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TWO DIMENSIONAL AUTOMODEL PROBLEMS
OF MEMBRANE DYNAMICS

Automodel movement of the membranes accompanies an impute by cone owning
constant speed.

The problem of a slant impact by the normal oriented cone has been considered by
Ell-Sucka A.G. [l], who obtained the movement equations of the membrane and solved
ones by the iteration method. Then another authors constructed approximate and accurate
solutions of the different varants of this problem.

In [2] one made an attempt to generalize the theory for non-circle line of the
membrane raiding on the cone This result has been generalized in [3] for both parts of the
membrane: flat and living. Here there is shown an opportunity to reduce to integral
equations of the pointed out tasks.

1.Basis equations

The motion of membrane can be written in form
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where r.f Lagrange 1;—wt:-:mmrn:ijnau:as polar system, u,&-the velocity vectors of

membrane elements on a cone surface

a= o= E-Young's modules;

pV1=v! )
v — Poisson ratio, A =csc @ on cone surface, =1 in plane part. Membrane’s striker’s
velocity Svectors on cone and could written as following:
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where they are defined by equations (1)-(2) , which could be change to the next form:
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b=a 1-v
2. Automodel solution.
System’s (3)}-(4) solution for automodel motion size «Onew is
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Unknowns functions can be written with help of analytical functions arguments
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Equation’s (3) can be written in next form:
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With derivating of the equations (8) and using the means, the equations (9) could be
solved:
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The equation (10) define membranes u and 2 vectors through analytical functions ¢, (z,)
and w(z,) . It has been reached that we have to find @ and  analytical functions in two -
connection regions Q, and 2, of the complex domains z, and z,.
In flat part of the membrane on the wave front there are also conditions
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3. Reduction to the integral equations.

Solution on the cone is looked for like the potential of the simple layer:
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Substituted in (10) and taken z, and z, on border L, and L, correspondingly it
can be obtained:
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where I border symmetric L relativcl}f to x axis.
Thus, there is the complex singular integral equations that separating real and
imaginary parts can be brought to two integral equations for unknown pyand g, .

To provide condition (11) solution in flat part of the membrane looks like for
potential the simple layer plans regular supplement:

1 1 1 | gl
= In d& —— In d

® 2:::!‘”‘ T zm'!#‘ = 3

1 ] e
1 i (13)
W=—o7 | In d&, 7[#1 In dé,

2m i[ -z, 2m é’z s b
zZ

substituted (13) to (10) it can be obtained two singular integral equations for unknown
aand g,
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