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Abulfaz M.\MAMEDOV

ON REGULAR SOLVABILITY OF A CLASS OF
OPERATOR-DIFFRENTIAL EQUATIONS OF FIFTH
ORDER WITH A CONTINUOUS COEFFICIENT ON

THE AXIS

Abstract

In the paper, we obtain reqular solvability conditions of a class of operator-
differential equations of fifth order with a discontinuous coefficient on the axis,
and the principal part of operator-differential equations contain a normal oper-
ator. The found conditions are expressed by the properties of the coefficients of
the operator-differential equation.

Let H be a separable Hilbert space, the operator A, A; ( j= 0,7) be linear op-
erators in H and satisfy the following conditions:

1) A is a normal invertible operator whose spectrum is contained in the angular
sector

SE:{)\:\argMgs, O§5<17T—0};

2) The operators B; = A;jA™/ (j =1,5) are continuous in H.
Consider the operator-differential equation

dPul(t)
dt?

4
— (O APu(t) + 3 As_u() = (1), t€ R=(—o0,00), (1)
=0

where u(t) and f(t) are vector-functions determined almost everywhere in R with
the values in H, and

[ a®, teR_=(-00,0),
pl) = { #, te Ry = (0,+0),

and a >0, >0, a#p.

Denote by La(R; H) the space of vector-functions f(¢) determined almost every-
where in R with the values in H, summable in the square over R, i.e. summable
functions for which

1/2

+oo
T /rf<t>||zdt <. @)

It is known that Lo(R; H) is a Hilbert space with the scalar product

—+o00

(F, 0) Lot = / ((6),g(t)) mdt

— 00

generating the norm (2).
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It is known well that [1]

50

Wi s ) = {u: G

Y APu € Lo(R; H)}
is a Hilbert space with the scalar product
dPu dPv 5 .5
(u7U)W25(R;H) = (dt57 dt‘:’) + (A u,A U)LQ(R;H)
Lo(r;m)

and here the norm of the element u € W3 (R; H) is given by the formula

1/2
2
+ HAE)UHLQ(R;H)> : (3)

ol (H o

Note that here the derivatives are understood in the sense of theory of generalized
functions [1].

Subject to condition 1), the operator A is represented in the form A = UC,
where U is a unitary, C' is a positive —definite operator in H, and for z € D(A) it
holds the equality |[Az|,; = ||A* x|y = ||Cz||y; and UCx = CUx, here A* is an
operator conjugate to the operator A.

Denote by {Hy} (0 < v < oo) the Hilbert scale of spaces generated by the
operator A, ie. Hy = D(C7), (x,y)y = (Cx,C"y), x,y € D(C7).

Definition. If for any f(t) € Lo(R;H) there exists u(t) € W3(R; H), that

satisfies equation (1) almost everywhere in R and it holds the inequality

Lo(R;H)

||UHW25(R;H) < const HfHLz(R;H) ’

then equation (1) is called regularly solvable.
Define the following operators:

4
— p(t)APu,  Pyu= Z A5_ju(j),
=0

where u € WP (R; H). Then we can write equation (1) in the form
Pu=Pyu+ Piu=f,

where f € Lo(R; H), u € W3(R; H).

In the present paper, under some restrictions on the coefficients, we’ll prove a
theorem on regular solvability of equation (1).

At first prove the following theorem.

Theorem 1. Let condition 1) be fulfilled.

Then equation

1s reqularly solvable.
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Proof. Denote by

+o0
ul(t)—;ﬂ_/(ig5 5A5 /f i(t=5)¢ gg d¢ (5)
and
+oo
w(t) =5 [ (€854 /} )el=9%ds | d, (6)

here E is a unit operator in H.
d®u

It is obvious that wi(t) and wusy(t) satisfy the equations —aSA%u = f and

dts
d°
ﬁg — B°ABu = f, respectively, in R almost everywhere. Show that uy(t), us(t) €
€ WI(R; H).
Obviously, the Fourier transformation of the vector-function w1 (t) is of the form:

(€)= (i€ E — o 4%) " F(¢), (7)

where f(ﬁ ) is the Fourier transformation of the vector-function f(¢). Then by the
Plancherel theorem

BPuy ||°
2 _ 1 5, |2 _
lurllvs (mymy = Hdtg) L + A u1HL2(R;H) -
- 2 I 2
- ”§5u1(§)HL2(R;H) + HASUI(§>HL2(R;H) : (8)

