Miqdad I. ISMAILOV, Afat N. JABRAYILOVA

*b***-BASES IN BANACH SPACES**

Abstract

The notion of b−basis generalizing the known classic notion of basis on Banach spaces is introduced in the paper. The criteria for b-basis are obtained.

As is known, in the paper [1], the criteria of basis in Hilbert space is given by means of the space of sequences of its coefficients. Generalization of these results to Banach space is given in [3], where the notion of the *K*-basis is introduced. In the present paper all these results are generalized for bilinear mappings.

1. Some auxiliary definition and statements. Give some notion and statements from [3-5].

Let X, Y, Y_1, Z and Z_1 be *B*−spaces. Consider the bilinear mappings $b(x, y)$: $X \times Y \to Z$ and $b_1(x, y) : X \times Y_1 \to Z_1$ such that

$$
\exists m, M > 0 : m \|x\|_X \|y\|_Y \le \|b(x, y)\|_Z \le M \|x\|_X \|y\|_Y,
$$

 $\exists m_1, M_1 > 0 : m_1 ||x||_X ||y||_{Y_1} \le ||b_1(x, y)||_{Z_1} \le M_1 ||x||_X ||y||_{Y_1}.$

For convenience, in the sequel we assume $b(x, y) \equiv xy \,\forall x \in X, y \in Y, b_1(x, \varphi) \equiv$ $x * \varphi \ \forall x \in X, \ \varphi \in Y_1.$

The aggregate $L_b(M)$ of all possible finite sums $\sum x_i m_i$, where $x_i \in X$, $m_i \in M$ is called a *b*-linear span of the set $M \subset Y$.

The system $\{y_n\}_{n\in\mathbb{N}}\subset Y$ is said to be *b*-complete if the closure $L_b(\{y_n\}_{n\in\mathbb{N}})$ coincides with space *Z*.

The systems $\{y_n\}_{n \in N} \subset Y$ and $\{y_n^*\}_{n \in N} \subset L(Z, X)$ are called *b*-biorthogonal if

$$
\forall k, n \in N, \quad x \in X \quad y_n^*(xy_k) = \delta_{nk}x,
$$

where δ_{nk} is Kreneker's symbol, and the system $\{y_n^*\}_{n\in N}$ will be called a *b*-biorthogonal system to the system $\{y_n\}_{n \in N}$.

The system $\{y_n\}_{n\in\mathbb{N}}\subset Y$ is called *b*-basis in *Z* if

$$
\forall z \in Z \; \exists! \left\{ x_n \right\}_{n \in N} \subset X : z = \sum_{n=1}^{\infty} x_n y_n,
$$

and the space of sequences ${x_n}_{n \in N}$ is said to be a space of coefficients in *b*-basis $\{y_n\}_{n\in\mathbb{N}}$.

Let \widetilde{X} be some *B*−space of sequences $\widetilde{x} = \{x_n\}_{n \in N}$, $x_n \in X$ with coordinatewise linear operations.

[M.I.Ismailov,A.N.Jabrayilova]

If $\widetilde{E}_n = \{\widetilde{x} = \{\delta_{in}x\}_{i \in N}, x \in X\}$ form a basis in \widetilde{X} and the convergence in \widetilde{X} yields its coordinatewise convergences, then the *B*-space \widetilde{X} is called a coordinate *B*−space (briefly *CB*−space). Obviously, $\forall \tilde{x} \in \tilde{X}, \tilde{x} = \{x_n\}_{n \in N}$,

$$
\left\|\widetilde{x} - \sum_{k=1}^n \left\{\delta_{ik} x_k\right\}_{i \in N} \right\|_{\widetilde{X}} \to 0, \quad n \to \infty.
$$

For $\forall n \in N$ consider the operator $e_n : \tilde{X} \to \tilde{X}$ determined by the expression $e_n(\tilde{x}) = {\delta_{in}x_n}_{i \in N}, \ \tilde{x} = {x_n}_{n \in N}$. From the basicity of \tilde{E}_n in $\tilde{X}, \ \forall \tilde{x} \in \tilde{X}$, $\widetilde{x} = {x_n}_{n \in N}$, we get $\widetilde{x} =$ ∑*[∞]* $\sum_{n=1}^{n} e_n(\tilde{x})$. The system $\{e_n\}_{n \in N}$ is called a canonical basis of the *CB*-space \widetilde{X} .

