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REGULAR SOLVABILITY CONDITIONS OF A
BOUNDARY VALUE PROBLEM FOR

OPERATOR-DIFFERENTIAL EQUATIONS IN
HILBERT SPACE

Abstract

In the paper, sufficient conditions providing the existence and uniqueness of
regular solutions of a boundary value problem on a finite segment for second
order operator differential equations in Hilbert space are obtained. These condi-
tions are expressed by the properties of the coefficients of an operator-differential
equation.

Let H be a separable Hilbert space, A be a normal invertible operator whose
spectrum is contained in the angular sector Sε = {λ : |arg λ| ≤ ε, 0 ≤ ε < π/2}.
Suppose that {λk}∞k=1 are eigen values, {ek} is an appropriate complete system of
eigen vectors of the operator A:

Aek = λkek, (ek, ej) = δkj =
{

1, k = j,
0, k 6= j,

λk = µke
iϕk , |ϕk| ≤ ε, 0 < µ1 ≤ µ2 ≤ ... ≤ µk ≤ ...

Then the operator may be represented in the form A = UC, where C· =
∞∑

k=1

µk(·, ek)ek, U · =
∞∑

k=1

eiϕk(·, ek)ek, A· =
∞∑

k=1

λk(·, ek)ek. Obviously, for γ ≥ 0

D(Cγ) =

{
x :

∞∑

k=1

µ2γ
k |x, ek)|2 < ∞

}
.

As is known, the linear set D(Cγ) becomes a Hilbert space Hγ with respect
to the scalar product (x, y)γ = (Cγx,Cγy). Let −∞ ≤ a < b ≤ +∞. Denote by
L2((a, b);H) a Hilbert space of all vector functions f(t) determined on the interval
(a, b) almost everywhere, with the values in H for which

‖f‖L2((a,b);H) =




b∫

a

‖f(t)‖2 dt




1/2

.

As in the book [1] introduce the Hilbert space

W 2
2 ((a, b);H) =

{
u : u′′ ∈ L2((a, b);H), C2u ∈ L2((a, b);H)

}

with the norm

‖u‖W 2
2 ((a,b);H) =

(∥∥u′′
∥∥2

L2((a,b);H)
+

∥∥C2u
∥∥2

L2((a,b);H

)1/2
.
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For finite a and b, i.e. 0 < a < b < ∞ denote by

◦
W 2

2 ((a, b) ; H) =
{
u : W 2

2 ((a, b) : H), u′(a) = u′(b) = 0
}

.

Obviously, by the traces theorem [1]
◦

W 2
2 ((a, b) ;H) is a complete Hilbert space.

Consider in the space H the boundary value problem

P (d/dt)u(t) = −u′′(t) + A1u
′(t) + A2u(t) + A2u(t) = f(t), t ∈ (0, T ), (1)

u′(0) = ϕ0, u′(T ) = ϕ1, (2)

where u(t) and f(t) take the values in H, ϕ0, ϕ1 ∈ H, and the operator coefficients
satisfy the conditions:

1) A is a normal invertible operator in H with completely continuous invertible
A−1 whose spectrum is contained in the angular sector

Sε =
{

λ : |arg λ| ≤ ε, 0 ≤ ε <
π

2

}
;

2) A1A
−1 and A2A

−2 are bounded operators in H.
Definition 1. If for f(t) ∈ L2((0, T );H) there exists the vector-function u(t)

satisfying equation (1), we say that u(t) is a regular solution of equation (1).
Definition 2. If for any collection f(t) ∈ L2((0, T );H), ϕ0, ϕ1 ∈ H1/2 there

exists the regular solution u(t) of equation (1) that satisfies boundary conditions (2)
in the sense of convergence

lim
t→+0

∥∥u′(t)− ϕ0

∥∥
1/2

= 0, lim
t→T−0

∥∥u′(t)− ϕ1

∥∥
1/2

= 0

and it holds the estimation

‖u‖W 2
2 ((0,T );H) ≤ const

(
‖f‖L2((0,T ;H) + ‖ϕ0‖1/2 + ‖ϕ1‖1/2

)
,

we say that problem (1), (2) is called regularly solvable.
In the present paper we’ll find conditions on the coefficients of equation (1), that

provide regular solvability of problem (1), (2). Note that in an infinite domain, the
similar problems were investigated in many papers, for instance see [2-6], when A
is a positive-definite self-adjoint operator, in the papers [7,8], when A is a normal
operator. In a finite domain for ϕ0 = ϕ1 = 0, when A is a positive self-adjoint
operator, this problem was considered in [9].

At first consider the boundary value problem

P0(d/dt)u = −u′′(t) + A2u(t) = 0, t ∈ (0, T ), (3)

u′(0) = ϕ0, u′(T ) = ϕ1. (4)

Theorem 1. Let condition 1) be fulfilled. Then problem (3), (4) is regularly
solvable.