From the spectral expansion of the operator A it follows that for any & € R it holds
the estimation:

HA5(71§5 5A5 1“ = sup ‘)\5 255 5)\5)—1‘ <

Aea(A)
—1/2
< sup ‘,u (i€5 — a®Pe5#) 1} < supp ‘5104_@10#10 20545 |£|5Sin5<p‘ <
©n>0 pn>0
lol<e lpl<e
< supp ‘510 + 1010 (g0 4 (10,10 2 590”—1/2 < ; (9)
>0 ~ adcosbhyp

lol<e
Allowing for (7) and (9), we get

<

|48 ynar) = 476 = 0 4°) 1 Fie) La(RsH)

< [|[A°(i°E — a?A%) 7| - Hf(é)HLg(R;H) ~ P cos by H ’

La(R:H)
Then it is clear that ASu;(t) € Lo(R; H).

It is similarly proved that dd5 = € La(R; H). Then we get that u(t) € W3 (R; H).
uz(t) € W3(R; H) is proved in the same way.
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Denote by (t) and 4(t) the contractions of the vector-functions wus(t) and
uz(t) on R_ and R, respectively. Then 1 (t) € W3 (R_; H), 4(t) € WS (Ry; H)
and by the traces theorem [1] ng)(()) € H57j7%, i=1,2; j=0,4.

Construct the vector-function

01(t) = by (t) + et + erdetdp, 4 eodstdy - e R,
u(t) =
O2(t) = thy(t) + ety + erMtdy te Ry,

2r(k — 1)
5 9
N =1, and ¢, (k =1,5) are still unknown vectors from Hy /2. It is obvious that
the vector-function u(t) is a general solution of equation (4). Choose ¢, (kK =1,5)
so that u(t) € W3 (R; H).
For that there should be ng)(()) = 0&”(0), j =0,4. Hence we get the system of
equations with respect to ¢, k=1,5:

2m(k —1 _
where A\ = cos L) + i sin k = 1,5 are the roots of the equation

01+ 93 — 3 — P4+ P5 = 15(0) — ¥1(0),
alp1 + adopy — BAsps — BAapy + adsps = A~ Hy(0) — ¥1(0)),
a?Xio) + a?X3p, — B7A5ps — B2ATps + a2 Ao = A72(¥5(0) — ¢1(0)),  (10)

P Al + 3Ny — B2 Aps — BN 0y + X35 = A3 (WY (0) — ¥Y'(0)),

a*Alo) + 044)\%@2—ﬁ4)\§<ﬁ3—54>\i¢4+0¢4)\§¢5 =AY (0)—y]V(0)).

From the traces theorem it follows that the vectors at the right side of equations in
(10) belong to the space Hg /2, and we can show that the principal operator-matrix
in (10)
E E —-F —-F E
Ck/\lE CYAQE —,8/\3E —,8)\4E Ck/\5E
Ag= | ®NE o?\3E —NE —B°MNiE o?)\E
ABNE PNE —FBNE -NE o\E
ANE o*NE —BINE —BI\E o*M\IE
is invertible in H95 /2
¢ (k=1,5) are uniquely determined and belong to the space Hys.

= Hg/y X Hgjg X Hgjg x Hg /o X Hgo. Then the unknown vectors

d5
From these arguments it follows that the homogeneous equation Pyu = d—tg —
p(t)A%u = 0 has only a zero solution ug(t) = 0. Therefore, the operator Py isomor-
phically maps the space W (R; H) onto Lo(R; H).
Since
I ooy = 1P0ul gy < const |ullys gy

then applying the Banach theorem on the inverse operator, we get that the solution
of the equation u(t) € WP(R; H) satisfies the inequality

||u||W25(R;H) < const || flp,(r.m) -



Proceedings of IMM of NAS of Azerbaijan 91
[On regular solvability of a class of...]

The theorem is proved.

In order to prove regular solvability of equation (1), in some conditions on the
coefficients, it is necessary to estimate the norms of the operators of intermediate
derivatives with the norm of the principal part of equation (1).

Prove the following theorem.