Let $\{y_n\}_{n\in\mathbb{N}}\subset Y$ and $\{y_n^*\}_{n\in\mathbb{N}}\subset L(Z,X)$ be *b*-orthogonal systems.

The pair $\{y_n, y_n^*\}_{n\in\mathbb{N}}$ is said to be $b_{\tilde{X}}$ -Bessel in Z if $\forall z \in Z \quad \{y_n^*(z)\}_{n\in\mathbb{N}} \in X$. When the system $\{y_n\}_{n\in\mathbb{N}}$ is *b*-complete, the system $\{y_n\}_{n\in\mathbb{N}}\subset Y$ is simply called $b_{\tilde{X}}$ -Bessel in *Z*.

The pair $\{y_n; y_n^*\}_{n\in\mathbb{N}}$ is called $b_{\widetilde{X}}$ -Hilbert in Z if $\forall \widetilde{x} \in X \quad \exists z \in Z : \{y_n^*(z)\}_{n\in\mathbb{N}} =$ \widetilde{x} . When the system $\{y_n\}_{n\in N}$ is *b*-complete, the system $\{y_n\}_{n\in N} \subset Y$ is simply called $b_{\tilde{X}}$ -Hilbert in *Z*.

Cite the criteria of $b_{\tilde{\chi}}$ -Bessel property and $b_{\tilde{\chi}}$ -Hilbert property from the paper [4,5]. The following statements are true.

Statement 1. *Let* X, Y *and* Z *be* B *−spaces,* \widetilde{X} *be a* CB *-space of sequences* $\widetilde{x} = \{x_n\}_{n \in N}, x_n \in X$, with canonic basis $\{e_n\}_{n \in N}, \{y_n\}_{n \in N} \subset Y$ have the bbiorthogonal system $\{y_n^*\}_{n\in N}$. Then, for the pair $\{y_n; y_n^*\}_{n\in N}$ to be $b_{\tilde{X}}$ -Bassel in Z, *it is necessary, in the case of <i>b-completeness of the system* $\{y_n\}_{n\in N}$ *, is sufficient* the existence of the operator $T \in L\left(Z, \widetilde{X} \right)$: $T(xy_n) = {\delta_{in}}x}_{i \in N}$, $\forall x \in X, n \in N$.

By dire application of statement 1, we get that $\{y_n\}_{n\in\mathbb{N}}$ is $b_{\tilde{X}}$ -Bessel in *Z* iff for any finite sequence $\{x_n\}$ from \widetilde{X} : $\|\{x_n\}\|_{\widetilde{X}} \le c_1 \left\|\sum x_n y_n\right\|_{Z}^{\widetilde{X}}$, where c_1 is a constant.

Statement 2. *Let* X, Y *and* Z *be* B *−spaces,* \widetilde{X} *be a* CB *-space of sequences* $\tilde{x} = {x_n}_{n \in N}, x_n \in X$, with canonic basis ${e_n}_{n \in N}, {y_n}_{n \in N} \subset Y$ and have the b-biorthogonal system $\{y_n^*\}_{n\in N}$. For the pair $\{y_n; y_n^*\}_{n\in N}$ to be $b_{\tilde{X}}$ -Hilbert in Z, *it is sufficient, in the case of completeness of the system* $\{y_n^*\}_{n\in\mathbb{N}}$ *in* $L(Z, X)$ *is necessary* $\exists S \in L\left(\tilde{X}, Z\right) : S\left(\{\delta_{in}x\}_{i \in N}\right) = xy_n \ \forall x \in X, \ n \in N.$

From statement 2 it follows that the system ${y_n}_{n\in N}$ is $b_{\tilde{X}}$ -Hilbert in *Z* iff for any finite sequence $\{x_n\}$ from \widetilde{X} : $\left\|\sum x_n y_n\right\|_Z \leq c_2 \left\|\{x_n\}\right\|_{\widetilde{X}}$, where c_2 is a constant.

