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Sevindj F. BABAYEVA

ON SOLVABILITY OF A BOUNDARY VALUE

PROBLEM FOR A CLASS OF

OPERATOR-DIFFERENTIAL EQUATIONS OF

THIRD ORDER

Abstract

In the paper a boundary value problem for a class of operator-diffrential
equations of third order is considered. The equations and boundary conditions
are perturbed by some operators. Sufficient conditions on the coefficients of the
equation and the operator participating in the boundary conditions, and that
provide regular solvability of the problem under consideration are obtained.

Let H be a separable Hilbert space, A be a positive-definite self-adjoint oper-
ator in H, and Hγ = D(Aγ) be a Hilbert space with the scalar product (x, y)γ =
(Aγx,Aγy), γ ≥ 0, H0 = H. Denote by L2(R+; H) Hilbert space of vector-
functions with the values in H, measurable, quadratically integrable in the Bochner
sense with the norm

‖f‖L2(R+;H) =




+∞∫

0

‖f(t)‖2 dt




1/2

< ∞

Introduce the Hilbert space [1]

W 3
2 (R+; H) =

{
u : u′′′ ∈ L2(R+; H), A3u ∈ L2(R+;H)

}

with the norm

‖u‖W 3
2 (R+;H) =

(∥∥u′′′
∥∥2

L2(R+;H)
+

∥∥A3u
∥∥2

L2(R+;H)

)1/2
.

Let L(X; Y ) be the space of bounded operators acting from the space X to the
space Y . Assume that K ∈ L(W 3

2 (R+;H),H3/2) and define the subspace of the
space W 3

2 (R+; H)

W 3
2,K(R+;H) =

{
u : u ∈ W 3

2 (R+; H), u′(0) = 0, u′′(0) = Ku
}

.

Obviously W 3
2,K(R+; H) is a complete Hilebrt space. For R = (−∞,∞) the spaces

L2(R; H) and W 3
2 (R;H) are defined similarly.

Consider in space H the boundary value problem

P (d/dt)u(t) = u′′ −A3u +
3∑

j=0

A3−ju
(j) = f(t), t ∈ R+, (1)
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u′(0) = 0, u′′(0) = Ku, (2)

where f(t), u(t) are the vector-functions defined in R+, almost everywhere with the
values in H, and the operator coefficients of boundary value problem (1)-(2) satisfy
the conditions:

1) A is a positive-definite self-adjoint operator;
2) the operators Bj = AjA

−j (j = 0, 3) are the bounded operators in H;
3) K ∈ L(W 3

2 (R+;H),H1/2), moreover χ = ‖K‖W 3
2 (R+;H)→H1/2

.

Definition 1. If for f(t) ∈ L2(R+; H) there exists a vector-function u(t) ∈
W 3

2 (R+; H) that satisfies equation (1) almost everywhere in R+, then u(t) is called
a regular solution of equation (1).

Definition 2. If for any f(t) ∈ L2(R+; H) there exists a regular solution of
equation (1) that satisfies boundary conditions (2) in the sense of convergencce

lim
t→+0

∥∥u′(t)
∥∥

5/2
= 0, lim

t→+0

∥∥u′′(t)−Ku
∥∥

1/2
= 0,

and the following estimation

‖u‖W 3
2 (R+;H) ≤ const ‖f‖L2(R+;H) ,

we say that boundary value problem (1), (2) is regularly solvable.
In this paper we find the conditions on the coefficients of boundary value problem

(1)-(2) that provide regular solvability of problem (1)-(2). The similar problems were
studied in [2,3].

At first we investigate the regular solvability of the boundary value problem

P0(d/dt)u(t) = u′′′(t)−A3u(t) = f(t), t ∈ R+, (3)

u′(0) = 0, u′′(0) = Ku. (4)

It holds
Theorem 1. Let χ = ‖K‖W 3

2 (R+;H)→H1/2
. Then problem (3), (4) has a unique

regular solution.
Proof. Let u0(t) = eω1tAx1 + eω2tAx2 be a general solution of the equation

P0(d/dt)u(t) = 0 from the space W 3
2 (R+; H), where x1, x2 ∈ H5/2, ω1 =

= −1
2
(1+

√
3i), ω2 = −1

2
(1−√3i) and eω1tA, eω2tA are the semigroups of bounded

operators generated by the operators ω1A and ω2A, respectively. Then from condi-
tion 3) it follows that

ω1Ax1 + ω2Ax2 = 0,

ω2
1A

2x1 + ω2
2A

2x2 = K(eω1tAx1 + eω2tAx2).