Theorem 2. Let A be a normal invertible operator whose spectrum is contained
in the angular sector

H A5—ju(j))

Lao(R:H) < Cj(e; 5 8) ||P0u||L2(R;H) )

where the coefficients Cj(e;o;8) (j =0,4) are determined as follows:
1 1
min(a5, 3°) cosbe’
161/5 max (al/Q; ﬁ1/2)
51/2 min (019/2§69/2>
21/533/10 max (o; 3)
51/2 min (at; ﬂ4)

Co(e;;8) =

Ci(g; 05 8) =

- (1 —sinbe) /2,

Co(es s 8) = (1 —sinbe) /2,

91/533/10  Mmax (a3/2, ﬂ3/2>
51/2 min <a7/2 57/2)
167 max (% 6)

51/2  min (a3 ﬂ3)

Proof. At first that for u(t) € W5 (R; H) it holds the following inequality:

Cs(g;058) =

- (1 —sinpe) /2,

1/2

Cu(g;;8) =

— sinbe)”

dBu |
H 1/2P0u‘ > Hp—1/2 u I Hp1/2A5 ‘ _
Lo(R;H) dtd Lo(R:H) Lo(R;H)
dPu
—2sinpe || p12LY H 1/2A5u‘ . 11
P dt® Lo(R:H) P Lo(RyH) (11)

To prove inequality (11), multiply the both sides of the equality

Pou=—= — p(t)A’u

scalarly the function p~/2. Then we get

& 2
Hp—l/zu _ p1/2A5u

" =2

La(R;H) LQ(RH).
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Hence we have

5 2
|t/2P0u S H -2 +
Lo(R;H) At || 1, (rm)
2 5
+ Hp1/2A5u‘ —2Re (dg’ A5u> . (12)
Lo(R;H) dt Lo (R;H)
After integration by parts, we get
+oo
5 5
(dg,AE’u) - / (CZ:?,A%) dt =
dt Lo(riy J \dt H
+o0o
=— / (A*5u d5u> dt = — (A*5u d5u> :
o as ) g dtd Lo (R H)
Then
5 5 5
2Re <dg7 A5'LL> - (d;l—j) A5U> + <A5u7 dg) =
dt Lo(R; H) dt Lo(R; H) A ) Ly(rom)
d® d?
) )
dt Lo(R;H) dt La(R;H)
d®u d®u
= (4% - AF)u, 22 =|( (B —A®A°) APu, —— <
T dtd T dtd
Lo(R;H) Lo(R;H)
5
< ((E _ A*5A’5) p1/2A5u,p1/2dg> <
At ) o (ritn)
5
< HE o (A*A_1)5H . Hp1/2A5u‘ . H —I/Qd% .
L2(R;H) dt Lo(R:H)
From the spectral expansion of the operator A it follows that
o
HE’ - (A*A_1)5H < Sup |1-— () < 2sin be.
AEa(A) A
Then 5
2Re (dg’ A5u> <
dt Lo(R;H)
5
< 25in5e le/QA%’ : ’ —1/2d—g . (13)
La(R;H) At || 1, (r:m)

Taking this inequality into account in (12), we get validity of (11). Then using (11),
we get

2

? H —1jpdu
Lo(R;H)

Lo(R;H) dtd

e

i 2 P47
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2 H ipdu? _
L2(R;H) Lo (R;H)
. (14)

— <sin2 Se Hp1/2A5u‘

2
= cos® be Hp1/2A5u‘

Lo(R;H)
Using inequality (13), we get

2 2

<

2 _
HAE)UHLQ(R;H) - Hp 1/2(p1/2A5u)’ La(R;H)

< max p~ ' (t) Hp1/2A5u‘

Ly(R;H)
1 1
~ min (a5 - §°) cos? 5e

1 1 )
~ min (Oélo 510) " cos?5e HPOU”M(R?H)'

2
-12p ‘ <
Hp ot Lo(R;H)

Hence we get

1 1
5 _ e
HA UHLz(R;H) < min (045;,65) ’ cos be HPOUHLQ(R;H) - Co(svaaﬁ) HPOU||L2(R;H)7