In the case when \widetilde{X} is a space of coefficients in some *b*-basis, the following statements are true.

Statement 3. *Let* X, Y, Y_1, Z *and* Z_1 *be B-spaces,* $\{y_n\}_{n \in N} \subset Y$ *have the* b-biorthogonal system $\{y_n^*\}_{n\in N}$, $\Phi = \{\varphi_n\}_{n\in N} \subset Y_1$ be some b₁-basis in Z_1 with a

54

Proceedings of IMM of NAS of Azerbaijan

space of coefficients X_{Φ} *. Then, for the pair* $\{y_n; y_n^*\}_{n \in N}$ *to be* $b_{\widetilde{X}_{\Phi}}$ *-Bassel in Z it is necessary, and in the case b-completeness of the system* $\{y_n\}_{n\in\mathbb{N}}$ *it is sufficient the existence of the operator* $T \in L(Z, Z_1)$: $T(xy_n) = x * \varphi_n \ \forall x \in X, \ n \in N$.

Statement 4. *Let* X, Y, Y_1, Z *and* Z_1 *, be B-spaces,* $\Phi = {\varphi_n}_{n \in N} \subset Y_1$ *form a* b_1 *-basis in* Z_1 *with a space of coefficients* \widetilde{X}_{Φ} *,* $\{y_n\}_{n\in\mathbb{N}}\subset Y$ *have the b-biorthogonal* system $\{y_n^*\}_{n\in\mathbb{N}}$. Then for the pair $\{y_n^*,y_n^*\}_{n\in\mathbb{N}}$ to be $b_{\widetilde{X}_{\Phi}}$ -Hilbert in Z it is suf*ficient and in the case of completeness* $\{y_n^*\}_{n \in N}$ *in* $L(Z, X)$ *of* $\exists T \in L(Z_1, Z)$: $T(x * \varphi_n) = xy_n$ $x \in X$, $n \in N$ *it is necessary.*

2. The notion of *b***-basis.**

b-basis in $\{y_n\}_{n\in\mathbb{N}}\subset Y$ in *Z* is called $b_{\tilde{X}}$ -basis in *Z* if its corresponding space of coefficients is \overline{X} .

Theorem 1. Let X, Y and Z be B *-spaces,* \widetilde{X} be a CB*-space of sequences* $\tilde{x} = \{x_n\}_{n \in N}, x_n \in X$ with canonic basis $\{e_n\}_{n \in N}$, and $\{y_n\}_{n \in N}$ be b-complete *and have the b-biorthogonal system* $\{y_n^*\}_{n\in\mathbb{N}}$ *. Then, for the system* $\{y_n\}_{n\in\mathbb{N}}$ *to be simultaneously* $b_{\tilde{X}}$ *-Bessel and* $b_{\tilde{X}}$ *-Hilbert, it is sufficient and necessasy that* $\{y_n\}_{n\in\mathbb{N}}$ *to be* $b_{\tilde{X}}$ *-basis in Z*.

Proof. Necessity. Let the system $\{y_n\}_{n\in\mathbb{N}}$ simultaneously be $b_{\tilde{\chi}}$ -Bessel and $b\tilde{\chi}$ -Hilbert. Then from statements 1 and 2 it follows that there exist the operators $T \in L\left(Z, \widetilde{X}\right)$ and $S \in L\left(\widetilde{X}, Z\right)$: $T(xy_n) = {\delta_{in}x}_{i \in N}, S{\delta_{in}x}_{i \in N} = xy_n \,\forall x \in$ *X*, $n \in N$. Obviously, that $(ST)(xy_n) = xy_n$. Hence, since $\{y_n\}_{n \in N}$ is *b*-complete, then $\forall z \in Z$ (ST) $z = z$. Take $\forall z \in Z$. Let $T(z) = \tilde{x}, \tilde{x} = \{x_n\}_{n \in N}$. Since *z* = ∑*[∞]* $\sum_{n=1}^{\infty} e_n(\tilde{x})$, then $S(\tilde{x}) = \sum_{n=1}^{\infty} S(e_n(\tilde{x})) = \sum_{n=1}^{\infty} x_n y_n$. Since $\tilde{x} =$ ∑*[∞]* $\sum_{n=1}^{\infty} e_n(\widetilde{x})$, then $S(\widetilde{x}) = \sum_{n=1}^{\infty} S(e(\widetilde{x})) = \sum_{n=1}^{\infty}$ $x_n y_n$ *.* So, $z = \sum_{n=1}^{\infty}$ *n*=1 *xnyn.* The uniqueness of the representation *z* follows from the fact that $\{y_n\}_{n\in N}$ has the *b*-biorthogonal system $\{y_n^*\}_{n\in N}$. Thus, $\{y_n\}_{n\in\mathbb{N}}$ forms a $b_{\tilde{X}}$ -basis in *Z* with space of coefficients *X*.

