\lambda\right)}{\psi\left(0,\lambda\right)} - \frac{\overline{\psi'\left(0,\lambda\right)}}{\overline{\psi\left(0,\lambda\right)}} \right] = -\frac{1}{2i} \frac{W\left[\psi\left(x,\lambda\right); \overline{\psi\left(x,\lambda\right)}\right]_{x=a}}{\psi\left(0,\lambda\right) \overline{\psi\left(0,\lambda\right)}} = \\ &= -\frac{1}{2i} \frac{W_0\left[\psi_0\left(x,\lambda\right); \overline{\psi_0\left(x,\lambda\right)}\right]_{x=0}}{\psi_0\left(0,\lambda\right) \overline{\psi_0\left(x,\lambda\right)} \eta_1\left(\lambda\right) \eta_2\left(\lambda\right)} = \frac{K_0\left(\lambda\right)}{\eta_1\left(\lambda\right) \eta_2\left(\lambda\right)}, \end{split}$$

where $W\left[\psi\left(x,\lambda\right);\overline{\psi\left(x,\lambda\right)}\right]$; $W_{0}\left[\psi_{0}\left(x,\lambda\right);\overline{\psi_{0}\left(x,\lambda\right)}\right]$ is a Wronskian of the solutions $\psi(x,\lambda), \overline{\psi}(x,\lambda), \psi_0(x,\lambda), \overline{\psi_0(x,\lambda)}, \text{ respectively.}$

Thus.

$$K(\lambda) = \frac{K_0(\lambda)}{\eta_1(\lambda)\eta_2(\lambda)},$$

$$K_0(\lambda) = -\frac{1}{2} \frac{W_0\left[\psi_0(x,\lambda); \overline{\psi_0(x,\lambda)}\right]_{x=0}}{\psi_0(0,\lambda)\overline{\psi_0(0,\lambda)}},$$

$$\eta_1(\lambda) = 1 + \int_0^{2a} K(0,t) F_0(t,\lambda) dt, \quad F_0(t,\lambda) = \frac{\psi_0(t,\lambda)}{\psi_0(0,\lambda)}$$

for real λ , $\eta_2(\lambda) = \eta_1(\lambda)$.

Theorem 3. If for $x \to a$, $p(x) \sim C_0(a-x)^l$, (A) where $l \ge 0^1$, then

$$K(0,s) = \frac{C_0}{2} \left(a - \frac{s}{2} \right)^{l+1} + O\left[\left(a - \frac{s}{2} \right)^{l+1} \right]$$
 (36)

for $S \rightarrow 2a$ [3].

Proof. It is known that K(x,t) for t>0, satisfies the integral equation of the form

$$K\left(x,t\right) = \frac{1}{2} \int_{\frac{x+t}{2}}^{\infty} p\left(s\right) ds + \frac{1}{2} \int_{x}^{a-\frac{t-x}{2}} \int_{t+x-\xi}^{t-x+\xi} p\left(\xi,\eta\right) K\left(\xi,\eta\right) d\xi d\eta +$$

$$+\frac{1}{2}\int_{a-\frac{t-x}{2}}^{\frac{x+t}{2}}\int_{t+x-\xi}^{2a-\xi}p(\xi,\eta)K(\xi,\eta)d\eta d\xi + \frac{1}{2}\int_{\frac{x+t}{2}}^{a}\int_{\xi}^{2a-\xi}p(\xi,\eta)K(\xi,\eta)d\eta d\xi,$$
(37)

where $p(\xi, \eta) = -\xi + \eta + p(\xi)$, It is seen from (37) that as $t \to 2a$, K(0, t) tends to zero more rapidly than $\int_{\underline{t}}^{u} p(s) ds$.

Now, assume

$$K\left(0,t\right) \sim A\left(a - \frac{t}{2}\right)\left(1 + o\left(a - \frac{t}{2}\right)\right) +$$

¹In sequel, everywhere we'll assume that condition A is fulfilled.

$$+ \frac{1}{2} \left(a - \frac{t}{2} \right)^{2} p(0,t) K(0,t) \left(1 + o \left(a - \frac{t}{2} \right) \right) +$$

$$+ \frac{1}{2} \int_{a - \frac{t}{2}}^{\frac{t}{2}} (2a - t) p(\xi, 2a - \xi + \triangle) K(\xi, 2a - \xi + \triangle) d\xi,$$
(38)

where $|\Delta| \le a - \frac{t}{2}$. For K(x,t) [4] the following estimates of the form

$$|K(x,t)| \le \frac{1}{4}\sigma\left(\frac{x+t}{2}\right)\sum_{n=0}^{\infty} \frac{C^n (a-x)^{2n}}{(2n-1)!},$$

are known, where $C = \max |p(\xi, \eta)|$, max is taken from the domain of definition $K\left(x,t\right) ,\ b\left(x\right) \ =\ \int\limits_{-\infty }^{\infty }\left| p\left(s\right) \right| ds.$ It is seen from this estimate that $\left| K\left(\xi ,2a-\xi \right) \right| \ \le \ t$ $(\triangle) C(a-\xi)$ i.e. $K(\xi, 2a-\xi+\triangle)$ tends to zero as $t\to 2a$ more rapidly than $\left(a-\frac{t}{2}\right)^{l+1}$. Dividing the both hand sides of equality (38) by $\frac{C_0}{2(l+1)}\left(a-\frac{t}{2}\right)$ and passing to limit as $t \to 2a$, we get

$$\lim_{t \to 2a} K(0,t) \frac{2(l+1)}{C_0 \left(a - \frac{t}{2}\right)^{(l+1)}} = 1,$$

i.e. $K(0,t) \sim \frac{C_0}{2(l+1)} \left(a - \frac{t}{2}\right)^{(l+1)}$.