1 1
min (a?; %) cosbe’
From inequality (11), we easily get

where Cy(g;; 3) =

1/2 45 2 —1/2d5u ? : —1| ,—1/2 2
Hp A u) + —= < (1 — sin be) Hp Pou‘ . (15)
Lo(R;H) dae° ||, (R;H) Lo(R;H)
Obviously,
4, 112 +e 4 4 o g d4
HAdZL = / (AdzL,Adff) dt = / (CZCZ) dt =
dt* | 1, (rm . dt dtt ) o E dt dtt ) 4
+oo
G d3u d’u o d3u d®u B
=Y as), S| s '
K H Lo(R;H) Lo(R;H)
3 5
:’ A2d7§‘ ’d;‘ . (16)
A\ Ly rorry N A N Ly (o)
In the same way we get:
d3u||? du d°u
2ﬁ < HA4dt : | s ) (17)
t Lo(R;H) Lo(R;H) La(R;H)
a2 || d*u
A3 —— < || ABu . -HA : (18)
dt2 Lo(RH) H HLQ(R,H) dtd Lo(R:H)
du||? d*u
At— < || A%u , -HA3 : (19)
dt | I HLQ(R,H) di2 La(RsED)
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Taking into account (16)-(19) and applying inequality (15), we get the remaining
required estimations in the following way:
1.

du ||?
A < || A% X
[ Y T
4, 111/2
o N e P
dt dt* ||y ey
< 57, [
P> || ey A8 oy
S L
LB\ dt> || L (e dt ||y (romy
Hence we get that for any 6 > 0
1/5
du|? 2 4/5 5 ||?
4 5
HA I < (HA UHLQ(R;H)) ' (‘ s <
Lo(R;H) Lo(R;H)

- max p'/%(t) Hp1/2 4 ‘
min p%/°(t)

(o

X <5 Hp1/2A5u‘ iQ(R;H)>4/5 <(514

2 1/5
Lo(R;H )) '
Applying the Young inequality, we have

: 2
< maxtap) (4 le/ 2A%| + L
Lo(rry . min(ad; 54 La(RiH) 56

4/5
X
Lg(R;H))

1/5
B max(a; [3) y
Lo(R;H) min(a?; 3%)

—1jpdu
e

—1jpdu

du
A4
H i

dt

2
LQ(R;H)) '

i.e. § = 4715 Then taking into account

46 1

Now choose § > 0 such that = = 5?,

inequality (15), we get

4*5  max(o; 3)

— . 4 4 <
Lo(R:H) 5  min(a?; 5%)

Lo (R;H)

HA4du

- (1 — sin5e) "L H 1/2P0u‘

44/5‘ max(a; 3)
5 min(a?; (%)

(1= sin5e) ™ | Poull?, s -

Hence we get
16'/5  max(al/?; 51/2)

>~ . X
Lo(rerry DY min(a%2;3%2)

du
At
” dt

x(1 — sin 55)_1/2 ||POU||L2(R;H) = Ci(g; 5 8) ||P0u||L2(R;H) )
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161/5 max(al/Z;/Bl/Q)

e A — . ~1/2
where C1(g;;3) = Ve (@ 57 - (1 —sinbe)~1/2,
2.
HA3d2u2 _'A4du ‘df)“ <
At || 1, (mm) dt ||y (romy 1148 Nl Loy
dPu || dBu||'?
T
H HLQ(R,H) dt5 La(R:H) dt3 Lo(R:H)
3/4 1/4
S I T
2 At || 1, () dt ||y (rir)
5 9/8 d5u 3/4 A3d2 1/8
<4 uHL2 (R:H) || g5 dt2
Lo(R;H) LQ(RH)
Hence we have
2/5
2u® 2 3/5
A3 < (||A%u ) H <
T N (2 i (=1
2/5
max(a?; <Hp1/2 A5 ‘2 )3/5 le/zd5“ i / _
~ min(a?; ﬁ3 Lo(R;H) dtd Lo(R;H)

Then applying the Young inequality, for § > 0 we get

e max(a®; §%)
At? || 1, (roy ~ min(ad; 5%)
5 2/5
TN RPN N il (1 L
Lo(R;H) at® || 1, (ron) -
_ max(a® 5% le/z 45 ‘ H 1pdu ‘
- min(a3;ﬂ3) 562 L2(RH dt Lo(R;H)
953 1/5
For 522 = %, ie 0= % allowing for (15) we get
'Agd2u 21/533/10 - max(a; ()
A ||y~ 5Y2 min(ak; 5

X (1= sin5e) Y || Pou| 1y ) =

Co(es s B) [Poull 1y oty -

21/5.33/10 max(a; ) ) _1/9
where Gy(e3 05 5) = 512 min(at; 8Y) (1 =sin5e)™
3.
PRLRY 2 || ot dPu
at® =7 dt des =
Ly(R;H) Ly(R;H) Lo (R;H)
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< || 4% ‘Asd% v ‘dSu
L2(f:H) A ||y romy 1A Ml Lyrorry
< A%l HAd% v ’d%
P A oy | A8 ey
9/8
< Py ] e
L2(BH)  dt> ||, gy At || Ly