Sufficiency. Let $\{y_n\}_{n\in\mathbb{N}}$ form a $b_{\tilde{X}}$ -basis in *Z* with space of coefficients \tilde{X} . Consider the operator $T : Z \to \tilde{X}$ determined according to the expression $T(z) = \tilde{x}$, $\widetilde{x} = \{x_n\}_{n \in N}$, where $z =$ $\sum_{n=1}^{\infty} x_n y_n$. It is clear that the operator *T* is well-defined, *n*=1 linear and $T(xy_n) = {\delta_{in}x}_{i \in N}$. Let $z^{(m)} \to z$ as $m \to \infty$, $T(z^{(m)}) = \tilde{x}^{(m)}$, $\tilde{x}^{(m)} =$ $\left\{ x_n^{(m)} \right\}$ *n∈N ,* $T(z^{(m)}) \to \tilde{w}$ as $m \to \infty, \tilde{w} = \{w_n\}_{n \in \mathbb{N}}$. Show that $T(z) = \tilde{w}$. Since $z^{(m)} \to z, m \to \infty$, then $x_n^{(m)} \to x_n$ as $m \to \infty$. On the other hand, from $\tilde{x}^{(m)} \to \tilde{w}$ as $m \to \infty$ it follows that $x_n^{(m)} \to w_n$. So, $\tilde{w} = \tilde{x}$, i.e. $T(z^{(m)}) \to T(z)$ as $m \to \infty$. Applying the theorem on a closed graph, we get the boundedness of the operator *T*. By statement 1, the system $\{y_n\}_{n\in N}$ is $b_{\tilde{X}}$ -Bessel. Linearity and boundedness of the operator $S : \widetilde{X} \to Z$ determined by the expression $S(\widetilde{x}) = z$, $\widetilde{x} = \{x_n\}_{n \in N}$,

[b-bases in Banach spaces]

[M.I.Ismailov,A.N.Jabrayilova]

where $z = \sum_{i=1}^{\infty}$ *n*=1 $x_n y_n$, is shown in the same way. By virtue of this we apply statement 4 and get $b_{\tilde{X}}$ -Hillbert property of the system $\{y_n\}_{n\in N}$.

The theorem is proved.

Validity of the following statement follows from the proof of the theorem.

Corollory 1. Let X, Y and Z be B -spaces, \overline{X} be a CB -space of sequences $\tilde{x} = \{x_n\}_{n \in \mathbb{N}}$, $x_n \in X$ with canonical basis $\{e_n\}_{n \in \mathbb{N}}$, and $\{y_n\}_{n \in \mathbb{N}}$ be b-complete and have the *b*-biorthogonal system $\{y_n^*\}_{n \in N}$. Then, for the system $\{y_n\}_{n \in N}$ to be $b\tilde{\chi}$ -bases in *Z* it is necessary and sufficient the existence of the boundedly invertible operator $T \in L\left(Z, \widetilde{X} \right) : T(xy_n) = \{ \delta_{in} x \}_{i \in N} \ \forall x \in X, \ n \in N.$