Proof. Since A is a normal invertible operator whose spectrum is contained
in the sector Sε = {λ : |arg λ| ≤ ε, 0 ≤ ε < π/2} , then e−At(t > 0) is a strongly
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continuous semi-group of bounded operators. Then the general solution of equation
(3) from W 2

2 ((0, T );H) is of the form

u0(t) = e−Atx0 + e−A(T−t)x1, (5)

where x0, x1 ∈ H3/2. From condition (4) we get −Ax0 + Ae−AT x1 = ϕ0 and
−Ae−AT x0 + Ax1 = ϕ1 or −x0 + e−AT x1 = A−1ϕ0 and −e−AT x0 + x1 = A−1ϕ1.
Then with respect to x0 we get the equation:

(
E − e−2AT

)
x0 = A−1e−AT ϕ1−

−A−1ϕ0 ∈ H3/2. Since for any x ∈ H

∥∥(
E − e−2AT

)
x
∥∥2 ≥

∞∑

k=1

∣∣∣1− e−2λkT |2| (x, ek)
∣∣∣
2
≥

≥
∞∑

k=1

(1− e−2 cos εT )2 |(x, ek)|2 = (1− e−2 cos εT )2 ‖x‖2 ,

then the operator E − e−2AT is invertible in H and
∥∥∥
(
E − e−2AT

)−1
∥∥∥ ≤

≤ (1− e− cos εT )−1. Consequently, x0 = (E − e−2AT )−1(e−AA−1ϕ1 −A−1ϕ0). Obvi-
ously,

‖x0‖3/2 =
∥∥∥C3/2(E − e−2AT )−1(e−AA−1ϕ1 −A−1ϕ0)

∥∥∥ ≤

≤ ∥∥(E − e−2AT )−1
∥∥

∥∥∥C3/2(e−AA−1ϕ1 −A−1ϕ0)
∥∥∥ ≤

≤ const
∥∥∥C1\2 (

e−AA−1ϕ1 −A−1ϕ0

)∥∥∥
3/2

≤

≤ const
∥∥e−Aϕ1 − ϕ0

∥∥
1/2

≤ const
(
‖ϕ1‖1/2 + ‖ϕ0‖1/2

)
,

i.e. x0 ∈ H3/2. We find the vector x1 from the equation x1 = A−1ϕ1− e−AT x0. Ob-

viously, x1 ∈ H3/2. Thus, ‖u0(t)‖ ≤
(
‖ϕ0‖1/2 + ‖ϕ1‖1/2

)
. The theorem is proved.

Now consider the problem

P0(d/dt)u(t) = −u′′(t) + A2u(t) = f(t), t ∈ (0, T ), (6)

u′(0) = ϕ0, u′(T ) = ϕ1. (7)

Theorem 2. Let condition 1) be fulfilled. Then problem (6), (7) is regularly
solvable.

Proof. After substitution of u(t) = ω(t)−u0(t), where u0(t) is a regular solution
of problem (3), (4) that is of the form (5), in order to determine ω(t) we get the
problem

P0(d/dt)u(t) = −ω′′(t) + A2ω(t) = f(t), t ∈ (0, T ), (8)

ω′(0) = 0, ω′(T ) = 0. (9)

Show that problem (8), (9) is regularly solvable. We can write problem (8), (9) in

the form of the equation P0ω = f , where ω ∈
◦

W 2
2((0, T );H) and f ∈ L2((0, T );H).
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From theorem 1 it follows that KerP0 = {0}. Show that the range of values of the
operator P0 coincides with L2((0, T );H). It is easy to see that

ω1(t) =
1
2π

+∞∫

−∞
ξ2E + A2)−1




1∫

0

f(s)e−iξsds


 eiξtdt, t ∈ R

belongs to the space W 2
2 (R; H) (R = (−∞,+∞)) and satisfies the equation

P0(d/dt)ω(t) = f(t) in R. Denote the contraction of ω1(t) on [0, T ] by ξ1(t). Then
we’ll look for ω(t) in the form

ω(t) = ξ1(t) + e−tAx0 + e−(T−t)Ax1,

where the vectors x0, x1 ∈ H3/2 are determined from the condition ω′(0) = ω; (T ) =
0. Since ξ1(t) ∈ W 2

2 ((0, T );H), then by the traces theorem ξ′1(0), ξ′1(T ) ∈ H1/2 [1].
Then in order to determine x0 and x1, we get the equations −Ax0 + Ae−AT x1 =
−ξ′1(0) and −Ae−AT x0 + Ax1 = −ξ′1(T ) . Hence we find

x0 = (E − e−2AT )(e−AT A−1ξ′1(T ) + A−1ξ′1(0) ∈ H3/2.