Hence we have x2 = −ω1

ω2
x1 and

ω2
1x1 − ω2ω1x2 = A−2K

(
eω1Atx1 − ω1

ω2
eω2tAx1

)
.
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Hence we get

ω1(ω2 − ω1)x1 = −A−2K(eω1tAx1 − ω1

ω2
eω2tAx1),

i.e.
x1 = − 1

ω1

√
3
A−2K(eω1tAx1 − ω1

ω2
eω2tAx1).

Let
Qx =

1
ω1

√
3
A−2K(eω1tAx− ω1

ω2
eω2tAx), x ∈ H5/2. (5)

Then we have

‖Qx‖5/2 =
1√
3

∥∥∥∥A1/2K(eω1tAx− ω1

ω2
eω2tAx)

∥∥∥∥ =

=
1√
3

∥∥∥∥K(eω1tAx− ω1

ω2
eω2tAx)

∥∥∥∥
1/2

≤

≤ k√
3

∥∥∥∥eω1tAx− ω1

ω2
eω2tAx

∥∥∥∥
W 3

2 (R+;H)

. (6)

On the other hand, taking into account ω3
1 = ω3

2 = 1, we get:
∥∥∥∥eω1tAx− ω1

ω2
eω2tAx

∥∥∥∥
2

W 3
2 (R+;H)

=
∥∥∥∥ω3

1A
3eω1tAx− ω3

2

ω1

ω2
eω2tAx

∥∥∥∥
2

L2(R+;H)

+

+
∥∥∥∥A3eω1tAx−A3 ω1

ω2
eω2tAx

∥∥∥∥
2

L2(R+;H)

=

= 2
∥∥∥∥A3eω1tAx−A3 ω1

ω2
eω2tAx

∥∥∥∥
2

L2(R+;H)

. (7)

Assuming A5/2x = z, we have
∥∥∥∥A3eω1tAx−A3 ω1

ω2
eω2tAx

∥∥∥∥
2

L2(R+;H)

=

=
∥∥∥A1/2eω1tAz

∥∥∥
2

L2(R+;H)
+

∥∥∥A1/2eω2tAz
∥∥∥

2

L2(R+;H)
−

−2Re
(

A1/2eω1tAz,A1/2 ω1

ω2
eω2tAz

)

L2(R;H)

. (8)

Using the spectral expansion for operator A, we get

∥∥∥A1/2eω1tAz
∥∥∥

2

L2(R+;H)
=

∞∫

0




∞∫

µ0

µe2Re ω1tµ(dEµz, z)


 dt =

=

∞∫

µ0

(µ(dEµz, z))

∞∫

0

e−txdt =

∞∫

0

((dEµz, z)) =
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= ‖z‖2 =
∥∥∥A5/2x

∥∥∥
2

= ‖x‖2
5/2 . (9)

Similarly we have ∥∥∥A1/2eω2tAx
∥∥∥

2

L2(R+;H)
= ‖x‖2

5/2 . (10)

Using similar calculations, we get:

−2Re(A1/2eω1tAz,
ω1

ω2
A1/2eω2tAz)L2(Rx;H) =

= −2Re
ω2

ω1
(Aeω1tAz, z)L2(Rx;H) =

= −2Re
ω2

ω1




∞∫

µ0

µ(dEµz, z)




∞∫

0

e2ω1tµdt) =

= 2Re
ω2

ω1

1
2ω1

‖z‖2 = Re
ω2

ω2
1

‖z‖2 =

= Re
ω2ω1

ω3
1

‖z‖2 = ‖z‖2 = ‖x‖2
5/2 . (11)

Taking into account (9), (10) and (11) in (7), we get

∥∥∥∥eω1tAx− ω1

ω2
eω2tAx

∥∥∥∥
2

L2(Rx;H)

= 3 ‖x‖2
5/2 .