Corollary 2. Let *X,Y* and *Z* be *B*-spaces, \widetilde{X} be a *CB*-space of sequences $\tilde{x} = \{x_n\}_{n \in \mathbb{N}}$, $x_n \in X$ with canoncal basis $\{e_n\}_{n \in \mathbb{N}}$, and $\{y_n\}_{n \in \mathbb{N}} \subset Y$ be bcomplete and have the *b*-biorthogonal system $\{y_n^*\}_{n \in N}$. Then for the system $\{y_n\}_{n \in N}$ to be a $b_{\tilde{Y}}$ -basis in *Z* it is necessary and sufficient that for any finite sequence $\{x_n\}$ from X :

$$
a_1 \| \{x_n\} \|_{\tilde{X}} \leq \left\| \sum x_n y_n \right\|_{Z} \leq a_2 \| \{x_n\} \|_{\tilde{X}}
$$

where a_1 and a_2 are some constants.

Proof. The proof of the theorem directly follows from the theorem proved above with using statements 1 and 2.

Let $X_p =$ $\sqrt{ }$ $\widetilde{x} = \{x_n\}_{n \in N}, \ x_n \in X:$ ∑*[∞] n*=1 $||x_n||^p < +\infty$ λ *.* Having determined coordinatewisely the linear operations in \widetilde{X}_p , it is easy to show that $\left\| {\{x_n\}}_{n\in N} \right\|_{\widetilde{X}_p} =$ (∑*[∞] n*=1 $||x_n||^p$ ^{1/p} satisfies the axioms of the norm according to which X_p is a *B*-space.

In the special case, if in place of the space \widetilde{X} we take the space \widetilde{X}_p , then from Corollary 1 we get validity of the following statement.

Corollary 3. Let *X,Y* and *Z* be *B*-spaces, be $\{y_n\}_{n\in\mathbb{N}} \subset Y$ *b*-complete and have the *b*-biorthogonal system $\{y_n^*\}_{n \in N}$. Then, for the system $\{y_n\}_{n \in N}$ to be a $b_{\tilde{X}_p}$ -basis in *Z*, it is necessary and sufficient that for any finite sequence $\{x_n\}$ from X_p :

$$
a_1 \| \{x_n\} \|_{\widetilde{X}^p} \leq \left\| \sum x_n y_n \right\|_{Z} \leq a_2 \| \{x_n\} \|_{\widetilde{X}^p} ,
$$

where a_1 and a_2 are some constants.

Theorem 2. *Let* X, Y, Y_1, Z *and* Z_1 *be Banach spaces,* $\{y_n\}_{n\in N} \subset Y$ *have the* b-biorthogonal system $\{y_n^*\}_{n\in N}$, $\Phi=\{\varphi_n\}_{n\in N}\subset Y_1$ be some b_1 -basis in Z_1 with *space of coefficients* X_{Φ} *. Then, for the system* $\{y_n\}_{n\in N}$ *to be simultaneously* $b_{\tilde{X}_{\Phi}}$ *-Bessel and* $b_{\tilde{X}_{\Phi}}$ -Hilbert in *Z*, it is necessary and sufficients that the system $\{y_n\}_{n\in\mathbb{N}}$ *to be* $b_{\widetilde{X}_{\Phi}}$ -*basis in Z.*

Proof. Necessity. Let $\{y_n\}_{n\in\mathbb{N}}$ be simultaneously $b_{\tilde{X}_{\Phi}}$ -Bassel and $b_{\tilde{X}_{\Phi}}$ -Hilbert in *Z*. Then on the base of statements 3 and 4, there exist the operators $T \in L(Z, Z_1)$

56

and $S \in L(Z_1, Z)$ such that $T(xy_n) = x * \varphi_n$, $S(x * \varphi_n) = xy_n$, $\forall x \in X$, $n \in N$. Obviously, $\forall z \in Z$, take $ST(z) = z$. Take $\forall z \in Z$ and let $T(z) = z_1$ and $z_1 = z_2$ ∑*[∞] n*=1 $x_n * \varphi_n$. We have $z = S(z_1) = \sum_{n=1}^{\infty}$ *n*=1 $S(x_n * \varphi_n) = \sum_{n=0}^{\infty}$ *n*=1 $x_n y_n$ *.* So, $z = \sum_{n=1}^{\infty}$ *n*=1 *xnyn*. The uniqueness of the representation follows from the existence of the *b*-biorthofonal system $\{y_n^*\}_{n \in N}$. So, $\{y_n\}_{n \in N}$ is a $b_{\tilde{X}_\Phi}$ -basis in *Z*.

