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TORSIONAL VIBRATIONS OF A

TRANSVERSALLY ISOTROPIC SPHERICAL SHELL

Abstract

The torsional vibrations of a transversally-isotropic spherical shell when lat-
eral surfaces are free of stresses, were studied by the method of homogeneous
solutions. A variance equation was constructed and it roots were studied. As-
ymptotic formulae for displacements and stresses admitting to calculate stress-
strain state at different values of frequency of forcing forces were obtained.

1. Let’s consider torsional vibrations of a transversally-isotropic spherical shell.
Accept that in the spherical system of coordinates the shell occupies the volume
Γ = {r ∈ [R1; R2] , θ ∈ [θ1; θ2] , ϕ ∈ [0; 2π]} and the shell contains none of the poles
0 and π.

At non-availability of mass forces the motion equations have the form [1]:
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where uϕ = uϕ (r, θ, t) is a displacement vector component; g is shell’s material den-
sity; σrϕ, σθϕ are stress tensor components that are expressed by the displacements
vector component as follows:
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Substituting (1.2) in (1.1), we get motion equations in displacements:
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Here ρ = r
R0

is a dimensionless radial coordinate; u = uϕ

R0
, G0 = G

G1
are dimen-

sionless quantities; R0 = R1+R2
2 is a radius of median surface of the shell.

Assume that the lateral side of the shell is free from stresses
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and on the conic surfaces (end faces) the following boundary conditions are given:
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where σρϕ = σrϕ
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are dimensionless quantities.