Consequently, from inequality (6) it follows that ‖Qx‖5/2 ≤
√

2χ ‖x‖5/2. Since
χ < 1, we have that the operator E+Q is invertible in the space H5/2. Consequently,
from eqaution (5) it follows that x1 = 0. Then x2 = 0. Thus, u0(t) ≡ 0.

Show that problem (3), (4) has a regular solution for any f ∈ L2(Rx; H). Obvi-
ously, the vector-function

u1(t) =
1
2π

+∞∫

−∞
(−iξ3E −A3)−1




∞∫

0

f(s)e−iξ(t−s)ds


 ds, t ∈ R = (−∞,∞)

satisfies equation (3) almost everywhere for t ∈ R+ and u1(t) ∈ W 3
2 (R; H) [2].

Denote by η(t) the contraction of the vector-function u1(t) on [0,∞). Then η(t) ∈
W 3

2 (R+; H) and by the traces theorem η(0) ∈ H5/2, η′(0) ∈ H3/2, η′′(0) ∈ H1/2.
We’ll look for the solution of problem (3), (4) in the form u(t) = η(t) + eω1tAx1 +
eω2tAx2. Using boundary conditions (4) we get

ω1x1 + ω2x2 = −A−1η′(0)

and
η′(0) + ω2

1x1 + ω2
2x2 = A−2K(eω1tAx1 + eω2tAx2 + η(t)).
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Hence we have x2 = −ω1

ω2
x1 − i

ω1
A−1η′(0). Taking this into account in the

second equality, we have: x1 + Qx1 = ψ, where

ψ = − 1√
3ω1

A−2η′(0) +
1√
3ω1

A−2K(η(t))−

− 1√
3ω2

A−2K(eω2tAA−1η′(0)) ∈ H5/2.

Hence we find x1 = (E + Q)−1ψ ∈ H5/2. Then

x2 = −ω1

ω2
(E + Q)−1ψ − i√

3ω1

A−1η′(0) ∈ H5/2.

Thus, u(t) is a regular solution of problem (3), (4). Since

‖P0(d(dt)u(t))‖2
L2(Rx;H) ≤ 2 ‖u‖2

W 3
2 (Rx;H) ,

then from the Banach theorem on the inverse operator we get ‖u‖W 3
2 (Rx;H) ≤

const ‖t‖L2(Rx;H). The theorem is prved.
It holds the following

Theorem 2. Let conditions 1) and 3), χ <
31/4

25/2
be fulfilled. Then for any

u ∈ W 3
2,K(R+;H) it holds the inequality

∥∥∥A3−ju(j)
∥∥∥

L2(R+;H)
≤ cj(χ) ‖P0u‖L2(R+;H) ,

where c0(χ) = c3(χ) =

(
1− 21/5

31/4
χ

)−1/2

, c1(χ) = c2(χ) =
21/3

31/2

(
1− 25/3

31/4
χ

)−1/2

.

Proof. For u ∈ W 3
2,K(R+; H)

‖P0(d/dt)u)‖2
L2(Rx;H) =

∥∥u′′ −A3u
∥∥2

L2(R+;H)
=

= ‖u‖2
W 3

2 (R+;H) + 2Re(A5/2u′′(0), A5/2u(0)) ≥

≥ ‖u‖2
W 3

2 (R+;H) − 2χ ‖u‖W 3
2 (Rx;H) · ‖u(0)‖5/2 (12)

Obviously,
‖u(0)‖2

5/2 = −2Re(A2u′, A3u)L2(R+;H) ≤

≤ 2
∥∥A2u′

∥∥
L2(R+;H)

· ∥∥A3u
∥∥

L2(R+;H)
(13)

On the other hand,

∥∥A2u′
∥∥2

L2(R+;H)
= (A5/2u(0), A3/2u′(0))− (A3u,Au′′)L2(R+;H) ≤

≤ ∥∥A3u
∥∥

L2(R+;H)
· ∥∥Au′′

∥∥
L2(R+;H)

(14)



22
[S.F.Babayeva]

Proceedings of IMM of NAS of Azerbaijan

Similarly we have:
∥∥Au′′

∥∥2

L2(R+;H)
≤ ∥∥u′′′

∥∥
L2(R+;H)