Sufficiency. Let $\{y_n\}_{n\in\mathbb{N}}$ be a $b_{\widetilde{X}_{\Phi}}$ -basis in *Z* with space of coefficients X_{Φ} . Show that $\{y_n\}_{n\in\mathbb{N}}$ is similtaneously $b_{\widetilde{X}_{\Phi}}$ -Bessel and $b_{\widetilde{X}_{\Phi}}$ -Hilbert in *Z*. Consider the operators $T: Z \to Z_1$ and $S: Z_1 \to Z$ determined by the expressions, $T(z) = z_1$, $z = S(z_1)$ respectively, where $z = \sum_{n=1}^{\infty}$ *n*=1 $x_n y_n, z_1 = \sum^\infty$ *n*=1 $x_n * \varphi_n$.

Linearity of the operators *T* and *S* is obvious. Boundedness of the operators *T* and *S* follows from the fact that if $z^{(m)} \to z$, $T(z^{(m)}) = z_1^{(m)} \to z_1$, then $T(z) = z_1$ and vice versa. On the other hand, it is clear that $T(xy_n) = x * \varphi_n$, $S(x * \varphi_n) = xy_n$. Applying statements 3 and 4, we get the proof of the theorem.

The theorem is proved.

Corollary 4. Let *X*, *Y*, *Y*₁, *Z* and *Z*₁ be Banach spaces, $\{y_n\}_{n\in\mathbb{N}}\subset Y$ have the *b*biorthogonal system $\{y_n^*\}_{n \in N}$, $\Phi = \{\varphi_n\}_{n \in N} \subset Y_1$ be some b_1 -basis in Z_1 with space of coefficients X_{Φ} . Then, for the system $\{y_n\}_{n\in N}$ to be a $b_{\tilde{X}_{\Phi}}$ -basis in Z if there exists a boundedly invertible operator $T \in L(Z_1, Z)$: $T(xy_n) = x * \varphi_n \ \forall x \in X, \ n \in N$.

Thus, from the proved theorems we get the following statement.

Corollary 5. Let \widetilde{X} be a *CB*-space of sequences $\widetilde{x} = \{x_n\}_{n \in N}$, $x_n \in X$ with canonical basis ${e_n}_{n \in N}$. Then all the $b_{\tilde{X}}$ bases in *Z* are isomorphic

The authors express their gratitute to the Doctor of the science, prof. B. T. Bilalov for the problem statement and discussion of the obtained results.

References

[1]. Bari N. K. *Biorthogonal systems and bases in Hilbert space.* Ucheniye zapiski MGU, 4:148, pp. 63-107 (Russian)

[2]. Singer I. *Bases in Banach spases I*, SVBH, new York, 1970, 672 p.

[3]. Bilalov B. T. , Guseynov Z. G. On N. K. *Bari results concerning Bessel, Hilbert systems and Riesz bases.* Differential Equations and related problems. Proceedings of the International Conference, Sterlitamak, 2008, vol II, pp. 31-35.

[4]. Ismailov M.I. *b-Hilbert system.* Proceedings of IMM of NAS of Azerb. 2010, vol. XXXII (XL), pp. 119-122.

[5]. Ismailov M.I. *On b−Bessel systems*, Proceedings of IMM of NAS of Azerb. 2010, v. XXXIII (XLI), pp. 89-94.

[b-bases in Banach spaces]

[M.I.Ismailov,A.N.Jabrayilova]

Miqdad I. Ismailov, Afat N. Jabrayilova

Institute of Mathematics and Mechanics of NAS of Azerbaijan 9, F.Agayev str., AZ 1141, Baku, Azerbaijan Tel.: (99412) 439 47 20 (off.)

Received: December 20, 2010, Revised: March 03, 2011.

58