Then x1 = e−AT x0 − A−1ξ′1(T ) ∈ H3/2.. Consequently, ω(t) ∈
◦

W 2
2((0, T );H).

From the inequality ‖P0ω‖2
L2((0,T ;H) ≤ 2 ‖ω‖2

W 2
2 ((0,T );H) it follows that the operator

P0 :
◦

W 2
2(R+;H) → L2((0, T );H) is bounded. Then from the Banach theorem it

follows that the operator P−1
0 : L2((0, T );H) →

◦
W 2

2((0, T );H) is also bounded.
Thus, ‖ω(t)‖W 2

2 ((0,T );H) ≤ const ‖f‖L2((0,T );H) . Consequently,

‖u(t)‖W 2
2 ((0,T );H) ≤ ‖ω(t)‖W 2

2 ((0,T );H) + ‖u0(t)‖W 2
2 ((0,T );H) ≤

≤ const
(
‖f‖L2((0,T );H) + ‖ϕ0‖1/2 + ‖ϕ1‖1/2

)
.

The theorem is proved.
Now prove the important lemma.

Lemma. For any u(t) ∈
◦

W 2
2((0, T );H) there hold the following inequalities:

∥∥A2u
∥∥

L2((0,T );H)
≤ c0(ε) ‖P0u‖L2((0,T );H) , (10)

∥∥Au′
∥∥

L2((0,T );H)
≤ c1(ε) ‖P0u‖L2((0,T );H) , (11)

where

c0(ε) =





1, 0 ≤ ε ≤ π/4
1√

2 cos ε
, π/4 ≤ ε < π/2 , c1(ε) =

1
2 cos ε

, 0 ≤ ε <
π

2
(12)

Proof. Let u(t) ∈
◦

W 2
2((0, T );H). Then

‖P0u‖2
L2((0,T );H) =

∥∥u′′
∥∥2

L2((0,T );H)
+

∥∥A2u′
∥∥2

L2((0,T );H)
−
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−2Re(u′′, A2u)L2((0,T );H), (13)

Since
(
u′′, A2u

)
L2((0,T );H)

=

T∫

0

(u′′, A2u)dt =

= (C1/2u′(t), U2C3/2u(t))
∣∣∣
T

0
−

T∫

0

(Cu′(t), U2Cu′(t))dt =

= −
T∫

0

(A∗u′(t), Au′(t))dt = −(A∗u′(t), Au′(t))L2((0,T );H),

then it follows from (13) that

‖P0u‖2
L2((0,T );H)

= ‖u‖2
W 2

2 ((0,T );H) + 2 Re(A∗u′(t), Au′(t))L2((0,T );H).

Since for any x ∈ D(A)

Re(A∗x,Ax) = Re
∞∑

k=1

λ
2
k |(x, ek)|2 =

=
∞∑

k=1

µ2
k cos 2ϕk |(x, ek)|2 ≥

∞∑

k=1

µ2
k cos 2ε |(x, ek)|2 ≥ cos 2ε(Ax,Ax),

then
‖P0u‖2

L2((0,T );H) ≥ ‖u‖2
W 2

2 ((0,T );H) + 2 cos 2ε(Au′, Au′)L2((0,T );H). (14)

On the other hand, (u′(0) = u′(T ) = 0),

∥∥Au′
∥∥2

L2((0,T );H)
=

∥∥Cu′
∥∥2

L2((0,T );H)
=

T∫

0

(Cu′(t), Cu′(t))dt =

= (C1/2u′(t), C3/2u(t))
∣∣T
0−

T∫

0

(u′′(t), C2u(t))dt =

= −(u′′(t), C2u(t))L2((0,T );H) ≤
∥∥u′′

∥∥
L2((0,T );H)

∥∥C2u
∥∥

L2((0,T );H)
≤

≤ 1
2

(∥∥C2u
∥∥2

L2((0,T );H)
+

∥∥u′′
∥∥2

L2((0,T );H)

)
=

1
2
‖u‖2

W 2
2 ((0,T );H) .

Then from (14) we get

∥∥Au′
∥∥2

L2((0,T );H)
≤ 1

2

(
‖P0u‖2

L2((0,T );H) − 2 cos 2ε
∥∥Au′

∥∥2

L2((0,T );H)

)

or
(1 + cos 2ε)

∥∥Au′
∥∥2

L2((0,T );H)
≤ 1

2
‖P0u‖2

L2((0,T );H) .
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Hence we get that

∥∥Au′
∥∥

L2((0,T );H)
≤ 1

2 cos ε
‖P0u‖L2((0,T );H) ,

i.e. the validity of inequality (11) is proved.
For 0 ≤ ε ≤ π/4 , from inequality (14) it follows that

∥∥A2u
∥∥

L2((0,T );H)
≤ ‖P0u‖L2((0,T );H) . (15)

And for π/4 ≤ ε < π/2 the number cos 2ε ≤ 0. Therefore, taking into account
inequality (11) in inequality (14), we get

‖P0u‖2
L2((0,T );H) ≥ ‖u‖2

L2((0,T );H) + 2 cos 2ε
1

4 cos2 ε
‖P0u‖2

L2(0,T );H) =

= ‖u‖2
W 2

2 ((0,T );H) +
cos 2ε

2 cos2 ε
+ ‖P0u‖2

L2((0,T );H) .