· ∥∥Au′
∥∥

L2(R+;H)
. (15)

Taking into account (14) in (15), we get
∥∥Au′′

∥∥2

L2(R+;H)
≤ ∥∥u′′′

∥∥
L2(R+;H)

· ∥∥A3u
∥∥1/2

L2(R+;H)
· ∥∥Au′′

∥∥1/2

L2(R+;H)
,

or for ε =
1
3
√

2
we have

∥∥Au′′
∥∥2

L2(R+;H)
≤ ∥∥u′′

∥∥ 4
3

L2(R+;H) ·
∥∥A3u

∥∥ 3
2

L2(R+;H) =

=
(
ε · ∥∥u′′′

∥∥2

L2(R+;H)

) 3
2 ·

(
1
ε

∥∥A3u
∥∥2

L2(R+;H)

) 1
3

≤

≤ 2
3
ε
∥∥u′′′

∥∥2

L2(R+;H)
+

1
3ε2

∥∥A3u
∥∥2

L2(R+;H)
=

=
22/3

3

(∥∥A3u
∥∥2

L2(R+;H)
+

∥∥u′′′
∥∥2

L2(R+;H)

)
=

22/3

3
‖u‖2

W 3
2 (R+;H) ,

i.e. ∥∥Au′′
∥∥

L2(R+;H)
≤ 22/3

31/2
‖u‖W 3

2 (R+;H) . (16)

Similarly we have
∥∥A′u

∥∥
L2(R+;H)

≤ 21/3

31/2
‖u‖W 3

2 (R+;H) . (17)

Taking into account (16) and (17) in (13), we have:

∥∥u′(0)
∥∥2

5/2
≤ ‖u(0)‖2

5/2 ≤
24/3

31/2
‖u‖2

W 3
2 (R+;H) ,

i.e.

‖u(0)‖ ≤ 22/3

31/4
‖u‖W 3

2 (R+;H) .

Then from inequality (12) it follows

‖P0(d/dt)u‖2
W 3

2 (R+;H) ≥ (1− 25/3

31/4
χ) ‖u‖2

W 3
2 (R+;H) .

Hence we have

∥∥A3u
∥∥

L2(R+;H)
≤ (1− 25/3

31/4
χ)−1/2 ‖P0u‖L2(R+;H) .

From inequality (15) and (16) it follows that

∥∥A2u′
∥∥

L2(R+;H)
≤ 21/3

31/2
(1− 25/3

31/4
χ)−1/2 ‖P0u‖L2(R+;H) ,

∥∥Au′′
∥∥

L2(R+;H)
≤ 21/3

31/2
(1− 25/3

31/4
χ)−1/2 ‖P0u‖L2(R+;H) .
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The theorem is proved.
Now prove the main theorem.

Theorem 3. Let conditions 1)-3) be fulfilled, and α(χ) =
3∑

j=0

cj(χ) ‖B3−j‖ < 1,

then problem (1), (2) is regularly solvable.
Proof. Write problems (1), (2) in the form of the equation Pu = P0u = P1u =

f , where P0u = P0(d/dt)u, P1u = P1(d/dt)u =
3∑

j=0

A4−ju
(j), u ∈ W 3

2,K(R+;H),

f ∈ L2(R+; H). Using theorem 1 we get that we can represent u in the form
u = P−1

0 v. Hence with respect to v we get the equation v+
+P1P

−1
0 v = f in L2(R+;H) . Using theorem 2 we get that for all v ∈

∈ L2(R+; H) the following ineqaulities hold

∥∥P1P
−1
0 v

∥∥
L2(R+;H)

= ‖P1u‖L2(R+;H) ≤

≤
3∑

j=0

‖B3−j‖
∥∥∥A3−ju(j)

∥∥∥
L2(R+;H)

≤

≤
3∑

j=0

‖B3−j‖ cj(χ) ‖P0u‖L2(R+;H) = α(χ) ‖v‖L2(R+;H) .

Since α(χ) < 1, then v = (E + P1P
−1
0 )−1f and u ∈ P−1

0 (E + P1P
−1
0 )−1f.

Hence it follows that ‖u‖W 3
2 (R+;H) ≤ const ‖f‖L2(R+;H). The theorem is proved.
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