Consider the solution $\varphi_0(x,\lambda)$ of the equation $y'' + (x + \lambda)y = 0$ satisfying the conditions

$$\varphi_0(0,\lambda) = 0, \quad \varphi_0'(0,\lambda) = 1.$$
 (39)

Noticing that for real λ , the $\overline{\psi}_0(x,\lambda)$ is a linear independent solution with $\psi_0(x,\lambda)$, we have

$$\varphi_0(x,\lambda) = a(\lambda) \psi_0(x,\lambda) + b(\lambda) \overline{\psi}_0(x,\lambda),$$

where $a(\lambda)$, $b(\lambda)$ are the unknown constants.

Taking into account condition (), by the method of variation of constants we get

$$\varphi_0(x,\lambda) = -\frac{1}{W_0(\lambda)} \left[\psi_0(x,\lambda) \,\overline{\psi}_0(0,\lambda) - \psi_0(0,\lambda) \,\overline{\psi}_0(x,\lambda) \right],\tag{40}$$

where

$$W_0(\lambda) = \psi_0(0,\lambda) \overline{\psi}'_0(0,\lambda) - \psi'_0(0,\lambda) \overline{\psi}_0(0,\lambda).$$

Let $\varphi(x,\lambda)$ be a solution of the equation

$$y'' + [x + p(x)]y = \lambda y$$

 $(p(x) \equiv 0, \text{ for } x \geq a) \text{ with conditions (39)}.$

Noticing that for real λ the $\overline{\psi}(x,\lambda)$, is a linear independent solution with $\psi(x,\lambda)$, we have $\varphi(x,\lambda) = a(\lambda) \psi(x,\lambda) + b(\lambda) \overline{\psi}(x,\lambda)$, where $a(\lambda), b(\lambda)$ are the unknown constants.

From condition (40) we have:

$$a(\lambda) \psi(0,\lambda) + b(\lambda) \overline{\psi}(0,\lambda) = 0, \quad a(\lambda) \psi'(0,\lambda) + b(\lambda) \overline{\psi}'(0,\lambda) = 1,$$

$$a(\lambda) = \frac{\psi(0,\lambda)}{W \left[\psi(x,\lambda), \overline{\psi}(x,\lambda)\right]_{x=0}} = \frac{\overline{\psi}(0,\lambda)}{W \left[\psi(x,\lambda), \overline{\psi}(x,\lambda)\right]_{x=a}} =$$

$$= \frac{\overline{\psi}(0,\lambda)}{W_0 \left[\psi_0(x,\lambda), \overline{\psi}_0(x,\lambda)\right]_{x=0}}, \quad b(\lambda) = \frac{\psi(0,\lambda)}{W_0(\lambda)},$$

where

$$W\left[\psi\left(x,\lambda\right),\overline{\psi}\left(x,\lambda\right]=\psi\left(x,\lambda\right),\overline{\psi}'\left(x,\lambda\right)-\psi'\left(x,\lambda\right),\overline{\psi}\left(x,\lambda\right).$$

Then.

$$\varphi(x,\lambda) = -\frac{1}{W_0(\lambda)} \left[\psi(x,\lambda), \overline{\psi}(x,\lambda) - \psi(0,\lambda) \overline{\psi}(x,\lambda) \right]. \tag{41}$$

From the last one we have

$$U(x,\lambda) = -\frac{1}{\eta_1(\lambda)W_0(\lambda)} \left[\psi(x,\lambda)\overline{\psi}(0,\lambda) - \overline{\psi}(x,\lambda)\psi(0,\lambda) \right] =$$

$$= -\frac{1}{W_0(\lambda)} \left[\psi(x,\lambda)\overline{\psi}_0(0,\lambda)S(\lambda) - \overline{\psi}(x,\lambda)\psi_0(0,\lambda) \right], \tag{42}$$

Taking into account that $\varphi(0,\lambda) = \psi_0(0,\lambda) \eta_1(\lambda)$, where

$$U\left(x,\lambda\right) = \frac{\varphi\left(x,\lambda\right)}{\eta_{1}\left(\lambda\right)}, \quad S\left(\lambda\right) = \frac{\eta_{2}\left(\lambda\right)}{\eta_{1}\left(\lambda\right)} = \frac{\overline{\eta_{1}\left(\lambda\right)}}{\eta_{1}\left(\lambda\right)}.$$

 $S(\lambda)$ is called the S - function of problem (1)-(2) (the sceattering function) It is abvious from (42) that the asymptotics of the normed eigen functions of boundary value problem (1)-(2) is determined by the function $S(\lambda)$ as $x \to \infty$.

Notice that the S-function will play an important part in deriving the basic integral equation.

References

- [1]. Titchmarch E. Ch. Expansion in eigen functions related with differential equations of second order. 1960, vol. I, 277 p. (Russian).
- [2]. Kamke E. Reference book on ordinary differential equations, M. 1965, 703 p. (Russian).
- [3]. Agranovich V.S., Marchenko V.A. Inverse problem of scattering theory. Izvestia Kh. SH, Kharkov. 1960. 226 p. (Russian).

- [4]. Mustafayev B.A. Inverse problem of scattering theory for finitely perturbed anharmonic equation on a semi-axis. // DAN AZ SSR, vol. XII, No 9, pp. 3-6 (Russian).
 - [5]. Kuznetsov. Special functions. M. 1965, 424 p.

Aynur R. Ahmedova

Ganja State University

187, Sh. I. Khatai str., AZ 2000, Ganja, Azerbaijan.

Tel: (99412) 439 47 20 (off.).

Received December 07, 2009; Revised March 03, 2010.