Applying the Young inequality, we have that for any 6 > 0

3/5
d3u 2 2/5
A— < ([|4% H <
e N (e i (=1
9 3/5
M( o240 )2/5 52 [ -1/ <
- min(aQ;Bz) L2 (R;H) dtd Lo(R;H) B
2
o max(a® 5% Ll 35“ 18y |
- min(az;ﬂz) 553 Ly(R;H) D dt Lo(R;H)
2 1/5
For 5?53 = %, lLe. § = %, allowing for (15) we get
Bu 21/533/10  max(a3/2; §3/2)
A2 . ’ - (1 —sinb —1/2 P . )
' & |y = 52 min(a?/2; 4772 (1 —sinbe)™ /= || Poul| 1, (g,

21/5 . 33/10 max(a3/2;ﬁ3/2)

' (1 — sin5e)~1/2
57 min(ad/2; g2y | SmA T

where C3(g; 0 ) =

d*u
4. Estimate the norm A—-.
dt4
i ol 1
At || 1, (s A || Ly N 4 N yroy ~
1/2 5, 113/2 5 113/2
g I | I L A A
Aty rymy 11 98 | Ly (s At || 1, (rom)
2. 11/4 5 113/2 4 n1/8
o Y A S E= .
dt? || 1y (rin) A ey | 4 (i)
Hence we have
4/5
a4 15 (|| dou|®
%< () ([ .
dt | 1y rin) ’ At |l 1y ()

For § > 0, applying the Young ineqiality,we get:

o max(a’; 81

Loy min(e; B)

2
d*u

el
%
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4/5
9 )1/5 H _1/2d u _
LQ(R;H) 5 LQ(R H) -

(Al

2
- max(a;§') Lzl 48 || 1jpdu
~  min(q; ) 564 La(R;H) b dt Lo (R;H) .
1 4
For T 35, ie. 0 =471/5 allowing for (15) we get
HAleU 2 44/5 max(a4;ﬁ4) y
dth Lo(re) 5 min(a; ()
Pul?
1/2 45, ’ i H —1/207U <
(Hp La(R;H) P dt® ||y romy )

1625 max(at; 54

(1 —sinbe)™ Hp 1/2P0u’

=5 min(«; 3) Lo(RH)
Hence we have
HAd‘lu 165 max(a?; 5?) "
att ||,y — 5Y? min(a3; 5°)

X(l —sin5€) 1/2 HPOUHL2 (R;H) — =Cy (5 Oé,ﬂ) ||P0u||L2(RH)

1615 max(a?; 5?)
5172 min(a3; 3%)
The theorem is completely proved.
Now we can prove the main theorem on regular solvability of equation (1).

Theorem 3. Let conditions 1), 2) be fulfilled, and the following inequality hold:

here Cy (¢; ;) = - (1 — sin 5e)~1/2,

4
(505 08) = ZCJ (g50;58) || Bs—5]| < 1,
7=0

where the constant numbers Cj (e;a;8) (j =0,4) are determined from theorem 2.
Then equation (1) is regularly solvable.
Proof. After substitution of Pyu = v we can write equation (1), i.e.

Pu = Pyu+ Pju
in the form v + PiPy'v = f or in the form (E + PiPy')v = f, where v €
Ly(R; H), f € Lo(R; H).
On the other hand, for any v € Lo(R; H) we have:

IPES ol oy = 1Pl ey =

Lo>(R;H)

4 4
S A5 jul) < Z HA5 ju J)‘
j=0 =0

Lo(R;H)
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4
A —(5-4) g5—1y, ()‘
;H 5-54 Lo(RH) —

<
La(R;H)

< 24: HAS_J.A%H)H . HAsfjum‘
7=0

4
Z 1Bs—; |l Cj(e; o B) ||POU”L2 R;H) = K(e; 5 0) HUHLQ(R;H) )
j=0

where the constant numbers Cj(e;a; 3) (j = 0,4) are determined from theorem 2.
Since K (g;a; 3) < 1, the operator E+P1P0_1 is invertible in Ly(R; H), therefore
v=Pu=(E+PP") f ie u=PyY(E+ PP
From the last one we get

lullwg () < const | Fl L, m.m) -

The theorem is proved.
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