Thus, (
1− cos 2ε

2 cos2 ε

)
‖P0u‖2

L2((0,T );H) ≥ ‖u‖2
W 2

2 ((0,T );H)

or
‖u‖W 2

2 ((0,T );H) ≤
1√

2 cos ε
‖P0u‖L2((0,T );H) .

Hence it follows that for π/4 ≤ ε < π/2

∥∥A2u
∥∥

L2((0,T );H)
≤ 1√

2 cos ε
‖P0u‖L2((0,T );H) . (16)

The validity of inequality (10) follows from (15) and (16).
The lemma is proved.
Theorem 3. Let conditions 1), 2) be fulfilled and it hold the inequality

α(ε) = c1(ε)
∥∥A1A

−1
∥∥ + c0(ε)

∥∥A2A
−2

∥∥ < 1,

where the numbers c0(ε) and c1(ε) were determined in (12).
Then problem (1), (2) is regularly solvable.
Proof. After substitution of u(t) = ω(t) − u0(t), where u0(t) is the solution of

problem (3), (4), we get the following boundary value problem:

P (d/dt)ω(t) = −A1u
′
0(t)−A2u0(t) + f(t), t ∈ (0, T ), (17)

ω′(0) = 0, ω′(T ) = 0. (18)

Since

‖g(t)‖L2((0,T );H) =
∥∥−A1u

′
0(t)−A2u0(t) + f(t)

∥∥
L29(0,T );H)

≤

≤ ∥∥A1A
−1

∥∥ ∥∥Au′0(t)
∥∥

L2((0,T );H)
+

+
∥∥A2A

−2
∥∥∥∥A2u0(t)

∥∥
L2((0,T );H)

+ ‖f(t)‖L2((0,T );H) ≤
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≤ const ‖u0(t)‖W 2
2 ((0,T );H) + ‖f(t)‖L2((0,T );H) ≤

≤ const
(
‖ϕ0‖1/2 + ‖ϕ1‖1/2 + ‖f(t)‖L2((0,T );H)

)
,

then the vector function g(t) = −A1u
′
0(t)−A2u0(t)+f(t) ∈ L2((0, T );H). Thus, we

can write problem (17),(18) in the form of the equation Pω = P0ω+P1ω = g, where

ω ∈
◦

W 2
2((0, T );H), g ∈ L2((0, T );H). Since the operator P0 :

◦
W 2

2((0, T );H) →
L2((0, T );H) is an isomorphism, then after substitution of ω = P−1

0 υ we get the
equation υ + P1P

−1
0 υ = g, in the space L2((0, T );H). On the other hand,

∥∥P1P
−1
0 υ

∥∥
L2((0,T );H)

= ‖P1ω‖L2((0,T );H) =
∥∥A1ω

′ + A2ω
∥∥

L2((0,T );H)
≤

≤ ∥∥A1A
−1

∥∥ ∥∥Aω′
∥∥

L2((0,T );H)
+

∥∥A2A
−2

∥∥∥∥A2ω
∥∥

L2((0,T );H)
≤

≤ (
c1(ε)

∥∥A1A
−1

∥∥ + c0(ε)
∥∥A2A

−2
∥∥) ‖P0ω‖L2((0,T );H) = α(ε) ‖υ‖L2((0,T );H) .

Here we used inequalities (10) and (11) from the lemma. Thus from the condition
α(ε) < 1 it follows that the operator (E + P1P

−1
0 ) exists in L2((0, T );H) and is

bounded. Then ω = P−1
0 (E + P1P

−1
0 )−1g and

‖ω‖W 2
2 ((0,T );H) ≤ const ‖g‖L2((0,T );H) ≤ const

(
‖ϕ0‖1/2 + ‖ϕ1‖1/2 + ‖f‖L2((0,T );H)

)
.

Thus, the regular solution of problem (1), (2) is u = ω − u0. Therefore,

‖u‖W 2
2 ((0,T );H) ≤ ‖ω‖W 2

2 ((0,T );H) + ‖u0‖W 2
2 ((0,T );H) ≤

≤ const
(
‖ϕ0‖1/2 + ‖ϕ1‖1/2 + ‖f‖L2((0,T );H)

)
.

The theorem is proved.
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